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DEDICATION.

TO THE

TEACHERS OF THE NORMAL SCHOOL

OF THE STATE OF NEW-YORK.

GENTLEMEN !

A stirring freshness in the air, and ruddy streaks upon the

horizon of the moral world betoken the grateful dawning of a new

ora. The days of a drivelling instruction are departing. With

us is the opening promise of a better time, wherein genuine man

hood doing its noblest work shall have adequate reward.

TEACHER is the highest and most responsible office man can fill.

Its dignity is, and will yet be held commensurate with its duty

a duty boundless as man s intellectual capacity, and great as his

moral need a duty from the performance of which shall emanate

an influence not limited to the now and the here, but which surely

will, as time flows into eternity and space into infinity, roll up, a

measureless curse or a measureless blessing, in inconceivable

swellings along the infinite curve. It is an office that should be

esteemed of even sacred import in this country. Ere long a hun

dred millions, extending from the Atlantic to the Pacific, from

Baffin s Bay to that of Panama, shall call themselves American

citizens. What a field for those two master-passions of the hu

man soul the love of Rule, and the love of Gain ! How shall

our liberties continue to be preserved from the graspings of Am
bition and the corruptions of Gold ? Not by Bills of Rights
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Constitutions, and Statute Books
;
but alone by the rightly culti

vated hearts and heads of the PEOPLE. They must themselves

guard the Ark. It is yours to tit them for the consecrated

charge. Look well to it : for you appear clothed in the majesty

of great power ! It is yours to fashion, and to inform
,
to save,

and to perpetuate. You are the Educators of the People : you
are the prime Conservators of the public weal. Betray your

trust, and the sacred fires would go out, and the altars crumble

into dust : knowledge become lost in tradition, and Christian no

bleness a fable ! As you, therefore, are multiplied in number,

elevated in consideration, increased in means, and fulfill, well and

faithfully, all the requirements of true Teachers, so shall our fa

voured land lift up her head among the nations of the earth, and

call herself blessed.

In conclusion, Gentlemen, to you, as the conspicuous leaders

in the vast and honourable labour of Educational Helbrm, ana

Popular Teaching, the First American Edition of the PRINCIPIA ol

Newton the greatest wrork of the greatest Teacher is most

respectfully dedicated.

N. W. CHITTENDEN.



INTRODUCTION TO THE AMERICAN EDITION.

THAT the PRINCIPIA of Newton should have remained so gen

erally unknown in this country to the present day is a somewhat

remarkable fact
;
because the name of the author, learned with

the very elements of science, is revered at every hearth-stone

where knowledge and virtue are of chief esteem, while, abroad,

in all the high places of the land, the character which that name

recalls is held up as the noblest illustration of what MAN may be,

and may do, in the possession and manifestation of pre-eminent
intellectual and moral worth

;
because the work is celebrated, not

only in the history of one career and one mind, but in the history

of all achievement and human reason itself; because of the spirit

of inquiry, which has been aroused, and which, in pursuing its

searchings, is not always satisfied with stopping short of the foun

tain-head of any given truth
; and, finally, because of the earnest

endeavour that has been and is constantly going on, in many
sections of the Republic, to elevate the popular standard of edu

cation and give to scientific and other efforts a higher and a

better aim.

True, the PRINCIPIA has been hitherto inaccessible to popular
use. A few copies in Latin, and occasionally one in English may
be found in some of our larger libraries, or in the possession of

some ardent disciple of the great Master. But a d^ad language
in the one case, and an enormous price in both, particularly in

that of the English edition, have thus far opposed very sufficient

obstacles to the wide circulation of the work. It is now, how

ever, placed within the reach of all. And in performing this la

bour, the utmost care has been taken, by collation, revision, and

otherwise, to render the First American Edition the most accurate

and beautiful in our language.
u Le plus beau monument que

l

?

on puisse clever a la gloire de Newton, c est une bonne edition

de ses ouvrages :&quot; and a monument like unto that we would here



V: INTRODUCTION TO

set up. The PRINCIPIA, above all, glows with the immortality of

a transcendant mind. Marble and brass dissolve and pass away ;

but the true creations of genius endure, in time and beyond time,

forever : high upon the adamant of the indestructible, they send

forth afar and near, over the troublous waters of life, a pure, un

wavering, quenchless light whereby the myriad myriads of barques,

richly laden with reason, intelligence and various faculty, are

guided through the night and the storm, by the beetling shore

and the hidden rock, the breaker and the shoal, safely into havens

calm and secure.

To the teacher and the taught, the scholar and the student, the

devotee of Science and the worshipper of Truth, the PRINCIPIA

must ever continue to be of inestimable value. If to educate

means, not so much to store the memory with symbols and facts,

as to bring forth the faculties of the soul and develope them to the

full by healthy nurture and a hardy discipline, then, what so effec

tive to the accomplishment of that end as the study of Geometri

cal Synthesis ? The Calculus, in some shape or other, is, indeed,

necessary to the successful prosecution of researches in the higher

branches of philosophy. But has not the Analytical encroached

upon the Synthetical, and Algorithmic Formulae been employed
when not requisite, either for the evolution of truth, or even its

apter illustration ? To each method belongs, undoubtedly, an

appropriate use. Newton, himself the inventor of Fluxions,

censured the handling of Geometrical subjects by Algebraical

calculations
;
and the maturest opinions which he expressed were

additionally in favour of the Geometrical Method. His prefer

ence, so strongly marked, is not to be reckoned a mere matter oi

taste
;
and his authority should bear with preponderating weight

upon the decision of every instructor in adopting what may be

deemed the best plan to insure the completes! mental develop

ment. Geometry, the vigorous product of remote time
;
blended

with the earliest aspirations of Science and the earliest applica

tions of Art
;
as well in the measures of music as in the move

ment of spheres ;
as wholly in the structure of the atom as in that

of the world; directing MOTION and shaping APPEARANCE; in a

wonl, *t the moulding of the created all, is, in comprehensive
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view, the outward form of that Inner Harmony of which and in

which all things are. Plainly, therefore, this noble study has

other and infinitely higher uses than to increase the power of ab

straction. A more general and thorough cultivation of it should

oe strenuously insisted on. Passing from the pages of Euclid or

Legendre, might not the student be led, at the suitable time, to

those of the PRINCIPIA wherein Geometry may be found in varied

use from the familiar to the sublime ? The profoundest and the

happiest results, it is believed, would attend upon this enlargement

of our Educational System.
Let the PRINCIPIA, then, be gladly welcomed into every Hall

where a TRUE TEACHER presides. And they who are guided to

the diligent study of this incomparable work, who become

strengthened by its reason, assured by its evidence, and enlight

ened by its truths, and who rise into loving communion with the

great and pure spirit of its author, will go forth from the scenes

of their pupilage, and take their places in the world as strong-

minded, right-hearted men such men as the Theory of our

Government contemplates and its practical operation absolutely

demands.





LIFE OF

SIE ISAAC NEWTON.

Nec fas est proprius mortal? attingere Divos. HALLEY.

FROM the thick darkness of the middle ages man s struggling

spirit emerged as in new birth
; breaking out of the iron control

of that period ; growing strong and confident in the tug and din

of succeeding conflict and revolution, it bounded forwards and

upwards with resistless vigour to the investigation of physical and

moral truth
; ascending height after height ; sweeping afar over

the earth, penetrating afar up into the heavens
; increasing in en

deavour, enlarging in endowment
; every where boldly, earnestly

out-stretching, till, in the AUTHOR of the PRINCIPIA, one arose,

who, grasping the master-key of the universe and treading its

celestial paths, opened up to the human intellect the stupendous
realities of the material world, and, in the unrolling of its harmo

nies, gave to the human heart a new song to the goodness, wis

dom, and majesty of the all-creating, all-sustaining, all-perfect

God.

Sir Isaac Newton, in whom the rising intellect seemed to attain,

as it were, to its culminating point, was born on the 25th of De

cember, O. S. 1642 Christmas day at Woolsthorpe, in the

parish of Colsterworth, in Lincolnshire. His father, John New
ton, died at the age of thirty-six, and only a few months after his

marriage to Harriet Ayscough, daughter of James Ayscough, oi

Rutlandshire. Mrs. Newton, probably wrought upon by the

early loss of her husband, gave premature birth to her only and

posthumous child, of which, too, from its extreme diminutiveness,

she appeared likely to be soon bereft. Happily, it was otherwise

decreed ! The tiny infant, on whose little lips the breath of life
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so doubtingly hovered, lived
;

lived to a vigorous maturity, to a

hale old age ;
lived to become the boast of his country, the won

der of his time, and the &quot;ornament of his srjecies.&quot;

Beyond the grandfather, Robert Newton, the descent of Sir

Isaac cannot with certainty be traced. Two traditions were held

in the family : one, that they were of Scotch extraction
;
the

other, that they came originally from Newton, in Lancashire,

dwelling, for a time, however, at Westby, county of Lincoln, be

fore the removal to and purchase of Woolsthorpe about a hundred

years before this memorable birth.

The widow Newton was left with the simple means of a com

fortable subsistence. The Woolsthorpe estate together with

small one which she possessed at Sewstern, in Leicestershire, yield

ed her an income of some eighty pounds ;
and upon this limited sum,

she had to rely chiefly for the support of herself, and the educa

tion of her child. She continued his nurture for three years,

when, marrying again, she confided the tender charge to the care

of her own mother.

Great genius is seldom marked by precocious development ;

and young Isaac, sent, at the usual age, to two day schools at

Skillington and Stoke, exhibited no unusual traits of character.

In his twelfth year, he was placed at the public school at Gran-

tham, and boarded at the house of Mr. Clark, an apothecary.
But even in this excellent seminary, his mental acquisitions con

tinued for a while unpromising enough : study apparentlv had no

charms for him
;
he was very inattentive, and ranked low in the

school. One day, however, the boy immediately above our seem

ingly dull student gave him a severe kick in the stomach
; Isaac,

deeply affected, but with no outburst of passion, betook himself,

with quiet, incessant toil, to his books
;
he quickly passed above

the offending classmate
; yet there he stopped not

;
the strong

spirit was, for once and forever, awakened, and, yielding to itb

noble impulse, he speedily took up his position at the head of all.

His peculiar character began now rapidly to unfold itself.

Close application grew to be habitual. Observation alternated

with reflection.
&quot; A sober, silent, thinking lad,&quot; yet, the wisest

and the kindliest, the indisputable leader of his fellows. Gener-
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osity, modesty, and a love of truth distinguished him then as ever

afterwards. He did not often join his classmates in play ;
but he

would contrive for them various amusements of a scientific kind.

Paper kites he introduced
; carefully determining their best form

and proportions, and the position and number of points whereby
to attach the string. He also invented paper lanterns

;
these

served ordinarily to guide the way to school in winter mornings,

but occasionally for quite another purpose ; they were attached to

the tails of kites in a dark night, to the dismay of the country people

dreading portentous comets, and to the immeasureable delight ol

his companions. To him, however, young as he was, life seemed

to have become an earnest thing. When not occupied with his

studies, his mind would be engrossed with mechanical contrivances
;

now imitating, now inventing. He became singularly skilful in the

use of his little saws, hatchets, hammers, and other tools. A
windmill was erected near Grantham

; during the operations ol

the workmen, he was frequently present ;
in a short time, he had

completed a perfect working model of it, which elicited general

admiration. Not content, however, with this exact imitation, he

conceived the idea of employing, in the place of sails, animal power ,

and, adapting the construction of his mill accordingly, he enclosed

in it a mouse, called the miller, and which by acting on a sort ot

treadvvheel, gave motion to the machine. He invented, too, a

mechanical carriage having four wheels, and put in motion with

a handle worked by the person sitting inside. The measurement

of time early drew his attention. He hrst constructed a water

clock, in proportions somewhat like an old-fashioned house clock.

The index of the dial plate was turned by a piece of wood acted

upon by dropping water. This instrument, though long used by
himself, and by Mr. Clark s family, did not satisfy his inquiring

mind. His thoughts rose to the sun
; and, by careful and oft-re

peated observations of the solar movements, he subsequently
formed many dials. One of these, named Isaac s dial, was the

accurate result of years labour, and was frequently referred to

for the hour of the day by the country people.

May we not discern in these continual efforts the diligent re

search^ the patient meditation, the aspiring glance, and the energy
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of discovery the stirring elements of that wondrous spirit,

which, clear, calm, and great, moved, in after years, through

deep onward through deep of Nature s mysteries, unlocking her

strongholds, dispelling darkness, educing order everywhere si

lently conquering.

Newton had an early and decided taste for drawing. Pictures,

taken sometimes from copies, but often from life, and drawn,

coloured and framed by himself, ornamented his apartment. He
was skilled also, in poetical composition,

&quot; excelled in making
verses

;&quot;

some of these were borne in remembrance and repeated,

seventy years afterward, by Mrs. Vincent, for whom, in early

youth, as Miss Storey, he formed an ardent attachment. She

was the sister of a physician resident near Woolsthorpe ;
but

Newton s intimate acquaintance with her began at Grantham.

where they were both numbered among the inmates of the same

house. Two or three years younger than himself, of great per

sonal beauty, and unusual talent, her society afforded him the

greatest pleasure ;
and their youthful friendship, it is believed,

gradually rose to a higher passion ;
but inadequacy of fortune

prevented their union. Miss Storey was afterwards twice mar

ried
; Newton, never; his esteem for her continued unabated

during life, accompanied by numerous acts of attention and

kindness.

In 1656, Newton s mother was again left a widowr

,
and took

up her abode once more at Woolsthorpe. He was now fifteen

years of age, and had made great progress in his studies
;
but she,

desirous of his help, and from motives of economy, recalled him

from school. Business occupations, however, and the manage
ment of the farm, proved utterly distasteful to him. When sent to

Grantham Market on Saturdays, he would betake himself to his

former lodgings in the apothecary s garret, where some of Mr.

Clark s old books employed his thoughts till the aged and trust

worthy servant had executed the family commissions and announced

the necessity of return : or, at other times, our young philosopher

would seat himself under a hedge, by the wayside, and continue

his studies till the same faithful personage proceeding alone to

the town and completing the day s business stopped as he re-
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turned. The more immediate affairs of the farm received no

better attention. In fact, his passion for study grew daily more

absorbing, and his dislike for every other occupation more in

tense. His mother, therefore, wisely resolved to give him all the

advantages which an education could confer. He was sent back

to Grantham school, where he remained for some months in busy

preparation for his academical studies. At the recommendation

of one of his uncles, who had himself studied at Trinity College,

Cambridge, Newton proceeded thither, and was duly admitted.

on the 5th day of June 1660, in the eighteenth year of his age.

The eager student had now entered upon a new and wider

field
;
and we find him devoting himself to the pursuit of know

ledge with amazing ardour and perseverance. Among other sub

jects, his attention was soon drawn to that of Judicial Astrology
He exposed the folly of this pseudo-science by erecting a figure

with the aid of one or two of the problems of Euclid
;

and thus

began his study of the Mathematics. His researches into this

science were prosecuted with unparallelled vigour and success.

Regarding the propositions contained in Euclid as self-evident

truths, he passed rapidly over this ancient system a step which

he afterward much regretted and mastered, without further pre

paratory study, the Analytical Geometry of Descartes. Wallis s

Arithmetic of Infinites, Saunderson s Logic, and the Optics of

Kepler, he also studied with great care
; writing upon them

many comments
; and, in these notes on Wallis s work was un

doubtedly the germ of his fluxionary calculus. His progress was

so great that he found himselfmore profoundly versed than his tutor

in many branches of learning. Yet his acquisitions were not

gotten with the rapidity of intuition
;
but they were thoroughly

made and firmly secured. Quickness of apprehension, or Intel

lectual nimbleness did not belong to him. He saw too far : his,

insight was too deep. He dwelt fully, cautiously upon the least

subject ;
while to the consideration of the greatest, he brought a

massive strength joined with a matchless clearness, that, regard
less of the merely trivial or unimportant, bore with unerring sa

gacity upon the prominences of the subject, and, grappling with

its difficulties, rarely failed to surmount them.
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His early and fast friend, Dr. Barrow in compass of inven

tion only inferior to Newton who had been elected Professor

of Greek in the University, in 1660, was made Lucasian Profes

sor of Mathematics in 1663, and soon afterward delivered his

Optical Lectures : the manuscripts of these were revised by New
ton, and several oversights corrected, and many important sug

gestions made by him
;
but they were not published till 1669.

In the year 1665, he received the degree of Bachelor of Arts
;

and, in 1666, he entered upon those brilliant and imposing dis

coveries which have conferred inappreciable benefits upon science,

and immortality upon his own name.

Newton, himself, states that he was in possession of his Method

of Fluxions,
&quot;

in the year 1666, or before.&quot; Infinite quantities

had long been a subject of profound investigation ; among the

ancients by Archimedes, and Pappus of Alexandria
; among the

moderns by Kepler, Cavaleri, Roberval, Fermat and Wallis.

With consummate ability Dr. Wallis had improved upon the la-

hours of his predecessors : with a higher power, Newton moved

forwards from where Wallis stopped. Our author first invented

his celebrated BINOMIAL THEOREM. And then, applying this

Theorem to the rectification of curves, and to the determination

of the surfaces and contents of solids, and the position of their

centres of gravity, he discovered the general principle of deducing
the areas of curves from the ordinate, by considering the area as

a nascent quantity, increasing by continual fluxion in the propor
tion of the length of the ordinate, and supposing the abscissa

to increase uniformly in proportion to the time. Regarding lines

as generated by the motion of points, surfaces by the motion of

lines, and solids by the motion of surfaces, and considering that

the ordinates, abscissae, &c., of curves thus formed, vary accord

ing to a regular law depending on the equation of the curve,

he deduced from this equation the velocities with which these

quantities are generated, and obtained by the rules of infinite

series, the ultimate value required. To the velocities with which

every line or quantity is generated, he gave the name of FLUX

IONS, and to the lines or quantities themselves, that of FLUENTS.

A discovery that successively baffled the acutest and strongest
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intellects : that, variously modified, has proved of incalculable

service in aiding to develope the most abstruse and the highest

ruths in Mathematics and Astronomy : and that was of itself

enough to render any name illustrious in the crowded Annals of

Science.

At this period, the most distinguished philosophers were direct

ing all their energies to the subject of light and the improvement
of the refracting telescope. Newton, having applied himself to

the grinding of
&quot;optic glasses of other figures than

spherical,&quot;
ex

perienced the impracticability of executing such lenses
;
and con

jectured that their defects, and consequently those of refracting

telescopes, might arise from some other cause than the imperfect

convergency of rays to a single point. He accordingly &quot;procured

a triangular glass prism to try therewith the celebrated phenom
ena of colours.&quot; His experiments, entered upon with zeal, and

conducted with that industry, accuracy, and patient thought, for

which he was so remarkable, resulted in the grand conclusion,

that LIGHT WAS NOT HOMOGENEOUS, BUT CONSISTED OF RAYS,

SOME OF WHICH WERE MORE REFRANGIBLE THAN OTHERS. This

profound and beautiful discovery opened up a new era in the

History of Optics. As bearing, however, directly upon the construc

tion of telescopes, he saw that a lens refracting exactly like a prism
would necessarily bring the different rays to different foci, at

different distances from the glass, confusing and rendering the

vision indistinct. Taking for granted that all bodies produced

spectra of ^
jtial length, he dismissed all further consideration of

the refracting instrument, and took up the principle of reflection.

Rays of all colours, he found, were reflected regularly, so that the

angle of reflection was equal to the angle of incidence, and hence

he concluded that ojitical instruments might be brought to any

degree ofperfection imaginable, provided reflecting specula of

the requisite figure and finish could be obtained. At this stage

of his optical researches, he was forced to leave Cambridge on

account of the plague which was then desolating England.

He retired to Woolsthorpe. The old manor-house, in which he

was born, was situated in a beautiful little valley, on the west side

of the river Witham
;
and here in the quiet home of his boyhood,

2
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he passed his days in serene contemplation, while the stalking

pestilence was hurrying its tens of thousands into undistinguisha

ble graves.

Towards the close of a pleasant day in the early autumn of

1666, he was seated alone beneath a tree, in his garden, absorbed

in meditation. He was a slight young man ;
in the twenty-fourth

year of his age ;
his countenance mild and full of thought. For

a century previous, the science of Astronomy had advanced with

rapid strides. The human mind had risen from the gloom and

bondage of the middle ages, in unparalleled vigour, to unfold the

system, to investigate the phenomena, and to establish the laws

of the heavenly bodies. Copernicus, Tycho Brahe, Kepler,

Galileo, and others had prepared and lighted the way for him

who was ta give to their labour its just value, and to their genius

its true lustre. At his bidding isolated facts were to take order

as parts of one harmonious whole, and sagacious conjectures grow
luminous in the certain splendour of demonstrated truth. And

this ablest man had come was here. His mind, familiar with

the knowledge of past effort, and its unequalled faculties develop

ed in transcendant strength, was now moving on to the very

threshold of Its grandest achievement. Step by step the untrod

den path was measured, till, at length, the entrance seemed dis

closed, and the tireless explorer to stand amid the first opening

wonders of the universe.

The nature of gravity that mysterious power which causes

all bodies to descend towards the centre of the earth had, in

deed, dawned upon him. And reason busily united link to link

of that chain which was yet to be traced joining the least to the

vastest, the most remote to the nearest, in one harmonious bond.

From the bottoms of the deepest caverns to the summits of the

highest mountains, this power suffers no sensible change : may not

its action, then, extend to the moon ? Undoubtedly : and furthei

reflection convinced him that such a power might be .sufficient for

retaining that luminary in her orbit round the earth. But, though

this power suffers no sensible variation, in the little change of

distance from the earth s centre, at which we may place our-

. lves, yet, at the distance of the moon, :miy not its force undergo



LIFE OF SIR ISAAC NEWTON. 17

more or less diminution ? The conjecture appeared most proba
ble : and, in order to estimate what the degree of diminution

might be, he considered that if the moon be retained in her orbit

by the force of gravity, the primary planets must also be carried

round the sun by the like power; and, by comparing the periods

of the several planets with their distances from the sun, he found

that, if they were held in their courses by any power like gravity,

its strength must decrease in the duplicate proportion of the in

crease of distance. In forming this conclusion, he supposed the

planets to move in perfect circles, concentric to the sun. Now
was this the law of the moon s motion ? Was such a force, em

anating from the earth and directed to the moon, sufficient, when

diminished as the square of the distance, to retain her in her

orbit ? To ascertain this master-fact, he compared the space

through which heavy bodies fall, in a second of time, at a given
distance from the centre of the earth, namely, at its surface, with

the space through which the moon falls, as it were, to the earth,

in the same time, while revolving in a circular orbit. He was

absent from books
; and, therefore, adopted, in computing the

earth s diameter, the common estimate of sixty miles to a degree
of latitude as then in use among geographers and navigators.

The result of his calculations did not, ot course, answer his ex

pectations ; hence, he concluded that some other cause, beyond the

reach of observation analogous, perhaps, to the vortices of Des
cartes joined its action to that of the power of gravity upon the

rnooil. Though by no means satisfied, he yet abandoned awhile

further inquiry, and remained totally silent upon the subject.

These rapid marches in the career of discovery, combined with

the youth of Newton, seem to evince a penetration the most

lively, and an invention the most exuberant. But in him there

was a conjunction of influences as extraordinary as fortunate.

Study, unbroken, persevering and profound carried on its inform

ing and disciplining work upon a genius, natively the greatest,

and rendered freest in its movements, and clearest in its vision,

through the untrammelling and enlig} tenirig power of religion.

And, in this happy concurrence, are to be sought the elements of

those amazing abilities, which, grasping, with equal facility, the
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minute and the stupendous, brought these successively to light,

and caused science to make them her own.

In 1667, Newton was made a Junior Fellow
; and, in the year

following, he took his degree of Master of Arts, and was appoint

ed to a Senior Fellowship.
On his return to Cambridge, in 1668, he resumed his optical

labours. Having thought of a delicate method of polishing metal,

he proceeded to the construction of his newly projected reflect

ing telescope ;
a small specimen of which he actually made with

his own hands, It was six inches long ;
and magnified about

forty times
;

a power greater than a refracting instrument of six

feet tube could exert with distinctness. Jupiter, with his four

satellites, and the horns, or moon-like phases of Venus were

plainly visible through it. THIS WAS THE FIRST REFLECTING

TELESCOPE EVER EXECUTED AND DIRECTED TO THE HEAVENS.

He gave an account of it, in a letter to a friend, dated February 23d,

1668-9 a letter which is also remarkable for containing the firs

allusion to his discoveries
&quot;

concerning the nature of
light.&quot;

En

couraged by the success of his first experiment, he again executed

with his own hands, not long afterward, a second and superior

instrument of the same kind. The existence of this having come

to the knowledge of the Royal Society of London, in 1671, they

requested it of Newton for examination. He accordingly sent it

to them, It excited great admiration; it was shown to the king*

a drawing and description of it was sent to Paris
;
and the tele-

scope itself was carefully preserved in the Library of the Society.

Newton lived to see his invention in public use, and of eminent

service in the cause of science.

In the spring of 1669, he wrote to his friend Francis Aston,

Esq., then about setting out on his travels, a letter of advice and

directions, it was dated May 18th, and is interesting as exhibit

ing some of the prominent features in Newton s character.

Thus :

&quot; Since in your letter you give me so much liberty of spending

my judgment about what may be to your advantage in travelling,

1 shall do it more freely than perhaps otherwise would have been

decent, Fir,c t, then, I will lay down some general rules, most of
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which, I bolieA e, you have considered already ;
but if any of

them be new to you, they may excuse the rest
;

if none at all,

yet is my punishment more in writing than yours in reading.

&quot;When you come into any fresh company. 1. Observe their

humours. 2. Suit your own carriage thereto, by which insinua

tion you will make their converse more free and open. 3. Let

your discourse be more in queries and doubtings than peremptory
assertions or disputings, it being the design of travellers to learn,

not to teach. Besides, it will persuade your acquaintance that

you have the greater esteem of them, and so make them more

ready to communicate what they know to you ;
whereas nothing

sooner occasions disrespect and quarrels than peremptoriness.

You will find little or no advantage in seeming wiser or much
more ignorant than your company. 4. Seldom discommend any

thing though never so bad, or do it but moderately, lest you be

unexpectedly forced to an unhandsome retraction. It is safer to

commend any thing more than it deserves, than to discommend

a thing so much as it deserves; for commendations meet not

so often with oppositions, or, at least, are not usually so ill re

sented by men that think otherwise, as discommendations
;
and

you will insinuate into men s favour by nothing sooner than seem

ing to approve and commend what they like
;

but beware o

doing it by comparison. 5. If you be affronted, it is better, in c

foreign country, to pass it by in silence, and with a jest, though
with some dishonour, than to endeavour revenge ; for, in the first

case, your credit s ne er the worse when you return into England,

or come into other company that have not heard of the quarrel.

But, in the second case, you may bear the marks of the quarrel

while you live, if you outlive it at all. But, if you find yoursell

unavoidably engaged, tis best, I think, if you can command your

passion and language, to keep them pretty evenly at some certain

moderate pitch, not much heightening them to exasperate your

adversary, or provoke his friends, nor letting them grow overmuch

dejected to make him insult. In a word, if you can keep reason

above passion, that and watchfulness will be your best defendants.

To which purpose you may consider, that, though such excuses

is this He provok t me so much I could not forbear may pass
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among friends, yet amongst strangers they are insignificant, ina

only argue a traveller s weakness.
&quot; To these I may add some general heads for inquiries or ob

servations, such as at present I can think on. As, 1. To observe

the policies, wealth, and state affairs of nations, so far as a soli-

f
ary traveller may conveniently do. 2. Their impositions upon
all sorts of people, trades, or commodities, that are remarkable.

3. Their laws and customs, how far they differ from ours. 4.

Their trades and arts wherein they excel or come short of us in

England. 5. Such fortifications as you shall meet with, their

fashion, strength, and advantages for defence, and other such mili

tary affairs as are considerable. 6. The power and respect be

longing to their degrees of nobility or magistracy. 7. It will not

be time misspent to make a catalogue of the names and excellen

cies of those men that are most wise, learned, or esteemed in any
nation. 8. Observe the mechanism and manner of guiding ships.

9. Observe the products of Nature in several places, especially in

mines, with the circumstances of mining and of extracting metals

or minerals out of their ore, and of refining them
;
and if you

meet with any transmutations out of their own species into

another (as out of iron into copper, out of any metal into quick

silver, out of one salt into another, or into an insipid body, &c.),

those, above all, will be worth your noting, being the most lucif-

erous, and many times lucriferous experiments, too, in philosophy.

10. The prices of diet and other things. 11. And the staple

commodities of places.
&quot; These generals (such as at present I could think of), if they

will serve for nothing else, yet they may assist you in drawing up

a model to regulate your travels by. As for particulars, these that

follow are all that 1 can now think of, viz.
;
whether at Schem-

nitium, in Hungary (where there are mines of gold, copper, iron,

vitriol, antimony, &c.). they change iron into copper by dissolving

t in a vitriolate water, which they find in cavities of rocks in the

mines, and then melting the slimy solution in a stroi ig fire, which

in the cooling proves copper. The like is said to be done in other

places, which I cannot now remember
; perhaps, too, it may be

lone in Italy. For about twenty or thirty years agone there was
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a certain vitriol came from thence (called Roman vitriol), but of

a nobler virtue than that which is now called by that name
;

which vitriol is not now to be gotten, because, perhaps, they make
a greater gain by some such trick as turning iron into copper
with it than by selling it. 2. Whether, in Hungary, Sclavonia,

Bohemia, near the town Eila, or at the mountains of Bohemia

near Silesia, there be rivers whose waters are impregnated with

gold ; perhaps, the gold being dissolved by some corrosive water

like aqua regis, and the solution carried along with the stream,

that runs through the mines. And whether the practice of laying

mercury in the rivers, till it be tinged with gold, and then strain

ing the mercury through leather, that the gold may stay behind,

be a secret yet, or openly practised. 3. There is newly con

trived, in Holland, a mill to grind glasses plane withal, and I

think polishing them too
; perhaps it will be worth the while to see

it. 4. There is in Holland one Borry, who some years since

was imprisoned by the Pope, to have extorted from him secrets

(as I am told) of great worth, both as to medicine and profit, but

he escaped into Holland, where they have granted him a guard.

I think he usually goes clothed in green. Pray inquire what you
can of him, and whether his ingenuity be any profit to the Dutch.

You may inform yourself whether the Dutch have any tricks to

keep their ships from being all worm-eaten in their voyages to

the Indies. Whether pendulum clocks do any service in finding

out the longitude, &c.
&quot;

I am very weary, and shall not stay to part with a long

compliment, only I wish you a good journey, and God be with

you.&quot;

It was not till the month of June, 1669, that our author made
known his Method of Fluxions. He then communicated the

work which he had composed upon the subject, and entitled,

ANALYSIS PER EQUATIONES NUMERO TERMINORUM INFINITAS,

to his friend Dr. Barrow. The latter, in a letter dated 20th of the

same month, mentioned it to Mr. Collins, and transmitted it to

him, on the 31st of July thereafter. Mr. Collins greatly approv&amp;gt;

ed of the work
;
took a copy of it

;
and sent the original back

to Dr. Barrow. During the same and the two following years, Mr
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Collins, by his extensive correspondence, spread the knowledge
of this discovery among the mathematicians in England, Scotland,

France, Holland and Italy.

Dr. Barrow, having resolved to devote himself to Theology,

resigned the Lucasian Professorship of Mathematics, in 1669, in

favour of Newton, who accordingly received the appointment to

the vacant chair.

During the years 1669, 1670, and 1671, our author, as such

Professor, delivered a course of Optical Lectures. Though these

contained his principal discoveries relative to the different re-

frangibility of light, yet the discoveries themselves did not be

come publicly known, it seems, till he communicated them to the

Royal Society, a few weeks after being elected a member there

of, in the spring of 1671-2. He now rose rapidly in reputation,

and was soon regarded as foremost among the philosophers of the

age. His paper on light excited the deepest interest in the Royal

Society, who manifested an anxious solicitude to secure the author

from the &quot;

arrogations of others,&quot; and proposed to publish his

discourse in the monthly numbers in which the Transactions were

given to the world. Newton, gratefully sensible of these expres
sions of esteem, willingly accepted of the proposal for publication.

He gave them also, at this time, the results of some further ex

periments in the decomposition and re-composition of light : that

the same degree of refrangibility always belonged to the same

colour, and the same colour to the same degree of refrangibility :

that the seven different colours of the spectrum were original, or

simple, and that whiteness^ or white light was a compound of all

these seven colours.

The publication of his new doctrines on light soon called forth

violent opposition as to their soundness. Hooke and Huygens
men eminent for ability and learning were the most conspicuous
of the assailants. And though Newton effectually silenced all his

adversaries, yet he felt the triumph of little gain in comparison
.vith the loss his tranquillity had sustained. He subsequently re-

narked in allusion to this controversy and to one with whom
he was destined to have a longer and a bitterer conflict

&quot;

I was

so persecuted with discussions arising from the publication of m v
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theory ot light, that I blamed my own imprudence for parting

with so substantial a blessing as rny quiet to run after a shadow.
7

In a communication to Mr. Oldenburg, Secretary of the Royal

Society, in 1672, our author stated many valuable suggestions re

lative to the construction of REFLECTING MICROSCOPES which he

considered even more capable of improvement than telescopes.

He also contemplated, about the same time, an edition of Kirick-

huysen s Algebra, with notes and additions; partially arranging,

as an introduction to the work, a treatise, entitled, A Method of

Fluxions
;
but he finally abandoned the design. This treatise,

however, he resolved, or rather consented, at a late period of his

life, to put forth separately ;
and the plan would probably have

been carried into execution had riot his death intervened. It was

translated into English, and published in 1736 by John Colson,

Professor of Mathematics in Cambridge.

Newton, it is thought, made his discoveries concerning the

INFLECTION and DIFFRACTION of light before 1674. The phe

nomena of the inflection of light had been first discovered more

than ten years before by Grimaldi. And Newton began by re

peating one of the experiments of the learned Jesuit admitting

a beam of the sun s light through a small pin hole into a dark

chamber : the light diverged from the aperture in the form of a,

cone, and the shadows of all bodies placed in this light were

larger than might have been expected, and surrounded with three

coloured fringes, the nearest being widest, and the most remote

the narrowest. Newton, advancing upon this experiment, took

exact measures of the diameter of the shadow of a human hair,

and of the breadth of the fringes, at different distances behind it,

and discovered that these diameters and breadths were not pro

portional to the distances at which they were measured. He
hence supposed that the rays which passed by the edge of the

hair were deflected or turned aside from it, as if by a repulsive

force, the nearest rays suffering the greatest, the more remote a

less degree of deflection. In explanation of the coloured fringes,

he queried : whether the rays which differ in refrangibility do not

differ also in flexibility, and whether they are
n&amp;lt;t, by these dif

ferent inflections, separated from one another, so as after separa-
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tion to make the colours in the three fringes above described ?

Also, whether the rays, in passing by the edges and sides ol

bodies, are not bent several times backwards and forwards with

an eel-like motion the three fringes arising from three such

bendings ? His inquiries on this subject were here interrupted
and fiever renewed.

His Theory of the COLOURS of NATURAL BODIES was commu
nicated to the Royal Society, in February, 1675. This is justly

regarded as one of the profoundest of his speculations. The fun

damental principles of the Theory in brief, are : That bodies

possessing the greatest refractive powers reflect the greatest

quantity of light ;
and that, at the confines of equally refracting

media, there is no reflection. That the minutest particles of al

most all natural bodies are in some degree transparent. That

between the particles of bodies there are pores, or spaces, either

empty or filled with media of a less density than the particles

themselves. That these particles, and pores or spaces, have some

definite size. Hence he deduced the Transparency, Opacity, and

colours of natural bodies. Transparency arises from the particles

and their pores being too small to cause reflection at their com

mon surfaces the light all passing through ; Opacity from the

opposite cause of the particles and their pores being sufficiently

large to reflect the light which is
&quot;

stopped or stifled
7

by the

multitude of reflections
;
and colours from the particles, accord

ing to their several sizes, reflecting rays of one colour and trans

mitting those of another or in other words, the colour that

meets the eye is the colour reflected, while all the other rays are

transmitted or absorbed.

Analogous in origin to the colours of natural bodies, he con

sidered the COLOURS OF THIN PLATES. This subject was interest

ing and important, and had attracted considerable investigation.

He, however, was the first to determine the law of the produc

tion of these colours, arid, during the same year made known the

results of his researches herein to the Royal Society. His mode

of procedure in these experiments was simple and curious. He

placed a double convex lens of a large known radius of curvature,

the flat surface of a plano-convex object glass. Thus, from
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their point of contact at the centre, to the circumference of the

lens, he obtained plates of air, or spaces varying from the ex-

tremest possible thinness, by slow degrees, to a considerable thick

ness. Letting the light fall, every different thickness of this

plate of air gave different colours the point of contact of the

lens and glass forming the centre of numerous concentric colored

nags. Now the radius of curvature of the lens being known, the

thickness of the plate of air, at any given point, or where any par
ticular colour appeared, could be exactly determined. Carefully

noting, therefore, the order in which the different colours ap

peared, he measured, with the nicest accuracy, the different thick*

nesses at which the most luminous parts of the rings were pro

duced, whether the medium were air, water, or mica all these

substances giving the same colours at different thicknesses
;

the

ratio of which he also ascertained. From the phenomena obser

ved in these experiments, Newton deduced his Theory of Fits of

EASY REFLECTION AND TRANSMISSION oflight. It consists in suppos

ing that every particle of light, from its first discharge from a lumi

nous body, possesses, at equally distant intervals, dispositions to

be reflected from, or transmitted through the surfaces of bodies

upon which it may fall. For instance, if the rays are in a Fit of

Easy Reflection, they are on reaching the surface, repelled,

thrown off] or reflected from it
; if, in a Fit of Easy Transmission,

they are attracted, drawn in, or transmitted through it. By this

Theory of Fits, our author likewise explained the colours of

thick plates.

He regarded light as consisting of small material particles

emitted from shining substances. He thought that these parti

cles could be re-combined into solid matter, so that &quot;

gross bodies

and light, were convertible into one another
;&quot;

that the particles of

light and the particles of solid bodies acted mutually upon each

other
;
those of light agitating and heating those of solid bodies,

and the latter attracting and repelling the former. Newton was

the first to suggest the idea of the POLARIZATION of light.

In the paper entitled An Hypothesis Explaining Properties of

Light, December, 1675, our author first introduced his opinions re

specting Ether opinions which he afterward abandoned and again
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permanently resumed &quot; A most subtle spirit which pervades&quot; ah

bodies, and is expanded through all the heavens. It is electric,

and almost, if not quite immeasurably elastic and rare.
&quot;

By the

force and action of which spirit the particles of bodies mutually
attract one another, at near distances, and cohere, if contiguous ;

and electric bodies operate at greater distances, as well repelling

as attracting the neighbouring corpuscles ;
and light is emitted,

-reflected, refracted, inflected and heats bodies ; and all sensation

is excited, and the members of animal bodies move at the com

mand of the will, namely, by the vibrations of this spirit, mutu

ally propagated along the solid filaments of the nerves, from the

outward organs of sense to the brain, and from the brain into the

muscles.&quot; This &quot;

spirit&quot;
was no anima mundi ; nothing further

from the thought of Newton
;
but was it not, on his part, a par

tial recognition of, or attempt to reach an ultimate material force,

or primary element, by means of which,
&quot;

in the roaring loom of

time,&quot; this material universe, God s visible garment, may be

woven for us ?

The Royal Society were greatly interested in the results of

some experiments, which our author had, at the same time, com
municated to them relative to the excitation of electricity in glass ;

and they, after several attempts and further direction from him,

succeeded in re-producing the same phenomena.
One of the most curious of Newton s minor inquiries related to

the connexion between the refractive powers and chemical com

position of bodies. He found on comparing the refractive powers
and the densities of many different substances, that the former

were very nearly proportional to the latter, in the same bodies.

Unctuous and sulphureous bodies were noticed as remarkable excep
tions as well as the diamond their refractive powers being two

or three times greater in respect of their densities than in the

case of other substances, while, as among themselves, the one was

generally proportional to the other. He hence inferred as to the

diamond a great degree of combustibility ;
a conjecture which

the experiments of modern chemistry have shown to be true.

The chemical researches of our author were probably pursued
with more or less diligence from the time of his witnessing some
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?t the uractical operations in that science at the Apothecary s at

Grantham. DE NATURA ACIDORUM is a short chemical paper, on

various topics, and published in Dr. Horsley s Edition of his

works. TABULA QUANTITATUM E r GRADUUM COLORIS was in

serted iii the Philosophical Transactions
;

it contains a compara
tive scale of temperature from that of melting ice to that of a

small kitchen coal-fire. He regarded fire as a body heated so hot

as to emit light copiously ;
and flame as a vapour, fume, or ex

halation heated so hot as to shine. To elective attraction, by
the operation of which the small particles of bodies, as he con

ceived, act upon one another, at distances so minute as to escape

observation, he ascribed all the various chemical phenomena ot

precipitation, combination, solution, and crystallization, and the

mechanical phenomena of cohesion and capillary attraction. New
ton s chemical views were illustrated and confirmed, in part, at

least, in his own life-time. As to the structure of bodies, he was

of opinion
&quot;

that the smallest particles of matter may cohere by
the strongest attractions, and compose bigger particles of weaker

virtue
;
and many of these may cohere and compose bigger par

tides whose virtue is still weaker
;
and so on for divers succes

sions, until the progression end in the biggest particles, on which

the operations in chemistry and the colours of natural bodies de

pend, and which by adhering, compose bodies of sensible magni
tude.&quot;

There is good reason to suppose that our author was a diligent

student of the writings of Jacob Behmen
;
and that in conjunction

with a relative, Dr. Newton, he was busily engaged, for several

months in the earlier part of life, in quest of the philosopher s

tincture.
&quot; Great Alchymist,&quot; however, very imperfectly de

scribes the character of Behmen, whose researches into things

material and things spiritual, things human and things divine, ai-

ford the strongest evidence of a great and original mind.

More appropriately here, perhaps, than elsewhere, may be

given Newton s account of some curious experiments, made in his

own person, on the action of light upon the retina, Locke, who
was an intimate friend of our author, wrote to him for his opinion

on a certain fact stated in Boyle s Book of Colours. Newton, in
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his reply, dated June 30th, 16 (

Jl, narrates the following circum

stances, which probably took place in the course of his optical

researches. Thus :

&quot; The observation you mention in Mr. Boyle s Book of Colours

I once tried upon myself with the hazard of my eyes. The
manner was this

;
I looked a very little while upon the sun in the

looking-glass with my right eye, and then turned my eyes into a

dark corner of my chamber, arid winked, to observe the impres
sion made, and the circles of colours which encompassed it, and

how they decayed by degrees, and at last vanished. This I re

peated a second and a third time. At the third time, when the

phantasm of light and colours about it were almost vanished, in

tending my fancy upon them to see their last appearance, I found,

to my amazement, that they began to return, and by little and

little to become as lively and vivid as when I had newly looked

upon the sun. But when I ceased to intend my fancy upon them,

they vanished again. After this, I found, that as often as I went

into the dark, and intended my mind upon them, as when a man

looks earnestly to see anything which is difficult to be seen, I

could make the phantasm return without looking any more upon
the sun

;
and the oftener I made it return, the more easily I could

make it return again. And, at length, by repeating this, without

looking any more upon the sun, I made such an impression on my
eye, that, if I looked upon the clouds, or a book, or any bright

object, I saw upon it a round bright spot of light like the sun,

and, which is still stranger, though I looked upon the sun with

my right eye only, and not with my left, yet my fancy began *o

make an impression upon my left eye, as well us upon my right.

For if I shut my right eye, or looked upon a book, or the clouds,

with my left eye, I could see the spectrum of the sun almost as

plain as with my right eye, if I did but intend my fancy a little

while upon it
;
for at first, if I shut my right eye, and looked with

my left, the spectrum of the sun did not appear till I intended my
fancy upon it

;
but by repeating, this appeared every time more

easily. And now, in a few hours time, I had brought my eyes
to such a pass, that I could look upon no blight object with either

eye, but I saw the sun before me, so that I durst neither write
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nor read
;
but to recover the use of my eyes, shut myself up in

my chamber made dark, for three days together, and used all

means to divert my imagination from the sun. For if I thought

upon him, I presently saw his picture, though I was in the dark.

But by keeping in the dark, and employing my mind about other

things, I began in three or four days to have some use of my eyes

again ;
and by forbearing to look upon bright objects, recovered

them pretty well, though not so well but that, for some months

after, the spectrum of the sun began to return as often as I began
to meditate upon the phenomena, even though I lay in bed at mid

night with my curtains drawn. But now I have been very well

for many years, though I am apt to think, if I durst venture my
eyes, I could still make the phantasm return by the power of my
fancy. This story I tell you, to let you understand, thaj; in the

observation related by Mr. Boyle, the man s fancy probably con

curred with the impression made by the sun s light to produce
that phantasm of the sun which he constantly saw in bright ob

jects. And so your question about the cause of phantasm in

volves another about the power of fancy, which I must confess is

too hard a knot for me to untie. To place this effect in a constant

motion is hard, because the sun ought then to appear perpetually.

It seems rather to consist in a disposition of the sensorium to

move the imagination strongly, and to be easily moved, both by
the imagination and by the light, as often as bright objects are

looked
upon.&quot;

J

Though Newton had continued silent, yet his thoughts were

by no means inactive upon the vast subject of the planetary mo
tions. The idea of Universal Gravitation, first caught sight of, so

to speak, in the garden at Woolsthorpe, years ago, had gradually

expanded upon him. We find him, in a letter to Dr. Hooke,

Secretary of the Royal Society, dated in November, 1679, pro

posing to verify the motion of the earth by direct experiment,

namely, by the observation of the path pursued by a body falling

from a considerable height. He had concluded that the path

would be spiral ;
but Dr. Hooke maintained that it would be an

eccentric ellipse iu vacuo, and an ellipti-spiral in a resisting me

dium. Our author, aided by this correction of his error, and by
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the discovery that a projectile would move in an elliptical orbil

when under the influence of a force varying inversely as the

square of the distance, was led to discover &quot;

the theorem bj
which he afterwards examined the ellipsis ;&quot;

and to demonstrate

the celebrated proposition that a planet acted upon by an attrac

tive force varying inversely as the squares of the distances will

describe an elliptical orbit, in one of whose foci the attractive

force resides.

When he was attending a meeting of the Royal Society, in

June 1682, the conversation fell upon the subject of the measure

ment of a degree of the meridian, executed by M. Picard, a

French Astronomer, in 1679. Newton took a memorandum oi

the result
;
and afterward, at the earliest opportunity, computed

from it the diameter of the earth : furnished with these new data,

he resumed his calculation of 1666. As he proceeded therein,

he saw that his early expectations were now likely to be realized
;

the thick rushing, stupendous results overpowered him
;
he be

came unable to carry on the process of calculation, and intrusted

its completion to one of his friends. The discoverer had, indeed,

grasped the master-fact. The law of falling bodies at the earth s

surface was at length identified with that which guided the moon

in her orbit. And so his GREAT THOUGHT, that had for sixteen

years loomed up in dim, gigantic outline, amid the first dawn of a

plausible hypothesis, now stood forth, radiant and not less grand,

in the mid-day light of demonstrated truth.

It were difficult, nay impossible to imagine, even, the influence

of a result like this upon a mind like Newton s. It was as if the

keystone had been fitted to the glorious arch by which his spirit

should ascend to the outskirts of infinite space spanning the immea

surable weighing the imponderable computing the incalculable

mapping out the marchings of the planets, and the far-wander

ings of the comef
s, and catching, bring back to earth some clearer

notes of that higher melody which, as a sounding voice, bears

perpetual witness to the design and omnipotence of a creating

Deity.

Newton, extending the law thus obtained, composed a series

of about twelve propositions on the motion of the primary planets
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about the sun. These were sent to London, and communicated

to the Royal Society about the end of 1683. At or near this pe

riod, other philosophers, as Sir Christopher Wren, Dr. Halley,

and Dr. Hooke, were engaged in investigating the same subject ;

but with no definite or satisfactory results. Dr. Halley, having

seen, it is presumed, our author s propositions, went in August,

1684, to Cambridge to consult with him upon the subject.

Newton assured him that he had brought the demonstration to

perfection. In November, Dr. Halley received a copy of the

work
; and, in the following month^ announced . it to the Royal

Society, with the author s promise to have it entered upon their

Register. Newton, subsequently reminded by the Society of his

promise, proceeded in the diligent preparation of the work, and.

though suffering an interruption of six weeks, transmitted the

manuscript of the first book to London before the end of April.

The work was entitled PHILOSOPHI/E NATURALIS PRINCIPIA

MATHEMATICA, dedicated to the Royal Society, and presented

thereto on the 28th of April, 1685-6. The highest encomiums

were passed upon it
;
and the council resolved, on the 19th of

May, to print it at the expense of the Society, and under the di

rection of Dr. Halley. The latter, a few days afterward, com

municated these steps to Newton, who, in a reply, dated the 20th

of June, holds the following language :

&quot; The proof you sent me
I like very well. I designed the whole to consist of three books

;

the second was finished last summer, being short, and only wants

transcribing, and drawing the cuts fairly. Some new propositions

I have since thought on, which I can as well let alone. The

third wants the theory of comets. In autumn last, I spent two

months in calculation to no purpose for want of a good method,

which made me afterward return to the first book, and enlarge it

with diverse propositions, some* relating to comets, others to other

things found ouf last winter. The third I now design to sup

press. Philosophy is such an impertinently litigious lady, that a

man had as good be engaged in liw-suits as have to do with her.

I found it so formerly, and now I can no sooner come near her

again, but she gives me warning. The first two books without

the third will not so well bear the title of P/iilosophicc Naturalis

3
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Principia Mathematicia ; and thereupon I had altered it to this,

De Motu Corporum Libri duo. But after second thought I re

tain the former title. It will help the sale of the book, which I

ought not to diminish now tis
yours.&quot;

This &quot;

warning&quot; arose from some pretensions put forth by Dr.

Hooke. And though Newton gave a minute and positive refuta

tions of such claims, yet, to reconcile all differences, he gener

ously added to Prop. IV. Cor. 6, Book I, a Scholium, in which

Wren, Hooke and Halley are acknowledged to have indepen

dently deduced the law of gravity from the second law of

Kepler.

The suppression of the third book Dr. Halley could not endure

to see.
&quot;

I must again beg you&quot; says he,
&quot; not to let your re

sentments run so high as to deprive us of your third book, where

in your applications of your mathematical doctrine to the theory
of comets, and several curious experiments, which, as I guess by
what you write ought to compose it, will undoubtedly render it

acceptable to those who will call themselves philosophers without

mathematics, which are much the greater number.&quot; To these

solicitations Newton yielded. There were no &quot;resentments,&quot; how

ever, as we conceive, in his
&quot;

design to
suppress.&quot;

He sought

peace ;
for he loved and valued it above all applause. But, in

spite of his efforts for tranquillity s sake, his course of discovery
was all along molested by ignorance or presumptuous rivalry.

The publication of the great work now went rapidly forwards,

The second book was sent to the Society, and presented on the

2d March
;
the third, on the 6th April ;

and the whole was com

pleted and published in the month of May, 1686-7. In the sec

ond Lemma of the second book, the fundamental principle of his

fiuxionary calculus was, for the first time, given to the world
;
but

its algorithm or notation did not appear till published in the

second volume nf Dr. Wallis s works, in 1693.

And thus was ushered into existence The PRINCIPIA a work

to which pre-eminence above all the productions of the human

intellect has been awarded a work that must be esteemed of

priceless worth so long as Science has a votary, or a single wor

shipper be left to kneel at the altar of Truth.
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The entire work bears the general title of THE MATHEMATICAL
PRINCIPLES OF NATURAL PHILOSOPHY. It consists of three books:

the first two, entitled, OF THE MOTION OF BODIES, are occupied
with the laws and conditions of motions and forces, and are illus

trated with many scholia treating of some of the most general

and best established points in philosophy, such as the density and

resistance of bodies, spaces void of matter, and the motion of

sound and light. From these principles, there is deduced, in the

third book, drawn up in as popular a style as possible and entitled,

OF THE SYSTEM OF THE WORLD, the constitution of the system of

i he world. In regard to this book, the author say^
&quot;

I had, indeed,

composed the third Book in a popular method, that it might be read

by many ;
but afterwards, considering that such as had not suf-

ficently entered into the principles could not easily discover the

strength of the consequences, nor lay aside the prejudices to which

they had been many years accustomed, therefore, to prevent dis

putes which might be raised upon such accounts, I chose to reduce

the substance of this Book into the form of Propositions (in the

mathematical way), which should be read by those only who had

first made themselves masters of the principles established in the

preceding Books : not that I would advise any one to the previous

study of every Proposition of those Books.&quot; &quot;It is enough it

one carefully reads the Definitions, the Laws of Motion, and the

three first Sections of the first Book. He may then pass on to

this Book, and consult such of the remaining Propositions of the

first two Books, as the references in this, and his occasions shall re

quire.&quot;
So that

&quot; The System of the World&quot; is composed both
&quot;

in a popular method,&quot; and in the form of mathematical Propo
sitions.

The principle of Universal Gravi ition, namely, that every

particle of matter is attracted by, or gravitates to, every other

particle of matter, icith a force inversely proportional to the

squares of their distances is the discovery w? ich characterizes

The PRINCIPIA. This principle the author deduced from the mo
tion of the moon, and the three laws of Kepler laws, which

Newton, in turn, by his greater law, demonstrated to be true.

From the first law of Kepler, namely, the proportionality of
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the areas to t\ie times of their description, our author inferred

that the force which retained the planet in its orbit was always
directed to the sun

;
and from the second, namely, that every

planet moves in an ellipse with the sun in one of its foci, he drew

the more general inference that the force by which the planet
moves round that focus varies inversely as the square of its dis

tance therefrom : and he demonstrated that a planet acted upon

by such a force could not move in any other curve than a conic

section
; showing when the moving body would describe a circu

lar, an elliptical, a parabolic, or hyperbolic orbit. He demon

strated, too, that this force, or attracting, gravitating power re

sided in every, the least particle ;
but that, in spherical masses, it

operated as if confined to their centres
;
so that, one sphere or

body will act upon another sphere or body, with a force directly

proportional to the quantity of matter, and inversely as the square
of the distance between their centres; and that their velocities of

mutual approach will be in the inverse ratio of their quantities o*

matter. Thus he grandly outlined the Universal Law. Verify

ing its truth by the motions of terrestrial bodies, then by those of

the moon and other secondary orbs, he finally embraced, in one

mighty generalization, the entire Solar System all the move

ments of all its bodies planets, satellites and comets explain

ing and harmonizing the many diverse and theretofore inexplica

ble phenomena.
Guided by the genius of Newton, we see sphere bound to

sphere, body to body, particle to particle, atom to mass, the min

utest part to the stupendous whole each to each, each to all,

and all to each in the mysterious bonds of a ceaseless, recipro

cal influence. An influence whose workings are shown to be

alike present in the globular dew-drop, or oblate-spheroidal earth
;

in the falling shower, or vast heaving ocean tides
;

in the flying

thistle-down, or fixed, ponderous rock
;
in the swinging pendulum,

or time-measuring sun
;

in the varying and unequal moon, or

earth s slowly retrograding poles ;
in the uncertain meteor, or

oiazing comet wheeling swiftly away on its remote, yet determined

round. An influence, in fine, that may link system to system

through all the star-glowing firmament
;
then firmament to iirma-
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merit
; aye, firmament to firmament, again and again, till, con

verging home, it may be, to some ineffable centre, where more

presently dwells He who inhabiteth immensity, and where infini

tudes meet and eternities have their condux, and where around

move, in softest, swiftest measure, all the countless hosts that

crowd heaven s fathomless deeps.

And yet Newton, amid the loveliness and magnitude of Om
nipotence, lost not sight of the Almighty One. A secondary,

however universal, was not taken for the First Cause. An im

pressed force, however diffused and powerful, assumed not the

functions of the creating, giving Energy. Material beauties,

splendours, and sublimities, however rich in glory, and endless in

extent, concealed not the attributes of an intelligent Supreme.
From the depths of his own soul, through reason and the WORD,
he had risen, a priori, to God : from the heights of Omnipotence,

through the design and law of the builded universe, he proved &amp;lt;/

posteriori,
a Deity.

&quot;

I
had,&quot; says he,

&quot; an eye upon such prin

ciples as might work, with considering men, for the belief of a

Deity,&quot;
in writing the PRINCIPIA

;
at the conclusion whereof, he

teaches that
&quot;

this most beautiful system of the sun, planets and

comets, could only proceed from the counsel and dominion of an

intelligent and powerful Being. And if the fixed stars are the

centres of other like systems, these, being forme 1 by the like

wise counsels, must be all subject to the dominion ofOne
; especially

since the light of the fixed stars is of the same nature with the

light of the sun, and from every system light passes into all other

systems : and lest the systems of the fixed stars should, by their

gravity, fall on each other mutually, he hath placed those systems
at immense distances one from another.

&quot; This Being governs all things, not as the soul of the world,

but as Lord over all
;
and on account of his dominion he is wont,

to be called Lord God Travrowparwp or Universal Ruler ; for God
is a relative word, and has a respect to servants

;
and Deity is

the dominion of God, not over his own body, as those imagine
who fancy God to be the soul of the world, but over servants.

The Supreme God is a Being eternal, infinite, absolutely perfect ;

but a being, however perfect, without dominion, cannot be said to
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be Lord God
;
for we say, my God, your God, the God of Israel

the God of Gods, and Lord of Lords
;
but we do not say, my

Eternal, your Eternal, the Eternal of Israel, the Eternal of Gods :

we do not say my Infinite, or my Perfect : these are titles which

have no respect to servants. The word God usually signifies

Lord
;
but every Lord is not God. It is the dominion of a spir

itual Being which constitutes a God
;

a true, supreme, or imagi

nary dominion makes a true, supreme, or imaginary God. And

from his true dominion it follows that the true God is a living,

intelligent and powerful Being ;
and from his other perfections,

that he is supreme or most perfect. He is eternal and in

finite, omnipotent and omniscient
;
that is, his duration reaches

from eternity to eternity ;
his presence from infinity to infinity ;

he governs all things and knows all things, that are or can be

done. He is not eternity or infinity, but eternal and infinite
;

he is not duration and space, but he endures and is present.

He endures forever and is everywhere present ;
and by existing

always and everywhere, he constitutes duration and space. Since

every particle of space is always, and every indivisible moment

of duration is everywhere, certainly the Maker and Lord of things

cannot be never and nowhere. Every soul that has perception

is, though in different times and different organs of sense and mo

tion, still the same indivisible person. There are given succes

sive parts in duration, co-existent parts in space, but neither the

one nor the other in the person of a man, or his thinking

principle ;
and much less can they be found in the thinking sub

stance of God. Every man. so far as he is a thing that has j:er-

ceptiori, is one and the same man during his whole life, in all and

each of his organs of sense. God is one and the same God, al

ways and everywhere. He is omnipresent, not virtually only,

but also substantially ; for virtue cannot subsist without sub

stance. In him are all things contained and moved
; yet neither

affects the other
;
God suffers nothing from the motion of bodies

;

bodies find no resistance from the omnipresence of God. It is

allowed by all that the Supreme God exists necessarily ;
and by

the same necessity he exists always and everywhere. Whence

also he is all similar, all eye, all ear, all brain, all arm, all powei
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to perceive, to understand, and to act
;
but in a manner not at all

human, in a manner not at all corporeal, in a manner utterly un

known to us. As a blind man has no idea of colours, so have we

no idea of the manner by which the all-wise God perceives and

understands all things. He is utterly void of all body, and bodily

figure, and can therefore neither be seen, nor heard, nor touched ;

nor ought he to be worshipped under the representation of any

corporeal thing. We have ideas of his attributes, but what the

real substance of anything is we know not. In bodies we see

only their figures and colours, we hear only the sounds, we touch

only their outward surfaces, we smell only the smells, and taste

only the savours
;
but their inward substances are not to be known,

either by our senses, or by any reflex act of our minds : much

less, then, have we any idea of the substance of God. We know

him only by his most wise and excellent contrivances of things,

and final causes
;
we admire him for his perfections ;

but we rev

erence and adore him on account of his dominion
;
for we adore

him as his servants
;
and a god without dominion, providence, and

final causes, is nothing else but Fate and Nature. Blind meta

physical necessity, which is certainly the same always and every

where, could produce no variety of things. All that diversity of

natural things which we find suited to different times and places

could arise from nothing but the ideas and will of a Being neces

sarily existing.&quot;

Thus, the diligent student of science, the earnest seeker of

truth, led, as through the courts of a sacred Temple, wherein, at

each step, new wonders meet the eye, till, as a crowning grace,

they stand before a Holy of Holies, and learn that all science and

all truth are one which hath its beginning and its end in the

knowledge of Him whose glory the heavens declare, and whose

handiwork the firmament showeth forth.

The introduction of the pure and lofty doctrines of the PRIN-

CIPIA was perseveringly resisted. Descartes, with his system of

vortices, had sown plausibly to the imagination, and error had

struck down deeply, and shot up luxuriantly, not only in the

popular, but in the scientific mind. Besides the idea in itself so

simple and so grand that the great masses of the planets were
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suspended in empty space, and retained in their orbits by an in

visible influence residing in the sun was to the ignorant a thing

inconceivable, and to the learned a revival of the occult qualities

of the ancient physics. This remark applies particularly to the

continent. Leibnitz misapprehended ; Huygens in part rejected ;

John Bernouilli opposed ;
and Fontenelle never received the doc

trines of the PRINCIPIA. So that, the saying of Voltaire is prob

ably true, that though Newton survived the publication of his

great work more than forty years, yet, at the time of his death,

lie had not above twenty followers out of England.

But in England, the reception of our author s philosophy was

rapid and triumphant. His own labours, while Lucasian Pro

fessor
;

those of his successors in that Chair Whiston and

Saunderson
;
those of Dr. Samuel Clarke, Dr. Laughton, Roger

Cotes, and Dr. Bentley ;
the experimental lectures of Dr. Keill

and Desaguliers ;
the early and powerful exertions of David

Gregory at Edinburgh, and of his brother James Gregory at St.

Andrew s, tended to diffuse widely in England and Scotland a

knowledge of, and taste for the truths of the PRINCIPIA. Indeed,

its mathematical doctrines constituted, from the first, a regular

part of academical instruction
;
while its physical truths, given to

the public in popular lectures, illustrated by experiments, had,

before the lapse of twenty ) ( ar.s, become familiar to, and adopted

by the general mind. Pemberton s popular
&quot; View of Sir Isaac

Newton s Philosophy&quot;
was published, in 1728

;
and the year after

ward, an English translation of the PRINCIPIA, and System of the

World, by Andrew Motte. And since that period, the labours of

Le Seur and Jacquier, of Thorpe, of Jebb, of Wright and others

have greatly contributed to display the most hidden treasures of

the PRINCIPIA.

About the time of the publication of the Principia, James II.,

bent on re-establishing the Romish Faith, had, among other ille

gal acts, ordered by mandamus, the University of Cambridge to

confer the degree of Master of Arts upon an ignorant monk.

Obedience to this mandate was resolutely refused. Newton was

one of the nine delegates chosen to defend the independence of

the University. They appeared before the High Court
;

and
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successfully : the king abandoned his design. The prominent

part which our author took in these proceedings, and his eminence

in the scientific world, induced his proposal as one of the parlia

mentary representatives of the University. He was elected, in

1688, and sat in the Convention Parliament till its dissolution.

After the first year, however, he seems to have given little or no

attention to his parliamentary duties, being seldom absent from

the University till his appointment in the Mint, in 1695.

Newton began his theological researches sometime previous to

1691
;

in the prime of his years, and in the matured vigour of

his intellectual powers. From his youth, as we have seen, he

had devoted himself with an activity the most unceasing, and an

energy almost superhuman to the discovery of physical truth
;

giving to Philosophy a new foundation, and to Science a new

temple. To pass on, then, from the consideration of the material,

more directly to that of the spiritual, was a natural, nay, with so

large and devout a soul, a necessary advance. The Bible was to

him of inestimable worth. In the elastic freedom, which a pure
and unswerving faith in Him of Nazareth gives, his mighty facul

ties enjoyed the only completest scope for development. His

original endowment, however great, combined with a studious

application, however profound, would never, without this libera

tion from the dominion of passion and sense, have enabled him to

attain to that wondrous concentration and grasp of intellect, for

which Fame has as yet assigned him no equal. Gratefully he

owned, therefore, the same Author in the Book of Nature and the

Book of Revelation. These were to him as drops of the same

unfathomable ocean
;

as outrayings of the same inner splendour ;

as tones of the same ineffable voice
;

as segments of the same

infinite curve. &quot;With great joy he had found himself enabled to

proclaim, as an interpreter, from the hieroglyphs of Creation, the

existence of a God : and now, with greater joy, and in the fulness

of his knowledge, and in the fulness of his strength, he laboured

to make clear, from the utterances of the inspired Word, the far

mightier confirmations of a Supreme Good, in all its glorious

amplitude of Being and of Attribute
;
and to bring the infallible

workings thereof plainly home to the understandings and the
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affections of his fellow-men
;
and finally to add the weight of his

own testimony in favour of that Religion, whose truth is now. in

deed,
&quot;

girded with the iron and the rock of a ponderous and co

lossal demonstration.&quot;

His work, entitled, OBSERVATIONS UPON THE PROPHECIES OF

HOLY WRIT, PARTICULARLY THE PROPHECIES OF DANIEL AND THE

APOCALYPSE OF ST. JOHN, first published in London, in 1733 4to.

consists of two parts : the one devoted to the Prophecies oi

Daniel, and the other to the Apocalypse of St. John. In the first

part, he treats concerning the compilers of the books of the Old

Testament
;

of the prophetic language ;
of the vision of the

four beasts
;

of the kingdoms represented by the feet of the

image composed of iron and clay ;
of the ten kingdoms repre

sented by the ten horns of the beast
;

of the eleventh horn of

Daniel s fourth beast
;
of the power which should change times

and laws
;

of the kingdoms represented in Daniel by the ram

and he-goat ;
of the prophecy of the seventy weeks

;
of the

times of the birth and passion of Christ
;

of the prophecy of the

Scripture of Truth
;

of the king who doeth according to his will,

and magnified himself above every god, and honoured Mahuzzims,
and regarded not the desire of women

;
of the Mahuzzim, hon

oured by the king who doeth according to his will. In the sec

ond part, he treats of the time when the Apocalypse was written
,

of the scene of the vision, and the relation which the Apocalypse
has to the book of the law of Moses, and to the worship of God
in the temple ;

of the relation which the Apocalypse has to the

prophecies of Daniel, and of the subject of the prophecy itself

Newton regards the prophecies as given, not for the gratification

of man s curiosity, by enabling him to foreknow ; but for his con

viction that the world is governed by Providence, by witnessing

their fulfilment. Enough of prophecy, he thinks, has already

been fulfilled to afford the diligent seeker abundant evidence of

God s providence. The whole work is marked by profound

erudition, sagacity and argument.

And not less learning, penetration and masterly reasoning are

conspicuous in his HISTORICAL ACCOUNT OF Two NOTABLE

CORRUPTIONS OF SCRIPTURES IN A LETTER TO A FRIEND. This
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Treatise, first accurately published in Dr. Horsley s edition of his

works, relates to two texts : the one, 1 Epistle of St. John v. 7
;

the other, 1 Epistle of St. Paul to Timothy iii. 16. As this

work had the effect to deprive the advocates of the doctrine of

the Trinity of two leading texts, Newton has been looked upon
as an Arian

;
but there is absolutely nothing in his writings to

warrant such a conclusion.

His regaining theological works consist of the LEXICON PRO-

PHETICUM, which was left incomplete ;
a Latin Dissertation on

the sacred cubit of the Jews, which was translated into English,

and published, in 1737. among the Miscellaneous Works of John

Greaves
;
and FOUR LETTERS addressed to Dr. Bentlty, contain

ing some arguments in proof of a Deity. These Letters were

dated respectively : 10th December, 1692
;
17th January, 1693

;

25th February, 1693; and llth February, 1693 the fourth

bearing an earlier date than the third. The best faculties and

the profoundest acquirements of our author are convincingly

manifest in these lucid and powerful compositions. They were

published in 1756, and reviewed by Dr. Samuel Johnson.

Newton s religious writings are distinguished by their absolute

freedom from prejudice. Everywhere, throughout them, there

glows the genuine nobleness of soul. To his whole life, indeed,

we may here fitly extend the same observation. He was most

richly imbued with the very spirit of the Scriptures which he so

delighted to study and to meditate upon. His was a piety, so

fervent, so sincere and practical, that it rose up like a holy incense

from every thought and act. His a benevolence that not only

willed, but endeavoured the best for all. His a philanthropy

that held in the embracings of its love every brother-man.

His a toleration of the largest and the truest
; condemning per

secution in every, even its mildest form
;
and kindly encouraging

each striving after excellence : .1 toleration that came not of

indifference for the immoral and the impious met with their

quick rebuke but a toleration that came of the wise humbleness

and the Christian charity, which see, in the nothingness of self

and the almightiness of TRUTH, no praise for the ablest, and no

blame for th^ feeblest in their strugglings upward to light and life.
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Tn the winter of 1691-2, on returning from chapel, one morn

ing, Newton foima tnat a favourite little dog, called Diamond,
had overturned a lighted taper on his desk, and that several pa

pers containing the results of certain optical experiments, were

nearly consumed. His only exclamation, on perceiving his loss,

was,
&quot; Oh Diamond, Diamond, little knowest thou the mischiel

thou hast done,&quot; Dr. Brewster, in his life of our author, gives the

following extract from the manuscript Diary of Mr. Abraham De
La Pryme. a student in the University at the time of this oc

currence.
&quot; 1692. February, 3. What I heard to-day I must relate.

There is one Mr. Newton (whom I have very oft seen), Fellow

of Trinity College, that is mighty famous for his learning, being a

most excellent mathematician, philosopher, divine, &c. He has

been Fellow of the Royal Society these many years ;
and among

other verylearned books and tracts, he
:

s written one upon the mathe

matical principles of philosophy, which has given him a mighty

name, he having received, especially from Scotland, abundance of

congratulatory letters for the same
;
but of all the books he ever

wrote, there was one of colours and light, established upon thou

sands of experiments which he had been twenty years of making,

and which had cost him many hundreds of pounds. This book

which he vaiued so much, and which was so much talked of, had

the ill luck to perish, and be utterly lost just when the learned

author was almost at pitting a conclusion at the same, after this

manner : In a winter s morning, leaving it among his other papers

on his study table while he went to chapel, the candle, which he

had unfortunately left burning there, too, catched hold by some

means of other papers, and they fired the aforesaid book, and ut

terly consumed it and several other valuable writings ;
arid which

is most wonderful did no further mischief. But when Mr. New
ton came from chapel, and had seen what was done, every one

thought he would have run mad, he was so troubled thereat that

he was not himself for a month after. A long account of this his

system of colours you may find in the Transactions of the Royal

Society, which he had sent up to them long before this sad mis

chance happened unto him.&quot;
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It will be borne in mind that all of Newton s theological wri

tings, with the exception of the Letters to Dr. Bentley, were

composed before this event which, we must conclude, from

Pryme s words, produced a serious impression upon our author for

about a month. But M. Biot, in his Life of Newton, relying on a

memorandum contained in a small manuscript Journal of Huygens,
declares this occurrence to have caused a deran-gement of New
ton s intellect. M. Blot s opinions and deductions, however, as

well as those of La Place, upon this subject, were based upon
erroneous data, and have been overthrown by the clearest proof.

There is not, in fact, the least evidence that Newton s reason was,

for a single moment, dethroned
;
on the contrary, the testimony

is conclusive that he was, at all times, perfectly capable of carry

ing on his mathematical, metaphysical and astronomical inquiries.

Loss of sleep, loss of appetite, and irritated nerves will disturb

somewhat the equanimity of the most serene
;
and an act done, or

language employed, under such temporary discomposure, is not a

just criterion of the general tone and strength of a man s mind.

As to the accident itself, we may suppose, whatever might have

been its precise nature, that it greatly distressed him, and, still

further, that its shock may have originated the train of nervous

derangements, which afflicted him, more or less, for two years
afterward. Yet, during this very period of ill health, we find him

putting forth his highest powers. In 1692, he prepared for, and

transmitted to Dr. Wallis the first proposition of the Treatise on

Quadratures, with examples of it in first, second and third flux

ions. He investigated, in the same year, the subject of haloes
;

making and recording numerous and important observations rela

tive thereto. Those profound and beautiful Letters to Dr. Bentley
were written at the close of this and the beginning of the next

year. In October, 1693, Locke, who was then about publishing a

second edition of his work on the Human Understanding, request
ed Newton to reconsider his opinions on innate ideas. And in

1694, he was zealously occupied in perfecting his lunar theory ;

visiting Flamstead, at the Royal Observatory of Greenwich, in

September, and obtaining a series of lunar observations
;
and
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commencing, in October, a correspondence with that distinguished

practical Astronomer, which continued till 1698.

We now arrive at the period when Newton permanently with

drew from the seclusion of a collegiate, and entered upon a more

active and public life. He was appointed Warden of the Mint,

in 1695, through the influence of Charles Montague, Chancellor

of the Exchequer, and afterward Earl of Halifax. The current

roin of the nation had been adulterated and debased, and Mon

tague undertook a re-coinage. Our author s mathematical and

chemical knowledge proved eminently useful in accomplishing

this difficult and most salutary reform. In 1699, he was pro

moted to the Mastership of the Mint an office worth twelve or

fifteen hundred pounds per annum, and which he held during the

remainder of his life. He wrote, in this capacity, an official Re

port on the Coinage, which has been published ;
he also prepared

a Table of Assays of Foreign Coins, which was printed at the

end of Dr. Arbuthnot s Tables of Ancient Coins, Weights, and

Measures, in 1727.

Newton retained his Professorship at Cambridge till 1703.

But he had, on receiving the appointment of Master of the Mint,

in 1699, made Mr. Whiston his deputy, with all the emoluments

of the office
; and, on finally resigning, procured his nomination to

the vacant Chair.

In January 1697, John Bernouilli proposed to the most distin

guished mathematicians of Europe two problems for solution.

Leibnitz, admiring the beauty of one of them, requested the time

for solving it to be extended to twelve months twice the period

originally named. The delay was readily granted. Newton, how

ever, sent in, the day after he received the problems, a solution of

them to the President of the Royal Society. Bernouilli obtained

solutions from Newton, Leibinitz and the Marquis De L Hopital ;

but Newton s though anonymous, he immediately recognised
&quot;

tanquam ungue leonem&quot; as the lion is known by his claw.

We may mention here the famous problem of the trajectories

proposed by Leibnitz, in 1716, for the purpose of &quot;feeling the

pulse of the English Analysts.&quot;
Newton received the problem

about five o clock in the afternoon, as he was returning from the
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Mint
;
and though it was extremely difficult and he himself much

fatigued, yet he completed its solution, the same evening before

he went to bed.

The history of these problems affords, by direct comparison, a

striking illustration of Newton s vast superiority of mind. That

amazing concentration and grasp of intellect, of which we have

spoken, enabled him to master speedily, and, as it were, by a

single effort, those things, for the achievement of which, the many
would essay utterly in vain, and the very, very few attain only

after long and renewed striving. And yet, with a modesty as

unparalleled as his power, he attributed his successes, not to any

extraordinary sagacity, but solely to industry and patient thought.

Mr- kept the subject of consideration constantly before him, and

waited till the first dawning opened gradually into a full and

clear light ;
never quitting, if possible, the mental process till the

object of it were wholly gained. He never allowed this habit of

meditation to appear in his intercourse with society ;
but in the

privacy of his own chamber, or in the midst of his own family, he

gave himself up to the deepest abstraction. Occupied with some

interesting investigation, he would often sit down on his bedside,

after he rose, and remain there, for hours, partially dressed.

Meal-time would frequently come and pass unheeded
;
so that,

unless urgently reminded, he would neglect to take the re

quisite quantity of nourishment. But notwithstanding his anx

iety to be left undisturbed, he would, when occasion required,

turn aside his thoughts, though bent upon the most intricate re

search, and then, when leisure served, again direct them to the

very point where they ceased to act : and this he seemed to ac

complish not so much by the force of his memory, as by the force

of his inventive faculty, before the vigorous intensity of which, no

subject, however abstruse, remained long unexplored.
Me was elected a member of the Royal Academy of Sciences

at Paris, in 1699, when that distinguished Body were empowered,

by a new charter, to admit a small number of foreign associates.

In 1700, he communicated to Dr. Halley a description of his re

flecting instrument for observing the moon s distance from the

fixed stars. This description was published in the Philosophical
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Transactions, in 1742. The instrument was the same as that

produced by Mr. Hadley, in 1731, and which, under the name of

Hadley s Quadrant, has been of so great use in navigation. On
the assembling of the new Parliament, in 1701, Newton was re-

elected one of the members for the University of Cambridge. In

1703, he was chosen President of the Royal Society of London,

to which office he was annually re-elected till the period of his

decease about twenty-five years afterward.

Our author unquestionably devoted more labour to, and, in

many respects, took a greater pride in his Optical, than his other

discoveries. This science he had placed on a new and indestruc

tible basis
;
and he wished not only to build, but to perfect the

costly and glowing structure. He had communicated, before the

publication of the PRINCIPIA, his most important researches on

light to the Royal Society, in detached papers which were inserted

in successive numbers of the Transactions
;
but he did not pub

lish a connected view ofthese labours till 1704, when they appeared
under the title of OPTICS : OR, A TREATISE ON THE REFLEXIONS,

REFRACTIONS, INFLEXIONS AND COLOURS OF LIGHT. To this,

but to no subsequent edition, were added two Mathematical Trea

tises, entitled, TRACTATUS DUO DE SPECIEBUS ET MAGNITUDINE

FIGURARUM cuRViLiNEARUM
;
the one bearing the title TRACTATUS

DE QUADRATURA CuRVARUM
;
and the other, that of ENUMERATIO

LINEARUM TERTII ORDiNis. The publication of these Mathemati

cal Treatises was made necessary in consequence of plagiarisms

from the manuscripts of them loaned by the author to his friends.

Dr. Samuel Clarke published a Latin translation of the Optics, in

in 1706
; whereupon he was presented by Newton, as a mark of

his grateful approbation, with five hundred pounds, or one hun

dred pounds for each of his children. The work was afterward

translated into French. It had a remarkably wide circulation,

and appeared, in several successive editions, both in England and

on the Continent. There is displayed, particularly on this Opti

cal Treatise, the author s talent for simplifying and communica

ting the profoundest speculations. It is a faculty rarely united to

that of the highest invention. Newton possessed both ; and thus

that mental perfectness which enabled him to create, to combine,
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and to teach, and so render himself, not the &quot;ornament&quot; cnly;

but inconceivably more, the pre-eminent benefactor of his species.

The honour of knighthood v/as conferred on our author in

1705. Soon afterward, he was a candidate again for the Repre
sentation of the University, but was defeated by a large majority.

It is thought that a more pliant man was preferred by both min

isters and electors. Newton was always remarkable for simplicity

of dress, and his only known departure from it was on this oc

casion, when he is said to have appeared in a suit of laced

clothes.

The Algebraical Lectures which he had, Juring nine years,

delivered at Cambridge, were published by Whiston, in 1707,

under the title of ARITHMETICS UNIVERSALIS, SINE DE COMPOSI

TIONS ET RESOLUTIONS ARITHMETICA LIBER. This publication

is said to have been a breach of confidence on Whiston s part. Mr.

Ralphson, not long afterward, translated the work into English ;

and a second edition of it, with improvements by the author, was

issued at London, 1712, by Dr. Machin. Subsequent editions,

both in English and Latin, with commentaries, have been published.

In June, 1709, Newton intrusted the superintendence of a

second edition of the PRINCIPIA to Roger Cotes, Plumian Pro

fessor of Astronomy at Cambridge. The first edition had been

sold off for some time. Copies of the work had become very

rare, and could only be obtained at several times their original

cost. A great number of letters passed oetween the author and

Mr. Cotes during the preparation of the edition, which finally

appeared in May, 1713. It had many alterations and improve

ments, and was accompanied by an admirable Preface from the

pen of Cotes.

Our author s early Treatise, entitled, ANALYSIS PER EQUATIONES

NUMERO TERMINORUM INFINITAS, as well as a small Tract, Gearing

the title of METHODUS DIFFERENTIALS, was published, witn nis

consent, in 1711. The former of these, and the Treatise De

Quadratura Curvarum, translated into Englisn, witn a .arge com

mentary, appeared in 1745. His work, entitled. ARTIS ANA
LYTICS SPECIMINA, VEL GEOMETRIA ANALYTICA, was iirs; given

to the world in the edition of Dr. Horsley, 1779.
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It is a notable fact, in Newton s history, that he never volun*

tarily published any one of his purely mathematical writings

The cause of this unwillingness in some, and, in other instances,

of his indifference, or, at least, want of solicitude to put forth his

works may be confidently sought for in his repugnance to every

thing like contest or dispute. But, going deeper than this aver

sion, we find, underlying his whole character and running parallel

with all his discoveries, that extraordinary humility which always

preserved him in a position so relatively just to the behests of

time and eternity, that the infinite value of truth, and the utter

worthlessness of fame, were alike constantly present to him.

Judging of his course, however, in its more temporary aspect, as

bearing upon his immediate quiet, it seemed the most unfortunate.

For an early publication, especially in the case of his Method of

Fluxions, would have anticipated all rivalry, and secured him

from the contentious claims of Leibnitz. Still each one will solve

the problem of his existence in his own way, and, with a manlike

Newton, his own, as we conceive, could be no other than the best

way. The conduct of Leibnitz in this affair is quite irreconcilable

with the stature and strength of the man
; giant-like, and doing

nobly, in many ways, a giant s work, yet cringing himself into the

dimensions and performances of a common calumniator. Opening

in 1699, the discussion in question continued till the close of

Leibnitz s life, in 1716. We give the summary of the case as

contained in the Report of the Committee of the Royal Society,

the deliberately weighed opinion of which has been adopted as an

authoritative decision in all countries.

&quot; We have consulted the letters and letter books in the custody

of the Royal Society, and those found among the papers of Mr.

John Collins, dated between the years 1669 and 1677, inclusive ;

and showed them to such as knew and avouched the hands of Mr.

Barrow, Mr. Collins, Mr. Oldenburg, and Mr. Leibnitz
;
and

compared those of Mr. Gregory with one another, and with copies

of some of them taken in the hand of Mr. Collins
;

and have

extracted from them what relates to the matter referred to us :

all which extracts, herewith delivered to you, we believe to be

genuine and authentic. And by these letters and papers wf

find:
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&quot;

I. Mr. Leibnitz was in London in the beginning of the year
1673

;
and went thence in or about March, to Paris, where he

kept a correspondence with Mr. Collins, by means of Mr. Olden

burg, till about September, 1676, and then returned, by London

and Amsterdam, to Hanover: and that Mr. Collins was very free

in communicating to able mathematicians what he had received

from Mr, Newton and Mr. Gregory.
&quot;

II. That when Mr. Leibnitz was the first time in London,

he contended for the invention of another differential method,

properly so called
; and, notwithstanding he was shown by Dr.

Pell that it was Newton ?

s method, persisted in maintaining it to

be his own invention, by reason that he had found it by himself

without knowing what Newton had done before, and had much

improved it. And we find no mention of his having any other

differential method than Newton s before his letter of the 21st of

June, 1677, which was a year after a copy of Mr. Newton s letter

of the 10th of December, 1672, had been sent to Paris to be

communicated to him ; and above four years after Mr. Collins

began to communicate that letter to his correspondents ;
in which

letter the method of fluxions was sufficiently described to any

intelligent person.

&quot;III. That by Mr. Newton s letter, of the 13th of June, 1676

it appears that he had the method of fluxions above five years

before the writing of that letter. And by his Analysis per ^Equa-
tiones numero Terminorum Infmitas, communicated by Dr. Barrow

to Mr. Collins, in July, 1669, we find that he had invented the

method before that time.

&quot;IV. That the differential method is one and the same with

the method of fluxions, excepting the name and mode of notation
;

Mr. Leibnitz calling those quantities differences which Mr. Newton
calls moments, or fluxions

;
and marking them with a letter d a

mark not used by Mr. Newton.
&quot;

And, therefore, we take the proper question to be, not who
invented this or that method, but, who was the first inventor of

the method ? And we believe that those who have reputed Mr.

Leibnitz the first inventor knew little or nothing of his correspond
ence with Mr. Collins and Mr. Oldenburg long before, nor of Mr.
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Newton s hiving that method above fifteen years before Mr
Leibnitz began to publish it in the Acta Eruditorum of Leipsic.

&quot; For which reason we reckon Mr. Newton the first inventor
;

and are of opinion that Mr. Keill, in asserting the same, has been

no ways injurious to Mr. Leibnitz. And we submit to the judg
ment of the Society, whether the extract and papers, now pre

sented to you, together with what is extant, to the same pur

pose, in Dr. Wallis s third volume, may not deserve to be made

public.&quot;

This Report, with the collection of letters and manuscripts,

under the title of COMMERCIUM EPISTOLICUM D. JOHANNIS COLLINS

ET ALIORUM DE ANALYSI PROMOTA JuSSU SoCIETATIS REGIES

EDITUM, appeared accordingly in the early part of 1713. Its

publication seemed to infuse additional bitterness into the feelings

of Leibnitz, who descended to unfounded charges and empty
threats. He had been privy counsellor to the Elector of Han

over, before that prince was elevated to the British throne
;
and

in his correspondence, in 1715 and 1716, with the Abbe Conti,

then at the court of George L, and with Caroline, Princess of

Wales, he attacked the doctrines of the PRINCIPIA, and indirectly

its author, in a manner very discreditable to himself, both as a

learned and as an honourable man. His assaults, however, were

triumphantly met; and, to the complete overthrow of his rival

pretensions, Newton was induced to give the finishing blow. The

verdict is universal and irreversible that the English preceded

the German philosopher, by at least ten years, in the invention

of fluxions. Newton could not have borrowed from Leibnitz
;

but Leibnitz might have borrowed from Newton. A new edition

of the Commercium Epistolicum was published in 1722-5 (?) ;
but

neither in this, nor in the former edition, did our author take any

part. The disciples, enthusiastic, capable and ready, effectually

shielded, with the buckler of Truth, the character of the Master,

whose own conduct throughout was replete with delicacy, dignity

and justice. He kept aloof from the controversy in which Dr.

Keill stood forth as the chief representative of the Newtonian

side till the very last, when, for the satisfaction of the King,

George L. rather than for his own, he consented to put forth his
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hand and firmly secure his rights upon a certain and impregnable,

basis.

A petition to have inventions for promoting the discovery of the

longitude at sea, suitably rewarded, was presented to the House

of Commons, in 1714. A committee, having been appointed to

investigate the subject, called upon Newton and others for their

opinions. That of our author was given in writing, A report,

favourable to the desired measure, was then taken up, and a bill

for its adoption subsequently passed.

On the ascension of George I., in 1714, Newton became an

object of profound interest at court. His position under govern

ment, his surpassing fame, his spotless character, and. above all,

his deep and consistent piety, attracted the reverent regard of the

Princess of Wales, afterward queen -consort to George II. She

was a woman of a highly cultivated mind, and derived the greatest

pleasure from conversing with Newton and corresponding with

Leibnitz. One day, in conversation with her, our author men

tioned and explained a new system of chronology, which he had

composed at Cambridge, where he had been in the habit &quot; of

refreshing himself with history and chronology, when he wac

weary with other studies.&quot; Subsequently, in the year 1718, she

requested a copy of this interesting and ingenious work Newton,

accordingly, drew up an abstract of the system from the separate

papers in which it existed, and gave it to her on condition that it

should riot be communicated to any other person. Sometime

afterward she requested that the Abbe Conti might be allowed

to have a copy of it The author consented: and the abbe

received a copy of the manuscript, under the like injunction and

promise of secrecy. This manuscript bore the title of &quot; A short

Chronicle, from the First Memory of Tilings in Europe, to the

Conquest of Persia, by Alexander the Great.&quot;

After Newton took up his residence in London, he lived in a

style suited to his elevated position and rank. He kept his car

riage, with an establishment of three male and three female serv

ants. But to everything like vain show and luxury he was utterly

averse. His household affairs, for the last twenty years of his

life, were under the charge of his niece, Mrs. Catherine Barton,
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wife and widow of Colonel Barton a woman of great beauty and

accomplishment and subsequently married to John Conduit, Esq.

At home Newton was distinguished by that dignified and gentle

hospitality which springs alone from true nobleness. On all pro

per occasions, he gave splendid entertainments, though without

ostentation. In society, whether of the palace or the cottage,

his manner was self-possessed and urbane
;
his look benign and

affable
;
his speech candid and modest

;
his whole air undisturb

edly serene. He had none of what are usually called the singu

larities of genius ; suiting himself easily to every company

except that of the vicious and wicked
;
and speaking of himself

and others, naturally, so as never even to be suspected of vanity.

There was in him, if we may be allowed the expression, a WHOLE

NESS of nature, which did not admit of such imperfections and

weakness the circle was too perfect, the law too constant, and

the disturbing forces too slight to suffer scarcely any of those

eccentricities which so interrupt and mar the movements of many

bright spirits, rendering their course through the world more like

that of the blazing meteor than that of the light and life-impart

ing sun. In brief, the words GREATNESS and GOODNESS could

not, humanly speaking, be more fitly employed than when applied

as the pre-eminent characteristics of this pure, meek and vene

rable sage.

In the eightieth year of his age, Newton was seized with

symptoms of stone in the bladder. His disease was pronounced

incurable. He succeeded, however, by means of a strict regimen,

and other precautions, in alleviating his complaint, and procuring

long intervals of ease. His diet, always frugai, was now extremely

temperate, consisting chiefly of broth, vegetables, and fruit, with,

now and then, a little butcher meat. He gave up the use of his

carriage, and employed, in its stead, when he went out, a chair.

All invitations to dinner were declined
;
and only small parties

were received, occasionally, at his own house.

In 1724 he wrote to the Lord Provost of Edinburgh, offering

to contribute twenty pounds yearly toward the salary of Mr.

Maclaurin, provided he accepted the assistant Professorship of

Mathematics in the University of that place. Not only in the
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cause of ingenuity and learning, but in that of religion in relieving

the poor and .assisting his relations, Newton annually expended

large sums. He was generous and charitable almost to a fault.

Those, he would often remark, who gave away nothing till they

died, never gave at all. His wealth had become considerable by
a prudent economy ;

but he regarded money in no other light

than as one of the means wherewith he had been intrusted to do

good, and he faithfully employed it accordingly.

He experienced, in spite of all his precautionary measures, a

return of his complaint in the month of August, of the same year,

1 724, when he passed a stone the size of pea ;
it came from him

in two pieces, the one at the distance of two day.s from the other.

Tolerable good health then followed for some months. In Janu

ary, 1725, however, he was taken with a violent cough and inflam

mation of the lungs. In consequence of this attack, he was pre
vailed upon to remove to Kensington, where his health greatly

improved. In February following, he was attacked in both feet

with the gout, of the approach of which he had received, a few

years before, a slight warning, and the presence of which now

produced a very beneficial change in his general health. Mr.

Conduit, his nephew, has recorded a curious conversation which

took place, at or near this time, between himself and Sir Isaac.

&quot;I was, on Sunday night, the 7th March, 1724-5, at Kensing

ton, with Sir Isaac Newton, in his lodgings, just after he was out

of a fit of the gout, which he had had in both of his feet, for the

first time, in the eighty-third year of his age. He was better after

it, and his head clearer and memory stronger than I had known

them for some time. He then repeated to me, by way of dis

course, very distinctly, though rather in answer to my queries,

than in one continued narration, what he had often hinted to me

before, viz. : that it was his conjecture (he would affirm nothing)

that there was a sort of revolution in the heavenly bodies
;
that

the vapours and light, emitted by the sun, which had their sedi

ment, as water and other matter, had gathered themselves, by

degrees, into a body, and attracted more matter from the planets,

and at last made a secondary planet (viz. : one of those that go

round another planet), and then, by gathering to them, and
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attracting more matter, became a primary planet ;
and then, bf

increasing still, became a comet, which, after certain revolutions,

by coming nearer and nearer to the sun, had all its volatile parts

condensed, and became a matter tit to recruit and replenish the

sun (which must waste by the constant heat and light it emitted),

as a faggot would this fire if put into it (we were sitting by a

wood fire),
and that that would probably be the effect of the

comet of 1680, sooner or later
; for, by the observations made

upon it, it appeared, before it came near the sun, with a tail only

two or three degrees long ; but, by the heat it contracted, in going

so near the sun, it seemed to have a tail of thirty or forty degrees

when it went frpm it
;
that he could not say when this comet

would drop into the sun
;

it might perhaps have five or six revo

lutions more first, but whenever it did it would so much increase

the heat of the sun that this earth would be burned, and no ani

mals in it could live. That he took the three phenomena, seen

by Hipparchus, Tycho Brahe, and Kepler s disciples, to have been

of this kind, for he could not otherwise account for an extraor

dinary light, as those were, appearing, all at once, among the

the fixed stars (all which he took to be suns, enlightening other

planets, as our sun does ours), as big as Mercury or Venus seems

to us, and gradually diminishing, for sixteen months, and then

sinking into nothing. He seemed to doubt whether there were

not intelligent beings, superior to us, who superintended these

revolutions of the heavenly bodies, by the direction of the Supreme

Being. He appeared also to be very clearly of opinion that the

inhabitants of this world were of short date, and alledged, as one

reason for that opinion, that all arts, as letters, ships, printing,

needle, &c., were discovered within the memory of history, which

could not have happened if the world had been eternal
;
and that

there were visible marks of ruin upon it which could not be

effected by flood only. When I asked him how this earth could

have been repeopled if ever it had undergone the same fate

it was threatened with hereafter, by the comet of 1680, he

answered, that required the power of a Creator. He said he

took all the planets to be composed of the same matter with this

earth, viz. : earth, water, stones, &c.
3
but variously concocted. J
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asked him why he would not publish his conjectures, as conjec

tures, and instanced that Kepler had communicated his
;
and

though he had not gone near so far as Kepler, yet Kepler s

guesses were so just and happy that they had been proved and

demonstrated by him. His answer was,
&quot;

I do not deal in con

jectures.&quot; But, on my talking to him about the four observations

that had been made of the comet of 1680, at 574 years distance,

and asking him the particular times, he opened his Principia,
which laid on the table, and showed me the particular periods,

viz.: 1st. The Julium Sidus, in the time of Justinian, in 1106,
in 1680.

&quot; And I, observing that he said there of that comet, incidet

in corpus solis, and in the next paragraph adds, stellae fixae

refici possunt, told him I thought he owned there what we had

been talking about, viz. : that the comet would drop into the sun,

and that fixed stars were recruited and replenished by comets

when they dropped into them
; and, consequently, that the sun

would be recruited too
;
and asked him why he would not own as

fully what he thought of the sun as well as what he thought of

the fixed stars. He said, that concerned us more; and, laugh

ing, added, that he had said enough for people to know his

meaning.&quot;

In the summer of 1725, a French translation of the chronolo

gical MS., of which the Abbe Conti had been permitted, some

time previous, to have a copy, was published at Paris, in violation

of all good faith. The Punic Abbe had continued true to his

promise of secrecy while he remained in England ;
but no sooner

did he reach Paris than he placed the manuscript into the hands

of M. Freret, a learned antiquarian, who translated the work, and

accompanied it with an attempted refutation of the leading points
of the system. In November, of the same year, Newton received

a presentation copy of this publication, which bore the title of

ABREGE DE CHRONOLOGIE DE M. LE CHEVALIER NEWTON, FAIT

PAR LUI-MEME, ET TRADUIT SUR LE MANUSCRIPT ANGLAIS. Soon

afterward a paper entitled, REMARKS ON TFE OBERVATIONS MADE
ON A CHRONOLOGICAL INDEX OF SIR ISAAC NE.WTON, TRANSLATED

INTO FRENCH BY THE OBSERVATOR, ANL PUBLISHED AT PARIS,
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was drawn up by our author, and printed in the Philosophical

Transactions for 1725. It contained a history of the whole

matter, and a triumphant reply to the objections of M. Freret.

This answer called into the field a fresh antagonist, Father Soueiet,

whose five dissertations on this subject were chiefly remarkable

for the want of knowledge and want of decorum, which they

displayed. In consequence of these discussions, Newton was in

duced to prepare his larger work for the press, and had nearly

completed it at the time of his death. It was published in 1728,

under the title of THE CHRONOLOGY OF THE ANCIENT KINGDOMS

AMENDED, TO WHICH is PREFIXED A SHORT CHRONICLE FROM THE
FIRST MEMORY OF THINGS IN EUROPE TO THE CONQUEST OF

PERSIA BY ALEXANDER THE GREAT. It consists of six chap
ters: 1. On the Chronology of the Greeks; according to Whis-

ton, our author wrote out eighteen copies of this chapter with his

own hand, differing little from one another. 2. Of the Empire
of Egypt; 3. Of the Assyrian Empire; 4. Of the two contempo

rary Empires of the Babylonians and Medes
;

5. A Description

of the Temple of Solomon
;

6. Of the Empire of the Persians
;

this chapter was not found copied with the other five, but as it

was discovered among his papers, arid appeared to be a continu

ation of the same work, the Editor thought proper to add it

thereto. Newton s LETTER TO A PERSON OF DISTINCTION WHO
HAD DESIRED HIS OPINION OF THE LEARNED BlSHO^ LLOYD S

HYPOTHESIS CONCERNING THE FORM OF THE MOST ANCIENT

^EAR, closes this enumeration of his Chronological Writings.

A ihird edition of the PRINCIPIA appeared in 1726, with many

changes and additions. About four years were consumed in its

preparation and publication, which were under the superintend-

ance of Dr. Henry Pemberton, an accomplished mathematician,

and the author of &quot;A VIEW OF SIR ISAAC NEWTON S PHILO

SOPHY.&quot; 1728. This gentleman enjoyed numerous opportunities

of conversing with the aged and illustrious author.
&quot;

I found,&quot;

says Pemberton,
&quot; he had read fewer of the modern mathemati

cians than one could have expected; but his own prodigious

invention readily supplied him with what he might have an occa

sion for in the pursuit of any subject he undertook. I have often
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heard him censure the handling geometrical subjects ly algebraic

calculations
;
and his book of Algebra he called by the name of

Universal Arithmetic, in opposition to the injudicious title of

Geometry, which Descartes had given to the treatise, wherein he

shows how the geometer may assist his invention by such kind

of computations. He thought Huygens the most elegant of any
mathematical writer of modern times, and the most just imitator

of the ancients. Of their taste and form of demonstration, Sir

Isaac always professed himself a great admirer. I have heard

him even censure himself for not following them yet more closely

than he did
;
and speak with regret of his mistake at the begin

ning of his mathematical studies, in applying himself to the works

of Descartes and other algebraic writers, before he had considered

the elements of Euclid with that attention which so excellent a

writer deserves.&quot;

&quot;

Though his memory was much
decayed,&quot; continues Dr. Pem-

berton, &quot;he perfectly understood his own
writings.&quot; And even

this failure of memory, we would suggest, might have been more

apparent than real, or, in medical terms, more the result of func

tional weakness than organic decay. Newton seems never to

have confided largely to his memory : and as this faculty mani

fests the most susceptibility to cultivation
; so, in the neglect of

due exercise, it more readily and plainly shows a diminution of

its powers.

Equanimity and temperance had, indeed, preserved Newton

singularly free from all mental and bodily ailment. His hair was,

to the last, quite thick, though as white as silver. He never

made use of spectacles, and lost but one tooth to the day of his

death. He was of middle stature, well-knit, and, in the latter

part of his life, somewhat inclined to be corpulent. Mr. Conduit

says,
&quot; he had a very lively and piercing eye, a comely and gra

cious aspect, with a fine head of hair, white as silver, without any

baldness, and when his peruke was off was a venerable
sight.&quot;

According to Bishop Atterbury, &quot;in the whole air of his face and

make there was nothing of that penetrating sagacity which

appears in his compositions. He had something rather languid

in his look and manner which did not raise any great expectation
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in those who did not know him.&quot; Hearne remarks,
&quot;

Sir Isaac

was a man of no very promising aspect. He was a short, well-

set man. He was full of thought, and spoke very little in com

pany, so that his conversation was not agreeable. When he rode

in his coach, one arm would be out of his coach on one side and

the other on the other.&quot; These different accounts we deem

easily reconcilable. In the rooms of the Royal Society, in the

street, or in mixed assemblages, Newton s demeanour always

courteous, unassuming and kindly still had in it the overawings

of a profound repose and reticency, out of which the communica

tive spirit, and the
&quot;lively

and piercing eye&quot;
would only gleam

in the quiet and unrestrained freedom of his own fire-side.

&quot; But this I immediately discovered in him,&quot; adds Pemberton,

still further, &quot;which at once both surprised and charmed me.

Neither his extreme great age, nor his universal reputation had

rendered him stiff in opinion, or in any degree elated. Of this I

had occasion to have almost daily experience. The remarks I

continually sent him by letters on his Principia, were received

with the utmost goodness. These were so far from being any

ways displeasing to him, that, on the contrary, it occasioned him

to speak many kind things of me to my friends, and to honour me

with a public testimony of his good opinion.&quot;
A modesty, open

ness, and generosity, peculiar to the noble and comprehensive

spirit of Newton. &quot; Full of wisdom and perfect in
beauty,&quot; yet

not lifted up by pride nor corrupted by ambition. None, how

ever, knew so well as himself the stupendousness of his discoveries

in comparison with all that had been previously achieved
;
and

none realized so thoroughly as himself the littleness thereof in

comparison with the vast region still unexplored. A short time

before his death he uttered this memorable sentiment: &quot;

I do not

know what I may appear to the world
;
but to myself I seem to

have been only like a boy playing on the sea-shore, and diverting

myself in now and then finding a smoother pebble or a prettier

shell than ordinary, while the great ocean of truth lay all undis

covered before me.&quot; How few ever reach the shore even, much

less find &quot;a smoother pebble or a prettier shell!&quot;

Newton had now resided about two years at Kensington ;
and
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the air which he enjoyed there, and the state of absolute rest,

proved of great benefit to him. Nevertheless he would occasion

ally go to town. And on Tuesday, the 28th of February, 1727,

he proceeded to London, for the purpose of presiding at a meeting
of the Royal Society. At this time his health was considered,

by Mr. Conduit, better than it had been for many years. But

the unusual fatigue he was obliged to suffer, in attending the

meeting, and in paying and receiving visits, speedily produced a

violent return of the affection in the bladder. He returned to

Kensington on Saturday, the 4th of March. Dr. Mead and Dr.

Cheselden attended him
; they pronounced his disease to be the

stone, and held out no hopes of recovery. On Wednesday, the

15th of March, he seemed a little better; and slight, though

groundless, encouragement was felt that he might survive the

attack. From the very first of it, his sufferings had been intense.

Paroxysm followed paroxysm, in quick succession : large drops

)f sweat rolled down his face
;
but not a groan, not a complaint,

not the least mark of peevishness or impatience escaped him :

and during the short intervals of relief, he even smiled and con

versed with his usual composure and cheerfulness. The flesh

quivered, but the heart quaked not
;
the impenetrable gloom was

settling down : the Destroyer near
;

the portals of the tomb

opening, still, arnid this utter wreck and dissolution of the mortal,

the immortal remained serene, unconquerable : the radiant light

broke through the gathering darkness
;
and Death yielded up its

sting, and the grave its victory. On Saturday morning, 18th,

he read the newspapers, and carried on a pretty long conversation

with Dr. Mead. His senses and faculties were then strong and

vigorous ;
but at six o clock, the same evening, he became insen

sible
;
and in this state he continued during the whole of Sunday,

and till Monday, the 20th, when he expired, between one and

two o clock in the morning, in the eighty-fifth year of his age.

And these were the last days of Isaac Newton. Thus closed

the career of one of earth s greatest and best men. His mission

was fulfilled. Unto the Giver, in many-fold addition, the talents

were returned. While it was yet day he had worked
;
and for

the night that quickly cometh he was not unprepared. Full of
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years, ind full of honours, the heaven-sent was recalled
; and, in

the confidence of a
&quot; certain

hope,&quot; peacefully he passed awa}
into the silent depths of Eternity.

His body was placed in Westminster Abbey, with the state

and ceremonial that usually attended the interment of the most

distinguished. In 1731, his relatives, the inheritors of his personal

estate, erected a monument to his memory in the most conspicu
ous part of the Abbey, which had often been refused by the dean

and chapter to the greatest of England s nobility. During the

same year a medal was struck at the Tower in his honour
; arid,

in 1755, a full-length statue of him, in white marble, admirably

executed, by Roubiliac, at the expense of Dr. Robert Smith, was

erected in the ante-chamber of Trinity College, Cambridge.
There is a painting executed in the glass of one of the windows

of the same college, made pursuant to the will of Dr. Smith, who
left five hundred pounds for that purpose.

Newton left a personal estate of about thirty-two thousand

pounds. It was divided among his four nephews and four nieces

of the half blood, the grand-children of his mother, by the Reve

rend Mr. Smith. The family estates of Woolsthorpe arid Sustern

fell to John Newton, the heir-at-law, whose great grand-father

was Sir Isaac s uncle. Before his death he made an equitable

distribution of his two other estates : the one in Berkshire to the

sons and daughter of a brother of Mrs. Conduit
;
and the other,

at Kensington, to Catharine, the only daughter of Mr. Conduit,

and who afterward became Viscountess Lymington. Mr. Con

duit succeeded to the offices of the Mint, the duties of which he

had discharged during the last two years of Sir Isaac s life.

Our author s works are found in the collection of Castilion,

Berlin, 1744, 4to. 8 torn.; in Bishop Horsley s Edition, London,

1779, 4to. 5 vol.; in the Biographia Brittannica, &c. Newton

also published Bern. Varcnii Geographia, &c., 1681, 8vo.

There are, however, numerous manuscripts, letters, and other

papers, which have never been given to the world: these are

preserved, in various collections, namely, in the library of Trinity

College, Cambridge ;
in the library of Corpus Christi College,

Oxford
;

in the library of Lord Macclesfield : and, lastly arid
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chiefly, in the possession of the family of the Earl of Portsmouth,

through the Viscountess Lymington.

Everything appertaining to Newton has been kept and che

rished with peculiar veneration. Different memorials of him are

preserved in Trinity College, Cambridge ;
in the rooms of the

Royal Society, of London : and in the Museum of the Royal

Society of Edinburgh.

The manor-house, at Woolsthorpe, was visited by Dr. Stuke

ley, in October, 1721, who, in a letter to Dr. Mead, written in

1727, gave the following description of it:
&quot; Tis built of stone,

as is the way of the country hereabouts, and a reasonably good
one. They led me up stairs and showed me Sir Isaac s stud}-,

where I supposed he studied, when in the country, in his younger

days, or perhaps when he visited his mother from the University.

I observed the shelves were of his own making, being pieces of

deal boxes, which probably he sent his books and clothes down

in on those occasions. There were, some years ago, two or threr

hundred books in it of his father-in-law, Mr. Smith, which Sir

Isaac gave to Dr. Newton, of our town.&quot; The celebrated apple-

tree, the fall of one of the apples of which is said to have turned

the attention of Newton to the subject of gravity, was destroyed

by the wind about twenty years ago ;
but it has been preserved

in the form of a chair. The house itself has been protected with

religious care. It was repaired in 1798, and a tablet of white

marble put up in the room where our author was born, with the

follow,ng inscription :

&quot;

Sir Isaac Newton, son of John Newton, Lord of the Manor

of Woolsthorpe, was born in this room, on the 25th of December,
1642.&quot;

Nature and Nature s Laws wei-e hid in night,

God said,
&quot; Let NEWTON be,&quot; and all was light.
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THE AUTHOR S PREFACE

SINCE the ancients (as we are told by Pappus), made great account oi

the science of mechanics in the investigation of natural things : and the

moderns, laying aside substantial forms and occult qualities, have endeav

oured to subject the phenomena of nature to the laws of mathematics, I

have in this treatise cultivated mathematics so far as it regards philosophy.

The ancients considered mechanics in a twofold respect ;
as rational, which

proceeds accurately by demonstration
;
and practical. To practical me

chanics all the manual arts belong, from which mechanics took its name.

Rut as artificers do not work with perfect accuracy, it comes to pass that

mechanics is so distinguished from geometry, that what is perfectly accu

rate is called geometrical ,
what is less so, is called mechanical. But the

errors are not in the art, but in the artificers. He that works with less

accuracy is an imperfect mechanic
;
and if any could work with perfect

accuracy, he would be the most perfect mechanic of all
;
for the description

if right lines and circles, upon which geometry is founded, belongs to me

chanics. Geometry does not teach us to draw these lines, but requires

them to be drawn
;
for it requires that the learner should f.rst be taught

to describe these accurately, before he enters upon geometry ;
then it shows

how by these operations problems may be solved. To describe right lines

and circles are problems, but not geometrical problems. The solution of

these problems is required from mechanics
;
and by geometry the use of

them, when so solved, is shown
;
and it is the glory of geometry that from

those few principles, brought from without, it is able to produce so many

things. Therefore geometry is founded in mechanical practice, and is

nothing but that part of universal mechanics which accurately proposes

and demonstrates the art of measuring. But since the manual arts are

chiefly conversant in the moving of bodies, it comes to pass that geometry

is commonly referred to their magnitudes, and mechanics to their motion.

In this sense rational mechanics will be the science of motions resulting

from any forces whatsoever, and of the forces required to produce any mo

tions, accurately proposed and demonstrated. This part of mechanics was
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cultivated by the ancients in the five powers which relate to manual arts,

who considered gravity (it not being a manual power), ho Otherwise than

as it moved weights by those powers. Our design not respecting arts, but

philosophy, and our subject not manual but natural powers, we consider

chiefly those things which relate to gravity, levity, elastic force, the resist

ance of fluids, and the like forces, whether attractive or impulsive ;
and

therefore we offer this work as the mathematical principles :f philosophy ;
for

all the difficulty of philosophy seems to consist in this from the phenom
ena of motions to investigate the forces of nature, and then from these

forces to demonstrate the other phenomena ;
and to this end the general

propositions in the first and second book are directed. In the third book

we give an example of this in the explication of the System of the World :

for by the propositions mathematically demonstrated in the former books,

we in the third derive from the celestial phenomena the forces of gravity

with which bodies tend to the sun and the several planets. Then from these

forces, by other propositions which are also mathematical, we deduce the mo

tions of the planets, the comets, the moon, and the sea. I wish we could do-

rive the rest of the phenomena of nature by the same kind of reasoning from

mechanical principles; for I am induced by many reasons to suspect that

they may all depend upon certain forces by which the particles of bodies.

by some causes hitherto unknown, are either mutually impelled towards

each other, and cohere in regular figures, or are repelled and recede from

each other; which forces being unknown, philosophers have hitherto at

tempted the search of nature in vain
;
but I hope the principles here laid

down will afford some light either to this or some truer method of philosophy.

In the publication of this work the most acute and universally learned

Mr. Edmund H alley not only assisted me with his pains in correcting the

press and taking care of the schemes, but it was to his solicitations that its

becoming public is owing ;
for when he had obtained of me my demonstra

tions of the figure of the celestial orbits, he continually pressed me to com

municate the same to the Royal Societ
//,

who afterwards, by their kind en

couragement and entreaties, engaged me to think of publishing them. But

after I had begun to consider the inequalities of the lunar motions, and

had entered upon some other things relating to the laws and measures oi

gravity, and other forces : and the figures that would be described by bodies

attracted according to given laws
;
and the motion of several bodies moving

among themselves; the motion of bodies in resisting mediums; the forces,

densities, and motions, of rn( Hums
;
the orbits of the comets, and such like ;
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deferred that publication till I had made a searcli into those matters, and

could put forth the whole together. What relates to the lunar motions (be

ing imperfect), I have put all together in the corollaries of Prop. 66, to

avoid being obliged to propose and distinctly demonstrate the several things

there contained in a method more prolix than the subject deserved, and in

terrupt the series of the several propositions. Some things, found out after

the rest, I chose to insert in places less suitable, rather than change the

number of the propositions and the citations. I heartily beg that what 1

have here done may be read with candour; and that the defects in a

subject so difficult be not so much reprehended as kindly supplied, and in

vestigated by new endeavours of mv readers.

ISAAC NEWTON.
Cambridge, Trinity Coupge May 8, liHB.

In the second edition the second section of the first book was enlarged.

In the seventh section of the second book the theory of the resistances of fluids

was more accurately investigated, and confirmed by new experiments. In

the third book the moon s theory and the profession of the equinoxes were

more fully deduced from their principles ; and the theory of the comets

was confirmed by more examples of the calculati &amp;gt;n of their orbits, done

also with greater accuracy.

In this third edition the resistance of mediums is somewhat more largely

handled than before; and new experiments of the resistance of heavy

bodies falling in air are added. In the third book, the argument to prove

that the moon is retained in its orbit by the force of gravity is enlarged

on
;
and there are added new observations of Mr. Pound s of the proportion

of the diameters of Ju.piter to each other : there are, besides, added Mr.

Kirk s observations of the comet in 16SO
;
the orbit of that comet com

puted in an ellipsis by Dr. Halley ;
and the ortit of the comet in

computed by Mr. Bradley,
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THE

MATHEMATICAL PRINCIPLES

OF

NATURAL PHILOSOPHY

DEFINITIONS.

DEFINITION I.

77w? quantity of matter is the measure of the same, arising from its

density and hulk conjutictly.

THUS air of a double density, in a double space, is quadruple in quan-
ti ty ;

in a triple space, sextuple in quantity. The same thing is to be un

derstood of snow, and fine dust or powders, that are condensed by compres
sion or liquefaction and of all bodies that are by any causes whatever

differently condensed. I have no regard in this place to a medium, if any
such there is, that freely pervades the interstices between the parts oi

bodies. It is this quantity that I mean hereafter everywhere under the

name of body or mass. And the same is known by the weight of each

body ;
for it is proportional to the weight, as I have found by experiments

on pendulums, very accurately made, which shall be shewn hereafter.

DEFINITION II.

The quantity of motion is the measure nf tlie same, arising from the

velocity and quantity of matter corjunctly.

The motion of the whole i&amp;lt;! the sum of the motions of all the parts ;
and

therefore in a body double in quantity, with equal velocity, the motion is

iouble
;
with twice the velocity, it is quadruple,

DEFINITION III.

The vis insita, or innate force of matter, is a power of resisting, hy
which every body, as much as in it lies, endeavours to persevere in its

present stale, whether it be of rest, or of moving uniformly forward
in a right line.

This force is ever proportional to the body whose force it is
;
and differs

nothing from the inactivity of the mass, but in our manner of conceiving
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it. A body, from the inactivity of matter, is not without difficulty put out

of its state of rest or motion. Upon which account, this vis insita, may,

by a most significant name, be called vis inertia, or force of inactivity.

Hut a body exerts this force only, when another force, impressed upon it,

endeavours to change its condition
;

and the exercise of this force may bo

considered both as resistance and impulse ;
it is resistance, in so far as the

body, for maintaining its present state, withstands the force impressed; it

is impulse, in so far as the body, by not easily giving way to the impressed

force of another, endeavours to change the state of that other. Resistance

is usually ascribed to bodies at rest, and impulse to those in motion;
but motion and rest, as commonly conceived, are only relatively distin

guished ;
nor are those bodies always truly at rest, which commonly are

taken to be so.

DKFLMTIOX IV.

Ait impressed force is an action exerted upon a body, in order to change

its state, either of rest, or of moving uniformly forward in a right

line.

This force consists in the action only; and remains no longer in the

body, when the action is over. For a body maintains every new state it

acquires, by its vis inertice only. Impressed forces are of differe.it origins

as from percussion, from pressure, from centripetal force.

DEFINITION V.

A centripetalforce is that by which bodies are drawn or impelled, or any

way tend, towards a point as to a centre.

Of this sort is gravity, by which bodies tend to the centre of the earth

magnetism, by which iron tends to the loadstone
;
and that force, what

ever it is, by which the planets are perpetually drawn aside from the rec

tilinear motions, which otherwise they would pursue, and made to revolve

in curvilinear orbits. A stone, whirled about in a sling, endeavours to re

cede from the hand that turns it
;
and by that endeavour, distends the

sling, and that with so much the greater force, as it is revolved with the

greater velocity, and as soon as ever it is let go, flies away. That force

which opposes itself to this endeavour, and by which the sling perpetually

draws back the stone towards the hand, and retains it in its orbit, because

it is directed to the hand as the centre of the orbit, I call the centripetal

force. And the same thing is to be understood of all bodies, revolved in

any orbits. They all endeavour to recede from the centres of their orbits
;

and wore it not for the opposition of a contrary force which restrains them

to, and detains them in their orbits, which I therefore call centripetal, would

tiy off in right lines, with an uniform motion. A projectile, if it was not

for the force of gravity, would not deviate towards the earth, tut would
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go off from it in a right line, and that with an uniform motion,, if the re

sistance of the air was taken away. It is by its gravity that it is drawn

aside perpetually from its rectilinear course, and made to deviate towards

the earth, more or less, according to the force of its gravity, and the velo

city of its motion. The less its gravity is, for the quantity of its matter,

or the greater the velocity with which it is projected, the less will it devi

ate from a rectilinear course, and the farther it will go. If a leaden balJ,

projected from the top of a mountain by the force of gunpowder with a

given velocity, and in a direction parallel to the horizon, is carried in a

curve line to the distance of two miles before it falls to the ground ;
the

same, if the resistance of the air were taken away, with a double or decuple

velocity, would fly twice or ten times as far. And by increasing the velo

city, we may at pleasure increase the distance to which it might be pro

jected, and diminish the curvature of the line, which it might describe, till

at last it should fall at the distance of 10, 30, or 90 degrees, or even might

go quite round the whole earth before it falls
;
or lastly, so that it might

never fall to the earth, but go forward into the celestial spaces, and pro

ceed in its motion in iiifiuitum. And after the same manner that a pro

jectile, by the force of gravity, may be made to revolve in an orbit, and go
round the whole earth, the moon also, either by the force of gravity, if it

is endued with gravity, or by any other force, that impels it towards the

earth, may be perpetually drawn aside towards the earth, out of the r&ti-

linear way, which by its innate force it would pursue; and would be made

to revolve in the orbit which it now describes
;
nor could the moon with

out some such force, be retained in its orbit. If this force was too small,

it would not sufficiently turn the moon out of a rectilinear course : if it

was too great, it would turn it too much, arid draw down the moon from

its orbit towards the earth. It is necessary, that the force be of a just

quantity, and it belongs to the mathematicians to find the force, that may
serve exactly to retain a body in a given orbit, with a given velocity ;

and

vice versa, to determine the curvilinear way, into which a body projected

from a given place, with a given velocity, may be made to deviate from

its natural rectilinear way, by means of a given force.

The quantity of any centripetal force may be considered as of three

kinds; aboolu e, accelerative, and motive.

DEFINITION VI.

The absolute quantity of a centripetal force is the measure f
&amp;gt;f

the same

proportional to the efficacy of the cause that propagates itfrom the cen

tre, through the spaces round about.

Thus the magnetic force is greater in one load-stone and less in another

according to their sizes and strength of intensity.
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DEFINITION VII.

The accelerative quantity of a centripetal force is the measure, of tht

same, proportional to the velocity which it generates in a given time.

Thus the force of the same load-stone is greater at a less distance, and

less at a greater : also the force of gravity is greater in valleys, less on

tops of exceeding high mountains ;
and yet less (as shall hereafter be shown),

at greater distances from the body of the earth
;

but at equal distan

ces, it is the same everywhere ;
because (taking away, or allowing for, the

resistance of the air), it equally accelerates all falling bodies, whether heavy

or light, great or small.

DEFINITION VIII.

TJie motive quantity of a centripetal force, is the measure of the samt\

proportional to the motion which it generates in a given twip.

Thus the weight is greater in a greater body, less in a less body ;
and.

in the same body, it is greater near to the earth, and less at remoter dis

tances. This sort of quantity is the centripetency, or propension of the

whole body towards the centre, or, as I may say, its weight ;
and it is al

ways known by the quantity of an equal and contrary force just sufficient

to Ifinder the descent of the body.
These quantities of forces, we may, for brevity s sake, call by the names

of motive, accelerative, and absolute forces
; and, for distinction s sake, con

sider them, with respect to the bodies that tend to the centre
;

to the places

of those bodies
;
and to the centre of force towards which they tend

;
that

is to say, I refer the motive force to the body as an endeavour and propen

sity of the whole towards a centre, arising from the propensities of the

several parts taken together ;
the accelerative force to the place of the

body, as a certain power or energy diffused from the centre to all places

around to move the bodies that are in them : and the absolute force to

the centre, as endued with some cause, without which those motive forces

would not be propagated through the spaces round about
;
whether that

cause be some central body (siuh as is the load-stone, in the centre of the

magnetic force, or the earth in the centre of the gravitating force), or

anything else that does not yet appear. For I here design only to give a

mathematical notion of those forces, without considering their physical

causes and seats.

Wherefore the accelerative force will stand in the same relation to the

motive, as celerity does to motion. For the quantity of motion arises from

the celerity drawn into the quantity of matter : and the motive force arises

from the accelerative force drawn into the same quantity of matter. For

the sum of the actions of the accelerative force, upon the several
;
articles

of the body, is the motive force of the whole. Hence it is, that near the
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surface of the earth, where the accelerative gravity, or force productive of

gravity, in all bodies is the same, the motive gravity or the weight is as

the body : but if we should ascend to higher regions, where the accelerative

gravity is less, the weight would be equally diminished, and would always
be as the product of the body, by the accelerative gravity. So in those re

gions, where the accelerative gravity is diminished into one half, the weight
of a body two or three times less, will be four or six times less.

I likewise call attractions and impulses, in the same sense, accelerative,

and motive
;
and use the words attraction, impulse or propensity of any

sort towards a centre, promiscuously, and indifferently, one for another
;

considering those forces not physically, but mathematically : wherefore, the

reader is not to imagine, that by those words, I anywhere take upon me to

define the kind, or the manner of any action, the causes or the physical

reason thereof, or that I attribute forces, in a true and physical sense, to

certain centres (which are only mathematical points) ;
when at any time I

happen to speak of centres as attracting, or as endued with attractive

powers.

SCHOLIUM.

Hitherto I have laid down the definitions of such words as are less

known, and explained the sense in which I would have them to be under

stood in the following discourse. I do not define time, space, place and

motion, as being well known to all. Only I must observe, that the vulgar
conceive those quantities under no other notions but from the relation they
bear to sensible objects. And thence arise certain prejudices, for the re

moving of which, it will be convenient to distinguish them into absolute

and relative, true and apparent, mathematical and common.

I. Absolute, true, and mathematical time, of itself, and from its own na

ture flows equably without regard to anything external, and by another

name is called duration : relative, apparent, and common time, is some sen

sible and external (whether accurate or unequable) measure of duration by
the means of motion, which is commonly used instead of true time

;
such

as an hour, a day, a month, a year.

II. Absolute space, in its own nature, without regard to anything exter

nal, remains always similar and immovable. Relative space is some mo
vable dimension or measure of the absolute spaces ;

which our senses de

termine by its position to bodies
;
and which is vulgarly taken for immo

vable space ;
such is the dimension of a subterraneous, an aereal, or celestial

space, determined by its position in respect of the earth. Absolute and

relative space, are the same in figure and magnitude ;
but they do not re

main always numerically the same. For if the earth, for instance, moves,

a space of our air, which relatively and in respect of the earth remains al

ways the same, will at one time be one part of the absolute space into which
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the air passes ;
at another time it will be another part of the same, and so.

absolutely understood, it will be perpetually mutable.

III. Place is a part of space which a body takes up, and is according to

the space, either absolute or relative. I say, a part of space ;
not the situation,

nor the external surface of the body. For the places of equal solids are

always equal ;
but their superfices, by reason of their dissimilar figures, are

often unequal. Positions properly have no quantity, nor are they so much

the places themselves, as the properties of places. The motion of the whole

is the same thing with the sum of the motions of the parts ;
that is, the

translation of the whole, out of its place, is the same thing with the sum

of the translations of the parts out of their places ;
and therefore the place

of the whole is the same thing with the sum of the places of the parts, and

for that reason, it is internal, and in the whole body.

IV. Absolute motion is the translation of a body from one absolute

place into another
;
and relative motion, the translation from one relative

place into another. Thus in a ship under sail, the relative place of a body
is that part of the ship which the body possesses ;

or that part of its cavity

which the body fills, and which therefore moves together with the ship :

and relative rest is the continuance of the body in the same part of the

ship, or of its cavity. But real, absolute rest, is the continuance of the

body in the same part of that immovable space, in which the ship itself,

its cavity, and all that it contains, is moved. Wherefore, if the earth is

really at rest, the body, which relatively rests in the ship, will really and

absolutely move with the same velocity which the ship has on the earth.

But if the earth also moves, the true and absolute motion of the body will

arise, partly from the true motion of the earth, in immovable space ; partly

from the relative motion of the ship on the earth
;
and if the body moves

also relatively in the ship ;
its true motion will arise, partly from the true

motion of the earth, in immovable space, and partly from the relative mo
tions as well of the ship on the earth, as of the body in the ship ;

and from

these relative motions will arise the relative motion of the body on the

earth. As if that part of the earth, where the ship is, was truly moved

toward the east, with a velocity of 10010 parts; while the ship itself, with

a fresh gale, and full sails, is carried towards the west, with a velocity ex

pressed by 10 of those parts ;
but a sailor walks in the ship towards the

east, with 1 part of the said velocity ;
then the sailor will be moved truly

in immovable space towards the east, with a velocity of 10001 parts, and

relatively on the earth towards the west, with a velocity of 9 of those parts.

Absolute time, in astronomy, is distinguished from relative, by the equa
tion or correction of the vulgar time. For the natural days are tr^y un

equal, though they are commonly considered as equal, and used for a meas

ure of time
;
astronomers correct this inequality for their more accurate

deducing of the celestial motions. It may be, that there is no such thing

as an equable motion, whereby time may H accurately measured. All mo
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tions may be accelerated and retarded; but the true, or equable, progress of

absolute time is liable to no change. The duration or perseverance of the

existence of things remains the same, whether the motions are swift or slow,

or none at all : and therefore it ought to be distinguished from what are

only sensible measures thereof
;
and out of which we collect it, by means

of the astronomical equation. The necessity of which equation, for deter

mining the times of a phamomenon, is evinced as well from the experiments
of the pendulum clock, as by eclipses of the satellites of Jupiter.

As the order of the parts of time is immutable, so also is the order of

the parts of space. Suppose those parts to be moved out of their places, and

they will be moved (if the expression may be allowed) out of themselves.

For times and spaces are, as it were, the places as well of themselves as of

all other things. All things are placed in time as to order of succession
;

and in space as _to order of situation. It is from their essence or nature

that they are places ;
and that the primary places of things should be

moveable, is absurd. These are therefore the absolute places ;
and trans

lations out of those places, are the only absolute motions.

But because the parts of space cannot be seen, or distinguished from one

another by our senses, therefore in their stead we use sensible measures of

them. For from the positions and distances of things from any body con

sidered as immovable, we define all places ;
and then with respect to such

places, we estimate all motions, considering bodies as transferred from some

of those places into others. And so, instead of absolute places and motions,

we use relative ones; and that without any inconvenience in common af

fairs
;
but in philosophical disquisitions, we ought to abstract from our

senses, and consider things themselves, distinct from what are only sensible

measures of them. For it may be that there is no body really at rest, to

which the places and motions of others may be referred.

But we may distinguish rest and motion, absolute and relative, one from

the other by their properties, causes and effects. It is a property of rest,

that bodies really at rest do rest in respect to one another. And therefore

as it is possible, that in the remote regions of the fixed stars, or perhaps
far beyond them, there may be some body absolutely at rest

;
but impossi

ble to know, from the position of bodies to one another in our regions

whether any of these do keep the same position to that remote body; it

follows that absolute rest cannot be determined from the position of bodies

in our regions.

It is a property of motion, that the parts, which retain given positions

to their wholes, do partake of the motions of those wholes. For all the

parts of revolving bodies endeavour to recede from the axis of motion
;

and the impetus of bodies moving forward, arises from the joint impetus
of all the parts. Therefore, if surrounding bodies are moved, those that

are relatively at rest within them, will partake of their motion. Upon
which account, the true and absolute motion of a body cannot be Jeter-
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mined by the translation of it from those which only seem to rest
;
for the

external bodies ought not only to appear at rest, but to be really at rest.

For otherwise, all included bodies, beside their translation from near the

surrounding ones, partake likewise of their true motions
;
and though that

translation were not made they would not be really at rest, but only seem

to be so. For the surrounding bodies stand in the like relation to the

surrounded as the exterior part of a whole does to the interior, or as the

shell does to the kernel
; but, if the shell moves, the kernel will also

move, as being part of the whole, without any removal from near the shell.

A property, near akin to the preceding, is this, that if a place is moved,
whatever is placed therein moves along with it

;
and therefore a body,

which is moved from a place in motion, partakes also of the motion of its

place. Upon which account, all motions, from places in motion, are no

other than parts of entire and absolute motions
;
and every entire motion

is composed of the motion of the body out of its first place, and the

motion of this place out of its place ;
and so on, until we come to some

immovable place, as in the before-mentioned example of the sailor. Where

fore, entire and absolute motions can be no otherwise determined than by
immovable places : and for that reason I did before refer those absolute

motions to immovable places, but relative ones to movable places. Now
no other places are immovable but those that, from infinity to infinity, do

all retain the same given position one to another
;
and upon this account

must ever remain unmoved
;
and do thereby constitute immovable space.

The causes by which true and relative motions are distinguished, one

from the other, are the forces impressed upon bodies to generate motion.

True motion is neither generated nor altered, but by some force impressed

upon the body moved : but relative motion may be generated or altered

without any force impressed upon the body. For it is sufficient only to

impress some force on other bodies with which the former is compared,

that by their giving way, that relation may be changed, in which the re

lative rest or motion of this other body did consist. Again, true motion

suffers always some change from any force impressed upon the moving

body ;
but relative motion docs not necessarily undergo any change by such

forces. For if the same forces are likewise impressed on those other bodies,

with which the comparison is made, that the relative position may be pre

served, then that condition will be preserved in which the relative motion

consists. And therefore any relative motion may be changed when the

true motion remains unaltered, and the relative may be preserved when the

true suffers some change. Upon which accounts; true motion does by no

means consist in such relations.

The effects whicli distinguish absolute from relative motion arc, the

forces of receding from the axis of circular motion. For there are no such

forces in a circular motion purely relative, but in a true and absolute cir

cular motion., they are greater or less, according t the quantity of the
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motion. If a vessel, hung: by & }ong cord, is so often turned ubout that the

cord is strongly twisted, then filled with water, and held at rest together

with the water
; after, by the sudden action of another force, it is whirled

about the contrary way, and while the cord is untwisting itself, the vessel

continues for some time in this motion
;
the surface of the water will at

first be plain, as before the vessel began to move : but the vessel; by grad

ually communicating its motion to the water, will make it begin sensibly

^to revolve, and recede by little and little from the middle, and ascend to the

sides of the vessel, forming itself into a concave figure (as I have experi

enced), and the swifter the motion becomes, the higher will the water rise,

till at last, performing its revolutions in the same times with the vessel,

it becomes relatively at rest in it. This ascent of the water shows its en

deavour to recede from the axis of its motion
;
and the true and absolute

circular motion of the water, which is here directly contrary to the rela-

tivej discovers itself, and may be measured by this endeavour. At first,

when the relative motion of the water in the vessel was greatest, it pro

duced no endeavour to recede from the axis
;
the water showed no tendency

to the circumference, nor any ascent towards the sides of the vessel, but

remained of a plain surface, and therefore its true circular motion had not

yet begun. But afterwards, when the relative motion of the water had

decreased, the ascent thereof towards the sides of the vessel proved its en

deavour to recede from the axis
;
and this endeavour showed the real cir

cular motion of the water perpetually increasing, till it had acquired its

greatest quantity, wh en the water rested relatively in the vessel. And
therefore this endeavour does not depend upon any translation of the water

in respect of the ambient bodies, nor can true circular motion be defined

by such translation. There is only one real circular motion of any one

revolving body, corresponding to only one power of endeavouring to recede

from its axis of motion, as its proper and adequate effect
;
but relative

motions, in one and the same body, are innumerable, according to the various

relations it bears to external bodies, and like other relations, arc altogether

destitute of any real effect, any otherwise than they may perhaps par
take of that one only true motion. And therefore in their system who

suppose that our heavens, revolving below the sphere of the fixed stars,

carry the planets along with them
;
the several parts of those heavens, and

the planets, which are indeed relatively at rest in their heavens, do yet

really move. For they change their position one to another (which never

happens to bodies truly at rest), and being carried together with their

heavens, partake of their motions, and as parts of revolving wholes,

endeavour to recede from the axis of their motions.

Wherefore relative quantities are not the quantities themselves, whose

names they bear, but those sensible measures of them (either accurate cr

inaccurate), which arc commonly used instead of the measured quantities

themselves. And if the meaning of words is to he determined bv their
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use, then by the names time, space, place and motion, their measures arv

properly to be understood
;
and the expression will be unusual, and purely

mathematical, if the measured quantities themselves are meant. Upon
which account, they do strain the sacred writings, who there interpret

those words for the measured quantities. Nor do those less defile the

purity of mathematical and philosophical truths, who confound real quan
tities themselves with their relations and vulgar measures.

It is indeed a matter of great difficulty to discover, and effectually to

distinguish, the true motions of particular bodies from the apparent ;
be

cause the parts of that immovable space, in which those motions are per

formed, do by no means come under the observation of our senses. Yet

the thing is not altogether desperate : for we have some arguments to

guide us, partly from the apparent motions, which are the differences of

the true motions
; partly from the forces, which are the causes and effects

of the true motions. For instance, if tAvo globes, kept at a given distance

one from the other by means of a cord that connects them, were revolved

about their common centre of gravity, we might, from the tension of the

cord, discover the endeavour of the globes to recede from the axis of their

motion, and from thence we might compute the quantity of their circular

motions. And then if any equal forces should be impressed at once on the

alternate faces of the globes to augment or diminish their circular motions,

from the increase or decr ase of the tensicn of 1 le cord, we might infer

the increment or decrement of their motions : and thence would be found

on what faces those forces ought to be impressed, that the motions of the

globes might be most augmented ;
that is, we might discover their hinder-

most faces, or those which, in the circular motion, do follow. But the

faces which follow being known, and consequently the opposite ones that

precede, we should likewise know the determination of their motions. And

thus we might find both the quantity and the determination of this circu

lar motion, even in an immense vacuum, where there was nothing external

or sensible with which the globes could be compared. But now, if in that

space some remote bodies were placed that kept always a given position

one to another, as the fixed stars do in our regions, we could not indeed

determine from the relative translation of the globes among those bodies,

whether the motion did belong to the globes or to the bodies. But if we

observed the cord, and found that its tension was that very tension which

the motions of the globes required, we might conclude the motion to be in

the globes, and the bodies to be at rest
;
and then, lastly, from the trans

lation of the globes among the bodies, we should find the determination oi

their motions. But how we are to collect the true motions from their

causes, effects, and apparent differences
; and, vice versa, how from the mo

tions, either true or apparent, we may come to the knowledge of theii

causes and effects, shall be explained more at large in the following tra&amp;lt;;t

For to this end it was that I composed it.
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AXIOMS, OR LAWS OF MOTION.

LAW I.

Hvery body perseveres in its state of rest, or of uniform motion in a ri^ht

line, unless it is compelled to change that state by forces impressed
thereon.

PROJECTILES persevere in their motions, so far as they are not retarded

by the resistance of the air, or impelled downwards by the force of gravity
A top, whose parts by their cohesion are perpetually drawn aside from

rectilinear motions, does not cease its rotation, otherwise than as it is re

tarded by the air. The greater bodies of the planets and comets, meeting
with less resistance in more free spaces, preserve then jDotions both pro

gressive and circular for a much longer time.

LAW II.

The alteration of motion is ever proportional to the motiveforce impreus
ed ; and is made in the direction of the right line in. which that force
is impressed.

If any force generates a motion, a double force will generate double the

motion, a triple force triple the motion, whether that force be impressed

altogether and at once, or gradually and successively. And this motion

(being always directed the same way with the generating force), if the body
moved before, is added to or subducted from the former motion, according
as they directly conspire with or are directly contrary to each other

;
or

obliquely joined, when they are oblique, so as to produce a new motion

compounded from the determination of both.

LAW III.

To every action there is always opposed an equal reaction : or the mu
tual actions of two bodies upon each other are always equal, and di

rected to contrary parts.

Whatever draws or presses another is as much drawn or pressed by that

other. If you press a stone with your finger, the finger is also pressed by
the stone. If a horse draws a stone tied to a rope, the horse (if I may so

say) will be equally drawn back towards the stone: for the distended rope,

by the same endeavour to relax or unbend itself, will draw the horse as

much towards the stone, as it does the stone towards the horse, and will

obstruct the progress of the one as much as it advances that of the other.
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If a body impinge upon another, and by its force change the motion of (It*

other, that body also (because of the equality of the mutual pressure) will

undergo an equal change, in its own motion, towards the contrary part.

The changes made by these actions are equal, not in the velocities but in

the motions of bodies
;
that is to say, if the bodies are not hindered by any

other impediments. For, because the motions are equally changed, the

changes of the velocities made towards contrary parts are reciprocally pro

portional to the bodies. This law takes place also in attractions, as will

be proved in the next scholium.

COROLLARY I.

A body by two forces conjoined will describe the diagonal of a parallelo

gram, in the same time that it wovld describe the sides, by thoseforces

apart.

If a body in a given time, by the force M impressed

apart in the place A, should with an uniform motion /
be carried from A to B

;
and by the force N impressed

apart in the same place, should be carried from A to c ~\)

C
; complete the parallelogram ABCD, and, by both forces acting together,

it will in the same time be carried in the diagonal from A to D. For

since the force N acts in the direction of the line AC, parallel to BD, this

force (by the second law) will not at all alter the velocity generated by the

other force M, by which the body is carried towards the line BD. The

body therefore will arrive at the line BD in the same time, whether the

rorce N be impressed or not
;
and therefore at the end of that time it will

he found somewhere in the line BD. By the same argument, at the end

of the same time it AY ill be found somewhere in the line CD. Therefore it

will be found in the point D, where both lines meet. But it will move in

;i right line from A to D, by Law I.

COROLLARY II.

And hence is explained the composition of any one direct force AD, out

of any two oblique forces AC and CD ; and, on the contrary, the re

solution of any one direct force AD into two oblique forces AC and

CD : which composition and resolution are abundantly confirmed from,

mechanics.

As if the unequal radii OM and ON drawn from the centre O of any

wheel, should sustain the weights A and P by the cords MA and NP
;
and

the forces of those weights to move the wheel were required. Through the

rentre O draw the right line KOL, meeting the cords perpendicularly in

A and L; and from the centre O, with OL the greater of the distances
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OK arid OL, describe a circle, meeting the cord

MA in D : and drawing OD, make AC paral- &quot;^

lei and DC perpendicular thereto. Now, it

being indifferent whether the points K, L, D, of

the cords be lixed to the plane of the wheel or

not, the weights will have the same effect

whether they are suspended from the points K
and L, or from D and L. Let the whole force

of the weight A be represented by the line AD,
and let it be resolved into the forces AC and

CD
;
of which the force AC, drawing the radius

OD directly from the centre, will have no effect to move the wheel : but

the other force DC, drawing the radius DO perpendicularly, will have the

same effect as if it drew perpendicularly the radius OL equal to OD
;
that

is, it w ill have the same effect as the weight P, if that weight is to the

weight A as the force DC is to the force DA
;
that is (because of the sim

ilar triangles ADC, DOK), as OK to OD or OL. Therefore the weights A
and P, which are reciprocally as the radii OK and OL that lie in the same

right line, will be equipollent, and so remain in equilibrio ;
which is the well

known property of the balance, the lever, and the wheel. If either weight is

greater than in this ratio, its force to move the wheel will be so much greater.

If the weight p, equal to the weight P, is partly suspended by the

cord NJO, partly sustained by the oblique plane pG ;
draw p}i, NH, the

former perpendicular to the horizon, the latter to the plane pG ;
and if

the force of the weight p tending downwards is represented by the line

/?H, it may be resolved into the forces joN, HN. If there was any plane

/?Q, perpendicular to the cord y?N, cutting the other plane pG in a line

parallel to the horizon, and the weight p was supported only by those

planes pQ, pG, it would press those planes perpendicularly with the forces

pN, HN; to wit, the plane joQ, with the force joN, and the plane pG with

the force HN. And therefore if the plane pQ was taken away, so thnt

the weight might stretch the cord, because the cord, now sustaining the

weight, supplies the place of the plane that was removed, it will be strained

by the same force joN which pressed upon the plane before. Therefore,

the tension of this oblique cord joN will be to that of the other perpendic

ular cord PN as jt?N to joH. And therefore if the weight p is to the

weight A in a ratio compounded of the reciprocal ratio of the least distances

of the cords PN, AM, from the centre of the wheel, and of the direct ratio of

pH tojoN, the weights will have the same effect towards moving the wheel,

and will therefore sustain each other : as any one may find by experiment.

But the weight p pressing upon those two oblique planes, may be con

sidered as a wedge between the two internal surfaces of a body split by it;

and hence tlif ft IV.P* of th^ v, ^dge and the mallet may be determined; foi
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because the force with which the weight p presses the plane pQi is to the

force with which the same, whether by its own gravity, or by the blow of

a mallet, is impelled in the direction of the line joH towards both the

planes, as joN to pH ;
and to the force with which it presses the other

plane pG, as joN to NH. And thus the force of the screw may be deduced

from a like resolution of forces
;

it being no other than a wedge impelled
with the force of a lever. Therefore the use of this Corollary spreads far

and wide, and by that diffusive extent the truth thereof is farther con

firmed. For on what has been said depends the whole doctrine of mechan

ics variously demonstrated by different authors. For from hence are easily

deduced the forces of machines, which are compounded of wheels, pullics,

levers, cords, and weights, ascending directly or obliquely, and other mechan

ical powers ;
as also the force of the tendons to move the bones of animals.

COROLLARY III.

The (/uaittity of motion, which is collected by taking the sum of the mo
tions directed towards the same parts, and the difference of those that

are directed to contrary parts, suffers no change from the action oj

bodies among themselves.

For action and its opposite re-action are equal, by Law III, and there

fore, by Law II, they produce in the motions equal changes towards oppo
site parts. Therefore if the motions are directed towards the same parts.

whatever is added to the motion of the preceding body will be subducted

from the motion of that which follows
;
so that the sum will be the same

as before. If the bodies meet, with contrary motions, there will be an

equal deduction from the motions of both
;
and therefore the difference of

the motions directed towards opposite parts will remain the same.

Thus if a spherical body A with two parts of velocity is triple of a

spherical body B which follows in the same right line with ten parts of

velocity, the motion of A will be to that of B as 6 to 10. Suppose,

then, their motions to be of 6 parts and of 10 parts, and the sum will be

16 parts. Therefore, upon the meeting of the bodies, if A acquire 3, 4,

or 5 parts of motion, B will lose as many ;
and therefore after reflexion

A will proceed With 9, 10, or 11 parts, and B with 7, 6, or 5 parts; the

sum remaining always of 16 parts as before. If the body A acquire 9,

10, 11, or 12 parts of motion, and therefore after meeting proceed with

15, 16, 17, or 18 parts, the body B, losing so many parts as A has got,

will either proceed with 1 part, having lost 9, or stop and remain at rest,

as having lost its whole progressive motion of 10 parts ; or it will go back

with 1 part, having not only lost its whole motion, but (if 1 may so say)

one part more; or it will go back with 2 parts, because a progressive mo

tion of 12 parts is taken off. And so the sums of the Conspiring motions

15 ,1, or 16-1-0, and the differences of the contrary i otions 17 1 and
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[S 2, will always be equal to 16 parts, as they were before tie meeting

and reflexion of the bodies. But, the motions being known with whicli

the bodies proceed after reflexion, the velocity of either will be also known,

by taking the velocity after to the velocity before reflexion, as the motion

after is to the motion before. As in the last case, where the motion of tho

body A was of parts before reflexion and of IS parts after, and the

velocity was of 2 parts before reflexion, the velocity thereof after reflexion

will be found to be of 6 parts ; by saying, as the parts of motion before

to 18 parts after, so are 2 parts of velocity before reflexion to (5 parts after.

But if the bodies are cither not spherical, or, moving in different right

lines, impinge obliquely one upon the other, and their mot ons after re

flexion are required, in those cases we are first to determine the position

of the plane that touches the concurring bodies in the point of concourse
,

then the motion of each body (by Corol. II) is to be resolved into two, one

perpendicular to that plane, and the other parallel to it. This done, be

cause the bodies act upon each other in the direction of a line perpendicu
lar to this plane, the parallel motions are to be retained the same after

reflexion as before
;
and to the perpendicular motions we are to assign

equal changes towards the contrary parts ;
in such manner that the sum

of the conspiring and the difference of the contrary motions may remain

the same as before. From such kind of reflexions also sometimes arise

the circular motions of bodies about their own centres. But these are

cases which I do not consider in what follows
;
and it would be too tedious

to demonstrate every particular that relates to this subject.

COROLLARY IV.

The common centre of gravity of two or more bodies does not alter its

state of motion or rest by the actions of the bodies among themselves ;

and therefore the common centre of gravity of all bodies acting upon
each other (excluding outward actions and impediments) is either at

rest, or moves uniformly in a right line.

For if two points proceed with an uniform motion in right lines, and

their distance be divided in a given ratio, the dividing point will be either

at rest, or proceed uniformly in a right line. This is demonstrated here

after in Lem. XXIII and its Corol., when the points are moved in the same

plane ;
and by a like way of arguing, it may be demonstrated when the

points are not moved in the same plane. Therefore if any number of

Kdies move uniformly in right lines, the common centre of gravity of any
two of them is either at rest, or proceeds uniformly in a right line

;
because

the line which connects the centres of those two bodies so moving is divided at

that common centre in a given ratio. In like manner the common centre

of those two and that of a third body will be either at rest or moving uni

formly in aright line because at that centre the distance 1 etween th?
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common centre of the two bodies, and the centre of this last, is divided in

a given ratio. In like manner the common centre of these three, and of a

fourth body, is either at rest, or moves uniformly in a right line
;
because

the distance between the common centre of the three bodies, and the centre

of the fourth is there also divided in a given ratio, and so on m itifinitum.

Therefore, in a system of bodies where there is neither any mutual action

among themselves, nor any foreign force impressed upon them from without,
and which consequently move uniformly in right lines, the common centre of

gravity of them all is either at rest or moves uniformly forward in a right line.

Moreover, in a system of two bodies mutually acting upon each other,

since the distances between their centres and the common centre of gravity
of both are reciprocally as the bodies, the relative motions of those bodies,

whether of approaching to or of receding from that centre, will be equal

among themselves. Therefore since the changes which happen to motions

are equal and directed to contrary parts, the common centre of those bodies,

by their mutual action between themselves, is neither promoted nor re

tarded, nor suffers any change as to its state of motion or rest. But in a

system of several bodies, because the common centre of gravity of any two

acting mutually upon each other suffers no change in its state by that ac

tion : and much less the common centre of gravity of the others with which

that action does not intervene ; but the distance between those two centres

is divided by the common centre of gravity of all the bodies into parts re

ciprocally proportional to the total sums of those bodies whose centres they

are : and therefore while those two centres retain their state of motion or

rest, xhe common centre of all does also retain its state : it is manifest that

the common centre of all never suffers any change in the state of its mo
tion or rest from the actions of any two bodies between themselves. But

in such & system all the actions of the bodies among themselves either hap

pen between two bodies, or are composed of actions interchanged between

some two bodies
;

and therefore they do never produce any alteration in

the comrrv n centre of alias to its state of motion or rest. Wherefore

tiince that centre, when the bodies do not act mutually one upon another,

Oilier is nt rest or moves uniformly forward in some right line, it will,

:v\&amp;gt;U7ithst?nding
the mutual actions of the bodies among themselves, always

jAY-jevere in its state, either of rest, or of proceeding uniformly in a right

liiv,, unless it is forced out of this state by the action of some power im-

prev^-d from without upon the whole system. And therefore the same law

take* 1

place in a system consisting of many bodies as in one single body,

with wsgard to their persevering in their state of motion or of rest. For

the pi \\jressive motion, whether of one single body, or of a whole system of

bodies us always to be estimated from the motion of the centre of gravity.

COROLLARY V.

The motions cf bcdies included in a given space a ~e Ike same among
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themselves, whether that space is at rest, or moves uniformlyforwards
in a right line without any circular motion.

For the differences of the motions tending towards the same parts, and

the sums of those that tend towards contrary parts, are, at first (by sup

position), in both cases the same
;
and it is from those sums and differences

that the collisions and impulses do arise with which the bodies mutually

impinge one upon another. Wherefore (by Law II), the effects of those

collisions will be equal in both cases
;
and therefore the mutual motions

of the bodies among themselves in the one case will remain equal to the

mutual motions of the bodies among themselves in the other. A clear

proof of which we have from the experiment of a ship ;
where all motions

happen after the same manner, whether the ship is at rest, or is carried

uniformly forwards in a right line.

COROLLARY VI.

If bodies, any how moved among themselves, are urged in the direct-ton

of parallel lines by equal accelerative forces, they will all continue to

move among themselves, after the same manner as if they had been

urged by no such forces.

For these forces acting equally (with respect to the quantities of the

DO dies to be moved), and in the direction of parallel lines, will (by Law II)

move all the bodies equally (as to velocity), and therefore will never pro

duce any change in the positions or motions of the bodies among themselves.

SCHOLIUM.
Hitherto I have laid down such principles as have been received by math

ematicians, and are confirmed by abundance of experiments. By the first

two Laws and the first two Corollaries, Galileo discovered that the de

scent of bodies observed the duplicate ratio of the time, and that the mo
tion of projectiles was in the curve of a parabola; experience agreeing
with both, unless so far as these motions are a little retarded by the re

sistance of the air. When a body is falling, the uniform force of its

gravity acting equally, impresses, in equal particles of time, equal forces

upon that body, and therefore generates equal velocities; and in the whole

time impresses a whole force, and generates a whole velocity proportional
to the time. And the spaces described in proportional times are as the

velocities and the times conjunctly ;
that is, in a duplicate ratio of the

times. And when a body is thrown upwards, its uniform gravity im

presses forces and takes off velocities proportional to the times
;
and the

times of ascending to the greatest heights are as the velocities to be taken

off, and those heights are as the velocities and the times conjunetly, or ir,

the duplicate ratio of the velocities. And if a body be projected in any

direction, the motion arising from its projection jS compounded with the



90 THE MATHEMATICAL PRINCIPLES

motion arising from its gravity. As if the body A by its motion of pio-

jection alone could describe in a given time the right line

AB, and with its motion of falling alone could describe in

the same time the altitude AC
; complete the paralello-

gram ABDC, and the body by that compounded motion

will at the end of the time be found in the place D ;
and

the curve line AED, which that body describes, will be a

parabola, to which the right line AB will be a tangent in

A
;
and whose ordinate BD will be as the square of the line AB. On the

same Laws and Corollaries depend those things which have been demon
strated concerning the times of the vibration of pendulums, and are con

firmed by the daily experiments of pendulum clocks. By the same, to

gether with the third Law, Sir Christ. Wren, Dr. Wallis, and Mr. Huv-

gens, the greatest geometers of our times, did severally determine the rules

of the congress and reflexion of hard bodies, and much about the same

time communicated their discoveries to the Royal Society, exactly agreeing

among themselves as to those rules. Dr. Wallis, indeed, was something
more early in the publication ;

then followed Sir Christopher Wren, and,

lastly, Mr. Huygens. But Sir Christopher Wren confirmed the truth of

the thing before the Royal Society by the experiment of pendulums, which

Mr. Mariottc soon after thought fit to explain in a treatise entirely upon
that subject. But to bring this experiment to an accurate agreement with

the theory, we are to have a due regard as well to the resistance of the air

bodies. Let the spherical bodies

CD F II

as to the clastic force of the concurrin

A, B be suspended by the parallel and

equal strings AC, Bl), from the centres

C, D. About these centres, with those

intervals, describe the semicircles EAF,
GBH, bisected by the radii CA, DB.

Bring the body A to any point R of the

arc EAF, and (withdrawing the body

B) let it go from thence, and after one oscillation suppose it to return to

the point V : then RV will be the retardation arising from the resistance

of the air. Of this RV let ST be a fourth part, situated in the middle.

to wit, so as RS and TV may be equal, and RS may be to ST as 3 to 2

then will ST represent very nearly the retardation during the descent

from S to A. Restore the body B to its place: and, supjx sing the body

A to be let fall from the point S, the velocity thereof in the place of re

flexion A, without sensible error, will be the same as if it had descended

m vacit.o from the point T. Upon which account this velocity may be

represented by the chord of the arc TA. For it is a proposition well

known to geometers, that the velocity of a pendulous body in the loAvest

point is as the chord of the arc which it has described in its descent. Aftci
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reflexion, suppose the body A comes to the place s, and the body B to the

place k. Withdraw the body B, and find the place v, from which if the

body A, being let go, should after one oscillation return to the place r, st

may be a fourth part of rv. so placed in the middle thereof as to leave is

equal to tv, and let the chord of the arc tA represent the velocity which

the body A had in the place A immediately after reflexion. For t will be

the true and correct place to which the body A should have ascended, if

the resistance of the air had been taken off. In the s.ime way we are to

correct the place k to which the body B ascends, by finding the place I to

which it should have ascended in vacuo. And thus everything may be

subjected to experiment, in the same manner as if we were really placed

in vacuo. These things being done, we are to take the product (if I may
so say) of the body A, by the chord of the arc TA (which represents its

velocity), that we may have its motion in the place A immediately before

reflexion
;
and then by the chord of the arc /A, that we may have its mo

tion in the place A immediately after reflexion. And so we are to take

the product of the body B by the chord of the arc B/, that we may have

the motion of the same immediately after reflexion. And in like manner,
when two bodies are let go together from different places, we are to find

the motion of each, as well before as after reflexion; and then we may

compare the motions between themselves, and collect the effects of the re

flexion. Thus trying the thing with pendulums of ten feet, in unequal
as well as equal bodies, and making the bodies to concur after a descent

through large spaces, as of 8, 12, or 16 feet, I found always, without an

error of 3 inches, that when the bodies concurred together directly, equal

changes towards the contrary parts were produced in their motions, and,

of consequence, that the action and reaction were always equal. As if the

body A impinged upon the body B at rest with 9 parts of motion, and

losing 7, proceeded after reflexion with 2, the body B was carried back

wards with those 7 parts. If the bodies concurred with contrary motions,

A with twelve parts of motion, and B with six, then if A receded with
J4,

B receded with 8
;

to wit, with a deduction of 14 parts of motion on

each side. For from the motion of A subducting twelve parts, nothing
will remain

;
but subducting 2 parts more, a motion will be generated of

2 parts towards the contrary way ;
and so, from the motion of the body

B of 6 parts, subducting 14 parts, a motion is generated of 8 parts towards

the contrary way. But if the bodies were made both to move towards the

same way, A, the swifter, with 14 parts of motion, B, the slower, with 5,

and after reflexion A went on with 5, B likewise went on with 14 parts ;

9 parts being transferred from A to B. And so in other cases. By the

congress and collision of bodies, the quantity of motion, collected from the

sum of the motions directed towards the same way, or from the difference,

of those that were directed towards contrary ways, was never changed.
For the error of an inch or two in measures may be easily ascribed to tht
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difficulty of executing everything with accuracy. It was not easy to let

go the two pendulums so exactly together that the bodies should impinge
one upon the other in the lowermost place AB ;

nor to mark the places s,

and k
y
to which the bodies ascended after congress. Nay, and some errors,

too, might have happened from the unequal density of the parts of the pen
dulous bodies themselves, and from the irregularity of the texture pro

ceeding from other causes.

But to prevent an objection that may perhaps be alledged against the

rule, for the proof of which this experiment was made, as if this rule did

suppose that the bodies were either absolutely hard, or at least perfectly

elastic (whereas no such bodies are to be found in nature), 1 must add. that

the experiments we have been describing, by no means depending upon
that quality of hardness, do succeed as well in soft as in hard bodies. For

if the rule is to be tried in bodies not perfectly hard, we are only to di

minish the reflexion in such a certain proportion as the quantity of the

elastic force requires. By the theory of Wren and Huygens, bodies abso

lutely hard return one from another with the same velocity with which

they meet. But this may be affirmed with more certainty of bodies per

fectly elastic. In bodies imperfectly elastic the velocity of the return is to

be diminished together with the elastic force
;
because that force (except

when the parts of bodies are bruised by their congress, or suffer some such

extension as happens under the strokes of a hammer) is (as far as I can per

ceive) certain and determined, and makes the bodies to return one from

the other with a relative velocity, which is in a given ratio to that relative

velocity with which they met. This I tried in balls of wool, made up

tightly, and strongly compressed. For, first, by letting go the pendulous

bodies, and measuring their reflexion, I determined the quantity of their

elastic force
;
and then, according to this force, estimated the reflexions

that ought to happen in other cases of congress. And with this computa
tion other experiments made afterwards did accordingly agree ; the balls

always receding one from the other with a relative velocity, which was to

the relative velocity with which they met as about 5 to 9. Balls of steel

returned with almost the same velocity : those of cork with a velocity some-^

thing less
;

but in balls of glass the proportion was as about 15 to 16.

And thus the third Law, so far as it regards percussions and reflexions, is

proved by a theory exactly agreeing with experience.

In attractions, I briefly demonstrate the thing after this manner. Sup

pose an obstacle is interposed to hinder the congress of any two bodies A.

B, mutually attracting one the other : then if either body, as A, is more

attracted towards the other body B, than that other body B is towards the

first body A, the obstacle will be more strongly urged by the pressure of

the body A than by the pressure of the body B, and therefore will not

remain in equilibrio : but the stronger pressure will prevail, and will make

the system of the two bodies, together with the obstacle, to move directly
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towards the parts on which B lies
;

arid in free spaces, to go forward in

infmitiim with a motion perpetually accelerated
;
which is absurd and

contrary to the first Law. For, by the first Law, the system ought to per

severe in its state of rest, or of moving uniformly forward in a right line :

and therefore the bodies must equally press the obstacle, and be equally

attracted one by the other. I made the experiment on the loadstone and

iron. If these, placed apart in proper vessels, are made to float by one

another in standing water, neither of them will propel the other
; but,

by being equally attracted, they will sustain each other s pressure, and rest

at last in an equilibrium.

So the gravitation betwixt the earth and its parts is mutual. Let the

earth FI be cut by any plane EG into two parts EGF
and EGI, and their weights one towards the other

will be mutually equal. For if by another plane

HK, parallel to the former EG, the greater partFJ
EGI is cut into two parts EGKH and HKI.

whereof HKI is equal to the part EFG, first cut

oft
,
it is evident that the middle part EGKH, will

have no propension by its proper weight towards either side, but will hang
as it were, and rest in an equilibrium betwixt both. But the one extreme

part HKI will with its whole weight bear upon and press the middle part

towards the other extreme part EGF : and therefore the force with which

EGI, the sum of the parts HKI and EGKH, tends towards the third part

EGF, is equal to the weight of the part HKI, that is, to the weight of

the third part EGF. And therefore the weights of the two parts EGI
and EGF, one towards the other, are equal, as I was to prove. And in

deed if those weights were not equal, the whole earth floating in the non-

resisting aether would give way to the greater weight, and, retiring from

it, would be carried off in infinitum.

And as those bodies are equipollent in the congress and reflexion, whose

velocities are reciprocally as their innate forces, so in the use of mechanic

instruments those agents are equipollent, and mutually sustain each the

contrary pressure of the other, whose velocities, estimated according to the

determination of the forces, are reciprocally as the forces.

So those weights are of equal force to move the arms of a balance;

which during the play of the balance are reciprocally as their velocities

upw ards and downwards
;
that is, if the ascent or descent is direct, those

weights are of equal force, which are reciprocally as the distances of the

points at which they are suspended from the axis oi the balance : but if

they are turned aside by the interposition of oblique planes, or other ob

stacles, and made to ascend or descend obliquely, those bodies will be

equipollent, wThich are reciprocally as the heights of their ascent and de

scent taken according to the perpendicular ;
and that on account of the

determination of gravity downwards.
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And in like manner in the pully, or in a combination of pullies, the

force of a hand drawing the rope directly, which is to the weight, whethel

ascending directly or obliquely, as the velocity of the perpendicular ascent

of the weight to the velocity of the hand that draws the rope, will sustain

the weight.

In clocks and such like instruments, made up from a combination of

wheels, the contrary forces that promote and impede the motion of the

wheels, if they are reciprocally as the velocities of the parts of the wheel

on which they are impressed, will mutually sustain the one the other.

The force of the screw to press a body is to the force of the hand that

turns the handles by which it is moved as the circular velocity of the

handle in that part where it is impelled by the hand is to the progressive

velocity of the screw towards the pressed body.

The forces by which the wedge presses or drives the two parts of the

wood it cleaves are to the force of the mallet upon the wedge as the pro-

press of the wedge in the direction of the force impressed upon it by the

mallet is to the velocity with which the parts of the wood yield to the

wedge, in the direction of lines perpendicular to the sides of the wedge.

And the like account is to be given of all machines.

The power and use of machines consist only in this, that by diminishing

the velocity we may augment the force, and the contrary : from whence

in all sorts of proper machines, we have the solution of this problem ;
7

move a given weight with a given power, or with a given force to over

come any other given resistance. For if machines are so contrived that the

velocities of the agent and resistant are reciprocally as their forces, the

agent will just sustain the resistant, but with a greater disparity of ve

locity will overcome it. So that if the disparity of velocities is so great

as to overcome all that resistance which commonly arises either from the

attrition of contiguous bodies as they slide by one another, or from the

cohesion of continuous bodies that are to be separated, or from the weights

of bodies to be raised, the excess of the force remaining, after all those re

sistances are overcome, will produce an acceleration of motion proportional

thereto, as well in the parts of {he machine as in the resisting body. But

to treat of mechanics is not my present business. I was only willing to

show by those examples the great extent and certainty of the third Law ot

motion. For if we estimate the action of the agent from its force and

velocity conjunctly, and likewise the reaction of the impediment conjuncth

from the velocities of its several parts, and from the forces of resistance

arising from the attrition, cohesion, weight, and acceleration of those parts,

the action and reaction YL the use of all sorts of machines will b&quot; found

always equal to one another. And so far as the action is propagated by

the intervening instruments, and at last impressed upon tic resisting

body, the ultimate determination of the action will be always contrary to

the determination of the reaction.
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BOOK I.

OF THE MOTION OF BODIES.

SECTION I.

Of the method offirst and last ratios of quantities, by the help wJicreoj

we demonstrate the propositions that follow.

LEMMA I.

Quantities, and the ratios of quantities, which in any finite time converge

continually to equality, and before the end of that time approach nearer

the one to the other than by any given difference, become ultimately

equal.

If you deny it, suppose them to be ultimately unequal, and let D be

their ultimate difference. Therefore they cannot approach nearer to

equality than by that given difference D
;
which is against the supposition,

LEMMA II.

If in any figure AacE, terminated by the right (f

lines A a. AE, and the curve acE, there be in

scribed any number of parallelograms Ab, Be,

Cd, fyc., comprehended under equal bases AB,

BC, CD, ^c., and the sides, Bb, Cc, Dd, ^c.,

parallel to one side Aa of the figure ; and the

parallelograms aKbl, bLcm, cMdn, *c., are com

pleted. Then if the breadth of those parallelo- \

grams be supposed to be diminisJied, and their X BF C D |;

number to be augmented in infinitum : / say, that :he ultimate ratios

which the inscribed fignre AKbLcMdD, the tin nmscribed figure

AalbmcndoE, and enrvilijiearfigure AabcdE, will have to one another,

are ratios of equality.

For the difference of the inscribed and circumscribed figures is the sum

of the parallelograms K7, Lw, M//. Do. that is (from the equality of all

their bases), the rectangle under one of their bases K6 and the sum of their

altitudes Aa, that is, the rectangle ABla. But this rectangle, because

M
a



96 THE MATHEMATICAL PRINCIPLES [BOOK 1

its breadth AB is supposed diminished in infinitum, becomes less than

any given space. And therefore (by Lem. I) the figures inscribed and

circumscribed become ultimately equal one to the other; and much more

will the intermediate curvilinear figure be ultimately equal to either*

Q.E.D.

LEMMA III.

The same ultimate ratios are also ratios of equality, when the breadth^

AB, BC, DC, fyc., of the parallelograms are unequal, and are all di

minished in infinitum.

For suppose AF equal to the greatest breadth, and

complete the parallelogram FAaf. This parallelo

gram will be greater than the difference of the in

scribed and circumscribed figures ; but, because its

breadth AF is diminished in infinitum, it will be

come less than any given rectangle. Q.E.D.

COR. 1. Hence the ultimate sum of those evanes

cent parallelograms will in all parts coincide with

the curvilinear figure. A BF C D E
COR. 2. Much more will the rectilinear figure^comprehendcd under tne

chords of the evanescent arcs ab, be, cd, (fee., ultimately coincide with tl.c

curvilinear figure.

COR. 3. And also the circumscribed rectilinear figure comprehended
under the tangents of the same arcs.

COR. 4 And therefore these ultimate figures (as to their perimeters acE)

are not rectilinear, but curvilinear limi s of rectilinear figures.

LEMMA IV.

If in twofigures AacE, PprT, you inscribe (as before)

two ranks of parallelograms, an equal number in

each rank, and, when their breadths are diminished

in infinitum. the ultimate ratios of the parallelograms

in onefigure to those in the other, each to each respec

tively, are the same; I say, that those twofigures

AacE, PprT, are to one another in that same ratio.

For as the parallelograms in the one are severally to p

the parallelograms in the other, so (by composition) is the &amp;lt;

sum of all in the one to the sum of all in the other : and

so is the one figure to the other; because (by Lem. Ill) the

former figure to the former sum, and the latter figure to the

latter sum, are both in the ratio of equality. Q.E.D.

COR. Hence if two quantities of any kind are any

how divided into an equal number of parts, and those A
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parts, when their number is augmented, and their magnitude diminished

in infinitum, have a given ratio one to the other, the first to the first, the

second to the second, and so on in order, the whole quantities will be one to

the other in that same given ratio. For if, in the figures of this Lemma,
the parallelograms are taken one to the other in the ratio of the parts, the

sum of the parts will always be as the sum of the parallelograms ;
and

therefore supposing the number of the parallelograms and parts to be aug

mented, and their magnitudes diminished in infinitum, those sums will be

in the ultimate ratio of the parallelogram in the one figure to the corres

pondent parallelogram in the other
;
that is (by the supposition), in the

ultimate ratio of any part of the one quantity to the correspondent part of

the other.

LEMMA V.

In similar figures, all sorts of homologous sides, whether curvilinear or

rectilinear, are proportional ; and the areas are in the duplicate ratio

of the homologous sides.

LEMMA VI.

If any arc ACB, given in position, is snb- _j
tended by its chord AB, and in any point

A, in the middle of the contiinied curva

ture, is touched by a right line AD, pro
duced both ways ; then if the points A R

and B approach one another and meet,

I say, the angle RAT), contained between,

the chord and the tangent, will be dimin- ?

ished in infinitum, a/id ultimately will vanish.

For if that angle does not vanish, the arc ACB will contain with the

tangent AD an angle equal to a rectilinear angle ;
and therefore the cur

vature at the point A will not be continued, which is against the supposi
tion.

LEMMA VII.

The same things being supposed, I say that the ultimate ratio of the arc,

chord, and tangent, any one to any other, is the ratio of equality.

For while the point B approaches towards the point A, consider always
AB and AD as produced to the remote points b and d, and parallel to the

secant BD draw bd : and let the arc Acb be always similar to the arc

ACB. Then, supposing the points A and B to coincide, the angle dAb
will vanish, by the preceding Lemma; and therefore the right lines Ab,
Arf (which are always finite), and the intermediate arc Acb, will coincide,

and become equal among themselves. Wheref ,re, the right lines AB, AD,
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and the intermediate arc ACB (which are always proportional to the

former), will vanish, and ultimately acquire the ratio of equality. Q.E.D.

COR. 1. Whence if through B we draw A

BP parallel to the tangent, always cutting

any right line AF passing through A in F/ i-

P, this line BP will be ultimately in the

ratio of equality with the evanescent arc ACB
; because, completing the

parallelogram APBD, it is always in a ratio of equality with AD.

COR. 2. And if through B and A more right lines are drawn, as BE,

I5D, AF, AG, cutting the tangent AD and its parallel BP : the ultimate

ratio of all the abscissas AD, AE, BF, BG, and of the chord and arc AB,

any one to any other, will be the ratio of equality.

COR. 3. And therefore in all our reasoning about ultimate ratios, we

may freely use any one of those lines for any other.

LEMMA VIII.

If the right lines AR, BR, with the arc ACB, the chord AB, and the

tangent AD, constitute three triangles RAB. RACB, RAD, and the

points A and B approach and meet : I say, that the ultimateform oj

these evanescent triangles is that of similitude, and their ultimate

ratio that of equality.

For while the point B approaches towards A
the point A, consider always AB, AD, AR,
as produced to the remote points b, d, and r,

and rbd as drawn parallel to RD, and let

the arc Acb be always similar to the arc

ACB. Then supposing the points A and B
to coincide, the angle bAd will vanish ; and

therefore the three triangles rAb, rAcb,rAd

^which are always finite), will coincide, and on that account become both

similar and equal. And therefore the triangles RAB. RACB, RAD
which are always similar and proportional to these, will ultimately be

come both similar and equal among themselves. Q..E.D.

COR. And hence in all reasonings about ultimate ratios, we may indif

ferently use any one of those triangles for any other.

LEMMA IX.

If a ngnt line AE. and a curve tine ABC, both given by position, cut

each other in a given angle, A ;
and to that right line, in another

given angle, BD, CE are ordinately applied, meeting the curve in B,

C : and the points B and C together approach towards and meet in

the point A : / say, that the areas of the triangles ABD, ACE, wilt

ultimately be one to the other in the duplicate ratio of the sides.
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For while the points B, C, approach
towards the point A, suppose always AD
to be produced to the remote points d and .

e, so as Ad, Ae may be proportional to

AD, AE ;
and the ordinates db, ec, to be

drawn parallel to the ordinates DB and

EC, and meeting AB and AC produced D
in b and c. Let the curve A be be similar

to the curve A BC, and draw the right line

Ag- so as to touch both curves in A, and

cut the ordinates DB, EC, db ec, in F, G,

J] g. Then, supposing the length Ae to remain the same, let the points B
and C meet in the point A ;

and the angle cAg vanishing, the curvilinear

areas AW, Ace will coincide with the rectilinear areas A/rf, Age ;
and

therefore (by Lem. V) will be one to the other in the duplicate ratio of

the sides Ad, Ae. But the areas ABD, ACE are always proportional to

these areas
;
and so the sides AD, AE are to these sides. And therefore

the areas ABD, ACE are ultimately one to the other in the duplicate ratio

of the sides AD, AE. Q.E.D.

LEMMA X.

The spaces which a bodij describes by any finite force urging it. whether

thatforce is determined and immutable, or is continually augmented
or continually diminished, are in the very beginning of the motion one

to the other in the duplicate ratio of the times.

Let the times be represented by the lines AD, AE, and the velocities

generated in those times by the ordinates DB, EC. The spaces described

with these velocities will be as the areas ABD, ACE. described by those

ordinates, that is, at the very beginning of the motion (by Lem. IX), in

the duplicate ratio of the times AD, AE. Q..E.D.

COR. 1. And hence one may easily infer, that the errors of bodies des

cribing similar parts of similar figures in proportional times, are nearly

as the squares of the times in which they are generated ;
if so be these

errors are generated by any equal forces similarly applied to the bodies,

and measured by the distances of the bodies from those places of the sim

ilar figures, at which, without the action of those forces, the bodies would

have arrived in those proportional times.

COR. 2. But the errors that are generated by proportional forces, sim

ilarly applied to the bodies at similar parts of the similar figures, are as

the forces and the squares of the times conjuiu tly.

COR. 3. The same thing is to be understood of any spaces whatsoever

described by bodies urged with different forces
;

all which, in the very be-

g nning of the motion, are as the forces and the squares of the times conjunctly.
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COR. 4. And therefore the forces are as the spaces described in the very

beginning of the motion directly, and the squares of the times inversely.

COR. 5. And the squares of the times are as the spaces described direct

ly, und the forces inversely.

SCHOLIUM.
If in comparing indetermined quantities of different sorts one with

another, any one is said to be as any other directly or inversely, the mean

ing is, that the former is augmented or diminished in the same ratio with

the latter, or with its reciprocal. And if any one is said to be as any other

two or more directly or inversely, the meaning is, that the first is aug
mented or diminished in the ratio compounded of the ratios in which the

others, or the reciprocals of the others, are augmented or diminished. As
if A is said to be as B directly, and C directly, and D inversely, the mean

ing is, that A is augmented or diminished in the same ratio with B X C

X
-jj-,

that is to say, that A and - arc one to the other in a given ratio.

LEMMA XL
The evanescent subtense of the angle of contact, in all curves which at

the point of contact have a finite curvature, is ultimately in the dupli
cate rati 1

) of the subtense of the conterminate arc.

CASE 1. Let AB be that arc, AD its tangent, BD
the subtense of the angle of contact perpendicular on

the tangent, AB the subtense of the arc. Draw BG
perpendicular to the subtense AB, and AG to the tan

gent AD, meeting in G
;
then let the points D, B, and

G. approach to the points d, b, and g, and suppose J

to be the ultimate intersection of the lines BG, AG,
when the points D, B, have come to A. It is evident

that the distance GJ may be less than any assignable.

But (from the nature of the circles passing through
the points A, B, G, A, b, g,) AE 2= AG X BD, and

A62= Ag X bd
;
and therefore the ratio of AB2

to Ab2
is compounded oi

the ratios of AG to Ag, and of Ed to bd. But because GJ may be as

sumed of less length than any assignable, the ratio of AG to Ag may be

such as to differ from the ratio of equality by less than any assignable

difference
;
and therefore the ratio of AB2

to Ab2

may be such as to differ

from the ratio of BD to bd by less than any assignable difference. There

fore, by Lem. I, the ultimate ratio of AB2
to Ab2

is the same with tho ul

timate ratio of BD to bd. Q.E.D.

CASE 2. Now let BD be inclined to AD in any given an*r1
r
,
and the

ultimate ratio of BD to bd will always be the same as before, and there

fore the same with the ratio of AB2
to Ab2

. Q.E-P
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CASE 3. And if we suppose the angle D not to be given, but that the

right line BD converges to a given point, or is determined by any other

condition whatever
;
nevertheless the angles D, d, being determined by the

same law, will always draw nearer to equality, arid approach nearer to

each other than by any assigned difference, and therefore, by Lem. I, will at

lust be* equal ;
and therefore the lines BD

;
bd arc in the same ratio to each

other as before. Q.E.D.

COR. 1. Therefore since the tangents AD, Ad, the arcs AB, Ab, and

their sines, BC, be, become ultimately equal to the chords AB, Ab
}
their

squares will ultimately become as the subtenses BD, bd.

COR. 2. Their squares are also ultimately as the versed sines of the arcs,

bisecting the chords, and converging to a given point. For those versed

sines are as the subtenses BD, bd.

COR. 3. And therefore the versed sine is in the duplicate ratio of the

time in which a body will describe the arc with a given velocity.

COR. 4. The rectilinear triangles ADB, Adb are

ultimately in the triplicate ratio of the sides AD, Ad, c
and in a sesquiplicate ratio of the sides DB, db ; as

being in the ratio compounded of the sides AD to DB,
and of Ad to db. So also the triangles ABC, Abe

are ultimately in the triplicate ratio of the sides BC, be.

What I call the sesquiplicate ratio is the subduplicate

of the triplicate, as being compounded of the simple

and subduplicate ratio. j

COR. 5. And because DB, db are ultimately paral- g
lei and in the duplicate ratio of the lines AD, Ad, the

ultimate curvilinear areas ADB, Adb will be (by the nature of the para

bola) two thirds of the rectilinear triangles ADB, Adb and the segments

AB, Ab will be one third of the same triangles. And thence those areas

and those segments will be in the triplicite ratio as well of the tangents

AD, Ad, as of the chords and arcs AB, AB.

SCHOLIUM.
But we have all along supposed the angle of contact to be neither infi

nitely greater nor infinitely less than the angles of contact made by cir

cles and their tangents ;
that is, that the curvature at the point A is neither

infinitely small nor infinitely great, or that the interval AJ is of a finite mag
nitude. For DB may be taken as AD3

: in which case no circle can be drawn

through the point A, between the tangent AD and the curve AB, and

therefore the angle of contact will be infinitely less than those of circles.

And by a like reasoning, if DB be made successfully as AD4
,
AD5

,
AD8

,

AD7
, etc., we shall have a series of angles of contact, proceeding in itifini-

tum, wherein every succeeding term is infinitely less than the pre-
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ceding. And if DB be made successively as AD2
, AD|, AD^, AD], AD|

AD7
, &c., we shall have another infinite series of angles of contact, the first

of which is of the same sort with those of circles, the second infinitely

greater, and every succeeding one infinitely greater than the preceding.

But between any two of these angles another series of intermediate angles
of contact may be interposed, proceeding both ways in infinitum. wherein

every succeeding angle shall be infinitely greater or infinitely less than the

preceding. As if between the terms AD 2 and AD3 there were interposed
the series AD

f, ADy, AD4

9

, AD|, AD?, AD|, AD^
1

, AD^, AD^
7
,
&c. And

again, between any two angles of this series, a new series of intermediate

angles may be interposed, differing from one another by infinite intervals.

Nor is nature confined to any bounds.

Those things which have been demonstrated of curve lines, and the

euperfices which they comprehend, may be easily applied to the curve su-

perfices and contents of solids. These Lemmas are premised to avoid the

tediousness of deducing perplexed demonstrations ad absurdnm, according
to the method of the ancient geometers. For demonstrations are more

contracted by the method of indivisibles : but because the hypothesis of

indivisibles seems somewhat harsh, and therefore that method is reckoned

less geometrical, I chose rather to reduce the demonstrations of the follow

ing propositions to the first and last sums and ratios of nascent and evane

scent quantities, that is, to the limits of those sums and ratios
;
and so to

premise, as short as I could, the demonstrations of those limits. For hereby
the same thing is performed as by the method of indivisibles

;
and now

those principles being demonstrated, we may use them with more safety.

Therefore if hereafter I should happen to consider quantities as made up of

particles, or should use little curve lines for right ones, I would not be un-

(lerstood to mean indivisibles, but evanescent divisible quantities : not the

sums and ratios of determinate parts, but always the limits of sums and

ratios
;
and that the force of such demonstrations always depends on the

method laid down in the foregoing Lemmas.

Perhaps it may be objected, that there is no ultimate proportion, of

evanescent quantities ;
because the proportion, before the quantities have

vanished, is not the ultimate, and when they are vanished, is none. But

by the same argument, it may be alledged, that a body arriving at a cer

tain place, and there stopping has no ultimate velocity : because the velo

city, before the body comes to the place, is not its ultimate velocity ;
when

it has arrived, is none i ut the answer is easy; for by the ultimate ve

locity is meant that with which the body is moved, neither before it arrives

at its last place and the motion ceases, nor after, but at the very instant it

arrives
;
that is, that velocity with which the body arrives at its last place,

and with which the motion ceases. And in like manner, by the ultimate ra

tio of evanescent quantities is to Le understood the ratio of the ijuantitiea



SEC. II.]
OF NATURAL PHILOSOPHY. 103

not before they vanish, nor afterwards, but with which they vanish. In

like manner the first ratio of nascent quantities is that with which they begin

to be. And the first or last sum is that with which they begin and cease

to be (or to be augmented or diminished). There is a limit which the ve

locity at the end of the motion may attain, but not exceed. This is the

ultimate velocity. And there is the like limit in all quantities and pro

portions that begin and cease to be. And since such limits are certain and

definite, to determine the same is a problem strictly geometrical. But

whatever is geometrical we may be allowed to use in determining and de

monstrating any other thing that is likewise geometrical.

It may also be objected, that if the ultimate ratios of evanescent quan
tities are given, their ultimate magnitudes will be also given : and so all

quantities will consist of indivisibles, which is contrary to what Euclid

has demonstrated concerning incommensurables, in the 10th Book of his

Elements. But this objection is founded on a false supposition. For

those ultimate ratios with which quantities vanish are not truly the ratios

of ultimate quantities, but limits towards which the ratios of quantities

decreasing without limit do always converge ;
and to which they approach

nearer than by any given difference, but never go beyond, nor in effect attain

to, till the quantities are diminished in wfinitum. This thing will appear
more evident in quantities infinitely great. If two quantities, whose dif

ference is given, be augmented in infin&um, the ultimate ratio of these

quantities will be given, to wit, the ratio of equality ;
but it does not from

thence follow, that the ultimate or greatest quantities themselves, whose

ratio that is, will be given. Therefore if in what follows, for the sake of

being more easily understood, I should happen to mention quantities as

least, or evanescent, or ultimate, you are not to suppose that quantities of

any determinate magnitude are meant, but such as are conceived to be al

ways diminished without end.

SECTION II.

Of the Invention of Centripetal Forces.

PROPOSITION I. THEOREM 1.

The areas, which revolving bodies describe by radii drawn to an ^mmo-

vable centra offorce do lie in tJ:e same immovable planes, and are pro-

portional to the times in which they are described.

For suppose the time to be divided into equal parts, and in the first part

of that time let the body by its innate force describe the right line AB
In the second part of that time, the same would (by Law I.),

if not hindered,

proceel directly to c, alo ILJ; the line Be equal to AB ; so that by the radii

AS, BS, cS, draw. i to the centre, the equal areas ASB, BSc, would be de-
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scribed. But when the body
is arrived at B, suppose
that a centripetal force acts

at once with a great im

pulse, and, turning aside the

body from the right line Be,

compels it afterwards to con

tinue its motion along the

right line BC. Draw cC

parallel to BS meeting BC
in C

;
and at the end of the

second part of the time, the

body (by Cor. I. of the Laws)
will be found in C, in the

same plane with the triangle

A SB. Join SC, and, because
s

SB and Cc are parallel, the triangle SBC will be equal to the triangle SBc,
and therefore also to the triangle SAB. By the like argument, if the

centripetal force acts successively in C, D, E. &c., and makes the body, in

each single particle of time, to describe the right lines CD, DE, EF7 &c.,

they will all lie in the same plane : and the triangle SCD will be equal to

the triangle SBC, and SDE to SCD, and SEF to SDE. And therefore,

in equal times, equal areas are described in one immovable plane : and, by

composition, any sums SADS, SAFS, of those areas, are one to the other

as the times in which they are described. Now let the number of those

triangles be augmented, and their breadth diminished in wjinitum ; and

(by Cor. 4, Lem. III.) their ultimate perimeter ADF will be a curve line :

and therefore the centripetal force, by which the body is perpetually drawn

back from the tangent of this curve, will act continually ;
and any described

areas SADS, SAFS, which are always proportional to the times of de

scription, will, in this case also, be proportional to those times. Q.E.D.

COR. 1. The velocity of a body attracted towards an immovable centre,

in spaces void of resistance, is reciprocally as the perpendicular let fall

from that centre on the right line that touches the orbit. For the veloci

ties in those places A, B, C, D, E. are as the bases AB, BC, CD, DE, EF.

of equal triangles ;
and these bases are reciprocally as the perpendiculars

let fall upon them.

COR. 2. If the chords AB, BC of two arcs, successively described in

equal times by the same body, in spaces void of resistance, are completed

into a parallelogram ABCV, and the diagonal BV of this parallelogram;

in the position which it ultimately acquires when those arcs are diminished

in irifinitum, is produced both ways, it will pass through the centre of force.

COR. 3. If the chords AB, BC, and DE, EF, cf arcs described in equal
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times, in spaces void of resistance, are completed into the parallelograms

ABCV, DEFZ : the forces in B and E are one to the other in the ulti

mate ratio of the diagonals BV, EZ, when those arcs are diminished in

infinitum. For the motions BC and EF of the body (by Cor. 1 of the

Laws) are compounded of the motions Be, BV, and
E/&quot;,

EZ : but BV and

EZ, which are equal to Cc and F/, in the demonstration of this Proposi

tion, were generated by the impulses of the centripetal force in B and E
;

and are therefore proportional to those impulses.

COR. 4. The forces by which bodies, in spaces void of resistance, are

drawn back from rectilinear motions, and turned into curvilinear orbits,

are one to another as the versed sines of arcs described in equal times
;
which

versed sines tend to the centre of force, and bisect the chords when those

arcs are diminished to infinity. For such versed sines are the halves of

the diagonals mentioned in Cor. 3.

COR. 5. And therefore those forces are to the force of gravity as the said

versed sines to the versed sines perpendicular to the horizon of those para
bolic arcs which projectiles describe in the same time.

COR. 6. And the same things do all hold good (by Cor. 5 of the Laws),

when the planes in which the bodies are moved, together with the centres

of force which are placed in those planes, are not at rest, but move uni

formly forward in right lines.

PROPOSITION II. THEOREM II.

Every body that moves in any curve line described in a plane, and by a

radius, drawn to a point either immovable, or moving forward with

an uniform rectilinear motion, describes about that point areas propor
tional to the times, is urged by a centripetal force directed to thatpoint

CASE. 1. For every body
that moves in a curve line,

is (by Law 1) turned aside

from its rectilinear course

by the action of some force

that impels it. And that force

by which the body is turned

offfrom its rectilinear course,

and is made to describe, in

equal times, the equal least

triangles SAB, SBC, SCD,
&c., about the immovable

point S (by Prop. XL. Book

1, Elem. and Law II), acts

in the place B, according to

the direction of a line par-
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allel K cC. that is, in the direction of the line BS. and in the place C,
accordii g to the direction of a line parallel to dD, that is, in the direction

of the line CS, (fee.; and therefore acts always in the direction of lines

tending to the immovable point S. Q.E.I).

CASE. 2. And (by Cor. 5 of the Laws) it is indifferent whether the su-

perfices in which a body describes a curvilinear figure be quiescent, or moves

together with the body, the figure described, and its point S, uniformly
forward in right lines.

COR. 1. In non-resisting spaces or mediums, if the areas are not propor
tional to the times, the forces are not directed to the point in which the

radii meet
;
but deviate therefrom in. consequently or towards the parts to

which the motion is directed, if the description of the areas is accelerated
;

but in antecedentia, if retarded.

COR. 2. And even in resisting mediums, if the description of the areas

is accelerated, the directions of the forces deviate from the point in which

the radii meet, towards the parts to which the motion tends.

SCHOLIUM.
A body may be urged by a centripetal force compounded of several

forces
;
in which case the meaning of the Proposition is, that the force

which results out of all tends to the point S. But if any force acts per

petually in the direction of lines perpendicular to the described surface,

this force will make the body to deviate from the plane of its motion : but

will neither augment nor diminish the quantity of the described surface

and is therefore to be neglected in the composition of forces.

PROPOSITION III. THEOREM III.

Every body, that by a radius drawn to the centre of another body, how
soever moved, describes areas about that centre proportional to iJie times,

is urged by a force compounded out of the centripetal force Bending fo

that other body, and of all the accelerative force by which that other

body is impelled.

Let L represent the one, and T the other body ;
and (by Cor. of the Laws)

if both bodies are urged in the direction of parallel lines, by a neT force

equal and contrary to that by which the second body T is tinned, the first

body L will go on to describe about the other body T the same areas as

before : but the force by which that other body T was urged will be now

destroyed by an equal and contrary force; and therefore (by Law I.) that

other body T, now left to itself, will either rest, or move uniformly forward

in a right line : and the first body L impelled by the difference of the

forces, that is, by the force remaining, will go on to describe about the other

body T areas proportional to the times. And therefore (by Theor. II.) the

difference ;f the forces is directed to the other body T as its centre. Q.E.D
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Co.*. 1. Hence if the one body L, by a radius drawn to the other body T,
describes areas proportional to the times

;
and from the whole force, by which

the firr.t body L is urged (whether that force is simple, or, according to

Cor. 2 of the Laws, compounded out of several forces), we subduct (by the

same Cor.) that whole accelerative force by which the other body is urged ;

the who_e remaining force by which the first body is urged will tend to the

( ther body T, as its centre.

COR. 2. And, if these areas are proportional to the times nearly, the re

maining force will tend to the other body T nearly.

COR. 3. And vice versa, if the remaining force tends nearly to the other

body T, those areas will be nearly proportional to the times.

COR. 4. If the body L, by a radius drawn to the other body T, describes

areas, which, compared with the times, are very unequal ;
and that other

body T be either at rest, or moves uniformly forward in a right line : the

action of the centripetal force tending to that other body T is either none

at all, or it is mixed and compounded with very powerful actions of other

forces : and the whole force compounded of them all, if they are many, is

directed to another (immovable or moveaJble) centre. The same thing ob

tains, when the other body is moved by any motion whatsoever
; provided

that centripetal force is taken, wrhich remains after subducting that whole

force acting upon that other body T.

SCHOLIUM.
Because the equable description of areas indicates that a centre is re

spected by that force with which the body is most affected, and by which it

is drawn back from its rectilinear motion, and retained in its orbit
; why

may we not be allowed, in the following discourse, to use the equable de

scription of areas as an indication of a centre, about which all circular

motion is performed in free spaces ?

PROPOSITION IV. THEOREM IV.

The centripetal forces of bodies, which by equable motions describe differ

ent circles, tend to the centres of the same circles ; and are one to tJie

other as the squares of t/ie arcs described in equal times applied to the

radii of the circles.

These forces tend to the centres of the circles (by Prop. II., and Cor. 2,

Prop. L), and are one to another as the versed sines of the least arcs de

scribed in equal times (by Cor. 4, Prop. I.) ;
that is, as the squares of the

same arcs applied to the diameters of the circles (by Lem. VII.) ;
and there

fore since those arcs are as arcs described in any equal times, and the dia-

me ers ace as the radii, the forces will be as the squares of any arcs de-

scr bed in the same time applied to the radii of the circles. Q.E.D.

^OR. 1. Therefore, since those arcs are as the velocities of the bodies.
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the centripetal forces are in a ratio compounded of the duplicate ra jio of

the velocities directly, and of the simple ratio of the radii inversely.

COR. 2. And since the periodic times are in a ratio compounded of the

ratio of the radii directly, and the ratio of the velocities inversely, the cen

tripetal forces, are in a ratio compounded of the ratio of the radii directly,

and the duplicate ratio of the periodic times inversely.

COR, 3. Whence if the periodic times are equal, and the velocities

therefore as the radii, the centripetal forces will be also as the radii
;
and

tke contrary.

COR. 4. If the periodic times and the velocities are both in the subdu-

plicate ratio of the radii, the centripetal forces will be equal among them

selves
;
and the contrary.

COR. 5. If the periodic times are as the radii, and therefore the veloci

ties equal, the centripetal forces will be reciprocally as the radii
;
and the

contrary.

COR. 6. If the periodic times are in the sesquiplicate ratio of the radii,

and therefore the velocities reciprocally in the subduplicate ratio of the

radii, the centripetal forces will be in the duplicate ratio of the radii in

versely : and the contrary.

COR. 7. And universally, if the periodic time is as any power Rn of the

radius R, and therefore the velocity reciprocally as the power Rn ]

of

the radius, the centripetal force will be reciprocally as the power R2n 1
of

the radius; and the contrary.

COR. 8. The same things all hold concerning the times, the velocities,

and forces by which bodies describe the similar parts of any similar figures

that have their centres in a similar position with those figures ;
as appears

by applying the demonstration of the preceding cases to those. And the

application is easy, by only substituting the equable description of areas in

the place of equable motion, and using the distances of the bodies from the

centres instead of the radii.

COR. 9. From the same demonstration it likewise follows, that the arc

which a body, uniformly revolving in a circle by means of a given centri

petal force, describes in any time, is a mean proportional between the

diameter of the circle, and the space which the same body falling by the

same given force would descend through in the same given time.

SCHOLIUM.

The case of the 6th Corollary obtains in the celestial bodies (as Sir

Christopher Wren, Dr. Hooke, and Dr. Halley have severally observed) ;

and therefore in what follows, I intend to treat more at large of those

things which relate to centripetal force decreasing in a duplicate ratio

of the distances from the centres.

Moreover, by means of the preceding Proposition and its Corollaries, we
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may discover the proportion of a centripetal force to any other known

force, such as that of gravity. For if a body by means of its gravity re

volves in a circle concentric to the earth, this gravity is the centripetal

force of that body. But from the descent of heavy bodies, the time of one

entire revolution, as well as the arc described in any given time, is given

(by Cor. 9 of this Prop.). And by such propositions, Mr. Huygens, in his

excellent book De Horologio Oscillatorio, has compared the force of

gravity with the centrifugal forces of revolving bodies.

The preceding Proposition may be likewise demonstrated after this

manner. In any circle suppose a polygon to be inscribed of any number
of sides. And if a body, moved with a given velocity along the sides of the

polygon, is reflected from the circle at the several angular points, the force,

with which at every reflection it strikes the circle, will be as its velocity :

and therefore the sum of the forces, in a given time, will be as that ve

locity and the number of reflections conjunctly ;
that is (if the species of

the polygon be given), as the length described in that given time, and in

creased or diminished in the ratio of the same length to the radius of the

circle
;
that is, as the square of that length applied to the radius

;
and

therefore the polygon, by having its sides diminished in inftnitum, coin

cides with the circle, as the square of the arc described in a given time ap

plied to the radius. This is the centrifugal force, with which the body

impels the circle
;
and to which the contrary force, wherewith the circle

continually repels the body towards the centre, is equal.

PROPOSITION V. PROBLEM I.

There being given, in any places, the velocity with which a body de

scribes a given figure, by means of forces directed to some common
centre : tofind that centre.

Let the three right lines PT, TQV, VR
touch the figure described in as many points,

P, Q, R, and meet in T and V. On the tan

gents erect the perpendiculars PA, QB, RC,

reciprocally proportional to the velocities of the

body in the points P, Q, R, from which the

perpendiculars were raised
;
that is, so that PA

may be to QB as the velocity in Q to the velocity in P, and QB to RC
as the velocity in R to the velocity in Q. Through the ends A, B, C, of

the perpendiculars draw AD, DBE, EC, at right angles, meeting in D and

E : and the right lines TD, VE produced, will meet in S, the centre re

quired.

For the perpendiculars let fall from the centre S on the tangents PT.

QT. are reciprocally as the velocities of the bodies in the points P and Q
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(by Cor. 1, Prop. I.), and therefore, by construction, as the perpendiculars

AP, BQ, directly ;
that is, as the perpendiculars let fall from the point D

on the tangents. Whence it is easy to infer that the points S, D, T, are

in one right line. And by the like argument the points S, E, V are also

in one right line
;
and therefore the centre S is in the point where the

right lines TD
;
YE meet. Q.E.D.

PROPOSITION VL THEOREM V.

In a space void of resistance, if a body revolves in any orbit about an im

movable centre, and in the least time describes any arc just then, na

scent ; and the versed sine of that arc is supposed to be drawn bisect

ing the chord, and produced passing through the centre offorce: the

centripetalforce in the middle of the arc will be as the versed sine di

rectly and the square of the time inversely.

For the versed sine in a given time is as the force (by Cor. 4, Prop. 1) ;

and augmenting the time in any ratio, because the arc will be augmented

in the same ratio, the versed sine will be augmented in the duplicate of

that ratio (by Cor. 2 and 3, Lem. XL), and therefore is as the force and the

square of the time. Subduct on both sides the duplicate ratio of the

time, and the force will be as the versed sine directly, arid the square of

the time inversely. Q.E.D.

And the same thing may also be easily demonstrated by Corol. 4
?

T,em. X.

COR. 1. If a body P revolving about the

centre S describes a curve line APQ,, which a

right line ZPR touches in any point P ;
and

from any other point Q, of the curve, QJl is

drawn parallel to the distance SP, meeting

the tangent in R
;
and QT is drawn perpen-

(licular to the distance SP
;
the centripetal force will be reciprocally as the

sp2 x Q/r2

solid- :

,
if the solid be taken of that magnitude which it ulti-

mately acquires when the points P and Q, coincide. For Q,R is equal to

the versed sine of double the arc QP, whose middle is P : and double the

triangle SQP, or SP X Q,T is proportional to the time in which that

double arc is described
;
and therefore may be used for the exponent of

the time.

COR. 2. By a like reasoning, the centripetal force is reciprocally as the

SY2 X QJP2

solid-7^5
-

;
if SY is a perpendicular from the centre of force on

PR the tangent of the orbit. For the rectangles SY X QP and SP X Q,T

are equal.
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COR. 3. If the orbit is cither a circle, or touches or cuts a circle c&amp;lt; ncen-

trically, that is, contains with a circle the least angle of contact or sec

tion, having the same curvature rnd the same radius of curvature at the

point P : and if PV be a chord of this circle, drawn from the body through
the centre of force

;
the centripetal force will be reciprocally as the solid

QP 2

SY2 X PV. For PV is
-

.

COR. 4. The same things being supposed, the centripetal force is as the

square of the velocity directly, and that chord inversely. For the velocity

is reciprocally as the perpendicular SY, by Cor. 1. Prop. I.

COR. 5. Hence if any curvilinear figure APQ, is given, and therein a

point S is also given, to which a centripetal force is perpetually directed.

that law of centripetal force may be found, by which the body P will bcj

continually drawn back from a rectilinear course, and. being detained in

the perimeter of that figure, will describe the same by a perpetual revolu-

SP2 x QT2

tion. That is, we are to find, by computation, either the solid ---- -

or the solid SY2 X PV, reciprocally proportional to this force. Example:
of this we shall give in the following Problems.

PROPOSITION VII. PROBLEM II.

Tf a body revolves in the circumference of a circle; it is proposed to finii

the law of centripetal force directed to any given, point.

Let VQPA be the circumference of the

circle ; S the given point to which as to

a centre the force tends : P the body mov

ing in the circumference
;
Q the next

place into which it is to move; and PRZ
the tangent of the circle at the preceding

place. Through the point S draw the
v

chord PV, and the diameter VA of the

circle : join AP, and draw Q,T perpen
dicular to SP, which produced, may meet

the tangent PR in Z
;
and lastly, through

the point Q, draw LR parallel to SP, meeting the circle&quot; in L, and the

tangent PZ in R. And, because of the similar triangles ZQR, ZTP.

VPA, we shall have RP2
,
that is. QRL to QT2 as AV2

to PV2
. And

QRlj x PV2
SI3 -

therefore - TS-- is equal to QT2
. Multiply those equals by

-

.

and the points P and Q, coinciding, for RL write PV
;
then we shall have

SP- X PV 5 SP 2 x QT 2

And therefore flr Cor 1 and 5. Prop. VI.)
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SP2 X PV3

the centripetal force is reciprocally as -
ry^~ J

that is (because AV
2

ia given), reciprocally as the square of the distance or altitude SP, and the

3ube of the chord PV conjunctly. Q.E.L

The same otherwise.

On the tangent PR produced let fall the perpendicular SY
;
and (be

cause of the similar triangles SYP, VPA), we shall have AV to PV as SP
SP X PV SP2

&amp;gt;&amp;lt; PV3

to SY, and therefore--^~
- = SY, and - ^- = SY 2 X PV.A V A V

And therefore (by Corol. 3 and 5, Prop. VI), the centripetal force is recip-

SP2 X PV3

rocally as -
~~ry~~~ I

*na* *s (because AV is given), reciprocally as SP&quot;

X PV3
. Q.E.I.

Con. 1. Hence if the given point S, to which the centripetal force al

ways tends, is placed in the circumference of the circle, as at V, the cen

tripetal force will be reciprocally as the quadrato-cube (or fifth power) of

the altitude SP.

COR. 2. The force by which the body P in the

circle APTV revolves about the centre of force S

is to the force by which the same body P may re

volve in the same circle, and in the same periodic

time, about any other centre of force R, as RP2 X
SP to the cube of the right line SG, which, from

the first centre of force S is drawn parallel to the

distance PR of the body from the second centre of force R, meeting the

tangent PG of the orbit in G. For by the construction of this Proposition,

the former force is to the latter as RP2 X PT3
to SP2 X PV3

;
that is, as

SP3 X PV3

SP X RP2
to --p ;

or (because of the similar triangles PSG, TPV)

to SGS
.

COR. 3. The force by which the body P in any orbit revolves about the

centre of force S, is to the force by which the same body may revolve in

the same orbit, and the same periodic time, about any other centre of force

R. as the solid SP X RP2
,
contained under the distance of the body from

the first centre of force S, and the square of its distance from the sec

ond centre of force R, to the cube of the right line SG, drawn from the

first centre of the force S, parallel to the distance RP of the body from

fch*3 second centre of force R, meeting the tangent PG of the orbit in G.

For the force in this orbit at any point P is the same as in a circle of the

same curvature.
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PROPOSITION VIII. PROBLEM III.

If a body mi ues in the semi-circuwferencePQA: it is proposed to find

the law of the centripetal force tending to a point S, so remote, that all

the lines PS. RS drawn thereto, may be takenfor parallels.

From C, the centre of the semi-circle, let

the semi-diameter CA he drawn, cutting the

parallels at right angles in M and N, and

join CP. Because of the similar triangles

CPM, PZT, and RZQ, we shall have CP2

to PM2 as PR2 to QT2

; and, from the na

ture of the circle, PR 2
is equal to the rect

angle QR X RN + QN, or, the points P, Q coinciding, to the rectangle

QR x 2PM. Therefore CP2
is to PM2

as QR X 2PM to QT2
;
and

QT2 2PM3 QT2 X SP2 2PM3 X SP2

therefore (byQR
Corol.

8PM3 X SP2

,
and QR

And

1 and 5, Prop. VI.), the centripetal force is reciprocally as

2SP2
.

that is (neglecting the given ratio
-ppr)&amp;gt;

reciprocally as

PM3
. Q.E.L

And the same thing is likewise easily inferred from the preceding Pro

position.

SCHOLIUM.
And by a like reasoning, a body will be moved in an ellipsis, or even ia

an hyperbola, or parabola, by a centripetal force which is reciprocally ae

the cube of the ordinate directed to an infinitely remote centre of force.

PROPOSITION IX. PROBLEM IV.

If a body revolves in a spiral PQS, cutting all the radii SP, SQ, fyc.,

in a given angle; it is proposed to find thelaio of the centripetal force

tending to tJie centre of that spiral.

Suppose the inde

finitely small angle AY
PSQ to be given ;

be

cause, then, all the

angles are given, the

figure SPRQT will
,
_

be given in specie.
v

QT Q,T2

Therefore the ratio-7^- is also given, and is as QT, that is (be
lot IX QK

cause the figure is given in specie), as SP. But if the angle PSQ is any

way changed, the right line QR, subtending the angle of contact QPU



tU THE MATHEMATICAL PRINCIPLES [BOOK J

(by Lemma XI) will be changed in the duplicate ratio of PR or QT
QT2

Therefore the ratio ~TVD~remains the same as before, that is, as SP. And

QT2 x SP2

-^ is as SP3
,
and therefore (by Corol. 1 and 5, Prop. YI) the

centripetal force is reciprocally as the cube of the distance SP. Q.E.I.

The same otherwise.

The perpendicular SY let fall upon the tangent, and the chord PY of

the circle concentrically cutting the spiral, are in given ratios to the height

SP
;
and therefore SP3

is as SY2 X PY, that is (by Corol. 3 and 5, Prop.

YI) reciprocally as the centripetal force.

LEMMA XII.

All parallelograms circumscribed about any conjugate diameters of a

given ellipsis or hyperbola are equal among themselves.

This is demonstrated by the writers on the conic sections.

PROPOSITION X. PROBLEM Y.

If a body revolves in an ellipsis ; it is proposed to find the law of thi

centripetal force tending to the centre of the ellipsis.

Suppose CA, CB to

be semi-axes of the

ellipsis; GP, DK, con

jugate diameters
; PF,

Q,T perpendiculars to

those diameters; Qvan
^rdinate to the diame

ter GP
;

and if the

parallelogram QvPR
be completed, then (by

the properties of the

jonic sections) the rec-

langle PvG will be to

Qv2 as PC2
to CD 2

;

and (because of the

similar triangles Q^T, PCF), Qi&amp;gt;

2
to QT2

as PC2
to PF2

; and, by com

position, the ratio of PvG to QT2
is compounded of the ratio of PC2

1&amp;lt;

QT2

CD 2
,
and of the ratio of PC2 to PF2

,
that is, vG to

-p
as PC ;

to_92L^_
P
_
]

^_. Put QR for Pr, and (by Lem. XII) BC X CA for CD

K PF ; also (the points P and Q coinciding) 2PC for rG; and multiply-
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QT2 x PC2

ing the extremes and means together, we shall have rfo~ equal to

2BC2 X CA2

pp . Therefore (by Cor. 5, Prop. VI), the centripetal force is

2BC 2 X CA2

reciprocally as ry~ ;
that is (because 2I3C2 X CA2

is given), re

ciprocally as-r^v; that is, directly as the distance PC. QEI.
I O

TJie same otherwise.

[n the right line PG on the other side of the point T, take the point u

so that Tu may be equal to TV
;
then take uV, such as shall be to vG as

DC 2
to PC2

. And because Qr9
is to PvG as DC 2 to PC2

(by the conic

sections), we shall have Qv2 -= Pi X V. Add the rectangle n.Pv to both

sides, and the square of the chord of the arc PQ, will be equal to the rect

angle VPv ;
and therefore a circle which touches the conic section in P,

and passes through the point Q,, will pass also through the point V. Now
let the points P and Q, meet, and the ratio of nV to rG, which is the same

with the ratio of DC 2 to PC 2

,
will become the ratio of PV to PG, or PV

2DC 2

to 2PC : and therefore PY will be equal to . And therefore the

force by which the body P revolves in the ellipsis will be reciprocally as

2DC2

ry X PF 2

(by Cor. 3, Prop. VI) ;
that is (because 2DC2 X PF2

is
I O

given) directly as PC. Q.E.I.

COR. 1. And therefore the force is as the distance of the body from the

centre of the ellipsis ; and, vice versa, if the force is as the distance, the

body will move in an ellipsis whose centre coincides with the centre of force,

or perhaps in a circle into which the ellipsis may degenerate.

COR. 2. And the periodic times of the revolutions made in all ellipses

whatsoever about the same centre will be equal. For those times in sim

ilar ellipses will be equal (by Corol. 3 and S, Prop. IV) ;
but in ellipses

that have their greater axis common, they are one to another as the whole

areas of the ellipses directly, and the parts of the areas described in the

same time inversely: that is, as the lesser axes directly, and the velocities

of the bodies in their principal vertices inversely ;
:hat is, as those lesser

axes dirtily, and the ordinates to the same point
%

f the common axes in

versely ;
and therefore (because of the equality of the direct and inverse

ratios) in the ratio of equality.

SCHOLIUM.
If the ellipsis, by having its centre removed to an infinite distance, de

generates into a parabola, the body will move in tin s parabola ;
and the
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force, now tending to a centre infinitely remote, will become equable.

Which is Galileo s theorem. And if the parabolic section of the cone (by

changing the inclination of the cutting plane to the cone) degenerates into

an hyperbola, the body will move in the perimeter of this hyperbola, hav

ing its centripetal force changed into a centrifugal force. And in like

manner as in the circle, or in the ellipsis, if the forces are directed to the

centre of the figure placed in the abscissa, those forces by increasing or di

minishing the ordinates in any given ratio, or even by changing the angle
of the inclination of the ordinates to the abscissa, are always augmented
or diminished in the ratio of the distances from the centre

; provided the

periodic times remain equal ;
so also in all figures whatsoever, if the ordi-

nates are augmented or diminished in any given ratio, or their inclination

is any way changed, the periodic time remaining the same, the forces di

rected to any centre placed in the abscissa are in the several ordinatee

augmented or diminished in the ratio of the distances from the centre

SECTION III.

Of the motion of bodies in eccentric conic sections.

PROPOSITION XL PROBLEM VI.

If a body revolves in an ellipsis ; it is required tofind the law of the

centripetalforce tending to thefocus of the ellipsis.

Let S be the focus

of the ellipsis. Draw
SP cutting the diame

ter DK of the ellipsis

in E, and the ordinate

Qv in x
;

and com

plete the parallelogram

d.rPR, It is evident

that EP is equal to the

greater semi-axis AC :

for drawing HI froln

the other focus H of

the ellipsis parallel to

EC, because CS, CH
are equal, ES, El will

be also equal ;
so that EP is the half sum of PS, PI, that is (because of

the parallels HI, PR, and the equal angles IPR, HPZ), of PS, PH, which

taken together are equal to the whole axis 2AC. Draw QT perpendicu
lar to SP, and putting L for the princi al latus rectum of the ellipsis (or for
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L X ^R t0 L X Py aS ^R t0 PV that 1S
&amp;gt;

US PE

or AC to PC
;
and L X Pv to GvP as L to Gy

;
and GvP to Qi&amp;gt;

2 as

to CD-
;
and by (Corol. 2, Lem. VII) the points Q, and P coinciding, Qv*

is to Q,r- in the ratio of equality ;
and Q,.r

2 or Qv 2
is to Q,T2 as EP 2 to

PF 2

,
that is, as CA2 to PF2

, or (by Lem. XII) as CD 2
to CB2

. And com

pounding all those ratios together, we shall have L X QR to Q,T2 as AC
X L X PC2 X CD2

,
or 2CB2 X PC 2 X CD 2 to PC X Gv X CD2 X

CB2
, or as 2PC to Gv. But the points Q and P coinciding, 2PC and Gr

are equal. And therefore the quantities L X QR and Q,T2
, proportional

SP2

to these, will be also equal. Let those equals be drawn
into-p^B&quot;?

and L

SP2 X QT2

X SP2 will become equal to--^p . And therefore (by Corol. 1 and

5, Prop. VI) the centripetal force is reciprocally as L X SP2
,
that is, re

ciprocally in the duplicate ratio of the distance SP. Q.E.I.

The same otherwise.

Since the force tending to the centre of the ellipsis, by which the body

P may revolve in that ellipsis, is (by Corol. 1, Prop. X.) as the distance

CP of the body from the centre C of the ellipsis ;
let CE be drawn paral

lel to the tangent PR of the ellipsis : and the force by which the same body
P may revolve about any other point S of the ellipsis, if CE and PS in-

PE3

tersect in E, will be as
^T3 , (by Cor. 3, Prop. VII.) ;

that is, if the point

S is the focus of the ellipsis, and therefore PE be given as SP 2

recipro

cally. Q.E.I.

With the same brevity with which we reduced the fifth Problem to the

parabola, and hyperbola, we might do the like here : but because of the

dignity of the Problem and its use in what follows, I shall confirm the other

cases by particular demonstrations.

PROPOSITION XII. PROBLEM VII.

Suppose a body to move in an hyperbola ; it is required tofind lite law of

the centripetal force tending to the focus of that figure.

Let CA, CB be the semi-axes of the hyperbola ; PG, KD other con

jugate diameters
;
PF a perpendicular to the diameter KD

;
and Qv an

ordinate to the diameter GP. Draw SP cutting the diameter DK in E,
and the ordinate Qv in x, and complete the parallelogram QRP.r. It is

evident that EP is equal to the semi-transverse axis AC
;
for drawing

HE, from the other focus H of the hyperbola, parallel to EC, because CS,
TH are equal, ES El will be also equal ;

so that EP is the half difference
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.of PS, PI; that is (be

cause of the parallels IH,

PR, and the equal angles

IPR, HPZ), of PS, PH,
the difference of which is

equal to the whole axis

2AC. Draw Q,T perpen
dicular to SP; and put

ting L for the principal

latus rectum of the hy

perbola (that is, for

2BC2 \ ....
-Tp- )

7
we shall have L

X QR to L X Pv as QR
to Pv, or Px to Pv, that is

(because of the similar tri

angles Pxv, PEC), as PE
to PC, or AC to PC.

And L X Pv will be to

Gv X Pv as L to Gv;
and (by the properties of

the conic sections) the rec

tangle G? P is to Q,v2 as

PC 2 to CD 2
;
and by (Cor. 2, Lem. VII.), Qv2 to Qa* the points Q and P

coinciding, becomes a ratio of equality ;
and Q,.r

2 or Qv2
is to Q,T2 as EP 2

to PF2
,
that is, as CA2 to PF2

,
or (by Lem. XII.) as CD 2 to CB2

: and,

compounding all those ratios together, we shall have L X Q,R to Q,T2
as

AC X L X PC 2 X CD 2

,
or 2CB 2 X PC 2 X CD 2 to PC X Gv X CD 2

X CB2
,
or as 2PC to Gv. But the points P and Q, coinciding. 2PC and

Gv are equal. And therefore the quantities L X Q,R arid Q.T2
, propor

tional to them, will be also equal. Let those equals be drawn into

SP 2 sp2 x o/r2

^, and we shall have L X SP 2

equal to ^^ . And therefore (by

Cor. 1. and 5, Prop. VI.) the centripetal force is reciprocally as L X SP 2
.

hat is, reciprocally in the duplicate ratio of the distance SP. Q,.E.I.

TJie same otherwise.

Find out the force tending from the centre C of the hype rbola. This will

be proportional to the distance CP. But from thence (by Cor. 3, Prop.
PE3

VII.) the force tending to the focus S will be as
-^-^

th; (t is, because PE

is given reciprocally as SP-. Q,.E.I.
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And the same way may it be demonstrated, that the body having its cen

tripetal changed into a centrifugal force, will move in the conjugate hy
perbola.

LEMMA XIII.

The latus rectum of a parabola belonging to any vertex is quadruple
the distance of that vertexfrom the focus of thejigurc.
This is demonstrated by the writers on the conic sections.

LEMMA XIV.

Tlie perpendicular, let fallfrom thefocus of a parabola on its tangent, is

a mean proportional between the. distances of thefocusfrom the poini

of contact, andfrom the principal vertex of thefigure.

For, let AP be the parabola, S its

focus, A its principal vertex, P the

point of contact, PO an ordinate to the

principal diameter. PM the tangent

meeting the principal diameter in M.

and SN the perpendicular from the fo-~ M A s o
cus on the tangent : join AN, and because of the equal lines MS and SP,
MN and NP, MA and AC, the right lines AN, OP, will be parallel ;

and
thence the triangle SAN will be right-angled at A, and similar to the

equal triangles SNM, SNP
j
therefore PS is to SN as SN to SA. Q.E.D.

COR. 1. PS 2
is to SN2 as PS to SA.

COR. 2. And because SA is given, SN- will be as PS.

COR. 3. And the concourse of any tangent PM, with the right line SN.
drawn from the focus per] endicular on the tangent, falls in the right line

AN that touches the parabola in the principal vertex.

PROPOSITION XIII. PROBLEM VIII.

If a body moves in the perimeter of a parabola ; it is required tofind the.

law of the centripetalforce tending to thefocus of thatfigure.

Retaining the construction

of the preceding Lemma, let P
be the body in the perimeter

of the parabola ;
and from the

place Q,, into which it is next

to succeed, draw QH parallel IS!.

and Q,T perpendicular to SP,

as also Qv parallel to the tan

gent, and mating the diame

ter PG in v, and the distance
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SP in x. Now. because of the similar triangles Pxv, SPM, and of the

equal sides SP, SM of the one, the sides Px or Q,R and Pv of the other

will be also equal. But (by the conic sections) the square of the ordinate

Q,y is equal to the rectangle under the latus rectum and the segment Pv
of the diameter

;
that is (by Lem. XIII.), to the rectangle 4PS X Pv, or

4PS X Q,R
;
and the points P and Q, coinciding, the ratio of Qv to Q,.r

(by Cor. 2, Lem. VII.,) becomes a ratio of equality. And therefore Q,#2
,
in

this case, becomes equal to the rectangle 4PS X Q,R. But (because of the

similar triangles Q#T, SPN), Q^ 2
is to QT2 as PS2 to SN2

,
that is (by

Cor. 1, Lem. XIV.), as PS to SA
;
that is, as 4PS X QR to 4SA x QR,

and therefore (by Prop. IX. Lib. V., Elem.) QT* and 4SA X QR are

SP2 SP2 X QT2

equal. Multiply these equals by ^-^-,
and ^5 -will become equal

to SP 2 X 4SA : and therefore (by Cor. 1 and 5, Prop. VL), the centripetal

force is reciprocally as SP 2 X 4SA
;
that is, because 4SA is given, recipro

cally in the duplicate ratio of the distance SP. Q.E.I.

COR. 1. From the three last Propositions it follows, that if any body P

goes from the place P with any velocity in the direction of any right line

PR, and at the same time is urged by the action of a centripetal force that

is reciprocally proportional to the square of the distance of the places from

the centre, the body will move in one of the conic sections, having its fo

cus in the centre of force
;
and the contrary. For the focus, the point of

contact, and the position of the tangent, being given, a conic section may
be described, which at that point shall have a given curvature. But the

curvature is given from the centripetal force and velocity of the body be

ing given ;
and two orbits, mutually touching one the other, cannot be de

scribed by the same centripetal force and the same velocity.

COR. 2. If the velocity with which the body goes from its place P is

such, that in any infinitely small moment of time the lineola PR may be

thereby describe I: and the centripetal force such as in the same time to

move the same body through the space QR ;
the body will move in one of

QT2
.

the conic sections, whose principal latus rectum is the quantity Tjfr in its

ultimate state, when thelineoke PR, QR are diminished in infinitum. In

these Corollaries I consider the circle as an ellipsis ;
and I except the case

where the body descends to the centre in a right line.

PROPOSITION XIV. THEOREM VI.

Tf several bodies revolve about one common centre, and the centripetal

force is reciprocally in tlie duplicate ratio of the distance of places

from the centre ; I say, that the principal latera recta of tfieir orbits

are in the duplicate ratio of the areas, which the bodies by radii drawn

to the centre describe it\ the same time.
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For (by Cor 2, Prop. XIII) the latus rectum

QT*.L is equal to the quantity-^-in its ultimate

state when the points P and Q, coincide. But
the lineola QR in a given time is as the gen

erating centripetal force
;
that is (by supposi-

QT2

tion), reciprocally as SP2
. And

therefore-^-^

is as Q.T2 X SP2
;
that is, the latus rectum L is in the duplicate ratio of

the area QT X SP. Q.E.D.

C?OR. Hence the whole area of the ellipsis, and the rectangle under the

axes, which is proportional to it, is in the ratio compounded of the subdu-

plicate ratio of the latus rectum, and the ratio of the periodic time. For

the whole area is as the area QT X SP, described in a given time, mul

tiplied by the periodic time.

PROPOSITION XV. THEOREM VII.

The same things being supposed, J say, that the periodic times in ellip

ses are in the sesquiplicate ratio of their greater axes.

For the lesser axis is a mean proportional between the greater axis and

the latus rectum
; and, therefore, the rectangle under the axes is in the

ratio compounded of the subduplicate ratio of the latus rectum and the

sesquiplicate ratio of the greater axis. But this rectangle (by Cor. o.

Prop. XIV) is in a ratio compounded of the subduplicate ratio of the

latus rectum, and the ratio of the periodic time. Subduct from both sides

the subduplicate ratio of the latus rectum, and there will remain the ses

quiplicate ratio of the greater axis, equal to the ratio of the periodic time.

Q.E.D.

COR. Therefore the periodic times in ellipses are the same as in circles

whose diameters are equal to the greater axes of the ellipses.

PROPOSITION XVI. THEOREM VIII.

The same things being supposed, and right lines being drawn to the

bodies that shall touch the orbits, and perpendiculars being letfall on

those tangents from the commonfocus ; I say, that the velocities oj

the bodies are in a ratio compounded of the ratio of the perpendiculars

inversely, and the, subduplicate ratio of the principal latera recta

direct!]).

From the focus S draw SY perpendicular to the tangent PR, and the

velocity of the body P will be reciprocally in the subduplicate ratio of the

SY2

quantity -y . For that velocity is as the infinitely small arc PQ de-
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scribed in a given moment of time, that is (by

Lem.
&quot;VII),

as the tangent PR ;
that is (because

of the proportionals PR to Q,T, and SP to

SP X Q,T
SY), as ~y ;

or as SY reciprocally,

and SP X Q,T directly ;
but SP X QT is as

the area described in the given time, that is (by

Prop. XIV), in the subduplicate ratio of the

latus rectum. Q.E.D.

COR. 1. The principal latera recta are in a ratio compounded of the

duplicate ratio of the perpendiculars and the duplicate ratio of the ve

locities.

COR. 2. The velocities of bodies, in their greatest and least distances from

the common focus, are in the ratio compounded of the ratio of the distan

ces inversely, and the subduplicate ratio of the principal latera recta di

rectly. For those perpendiculars are now the distances.

COR. 3. Arid therefore the velocity in a conic section, at its greatest or

least distance from the focus, is to the velocity in a circle, at the same dis

tance from the centre, in the subduplicate ratio of the principal latus rec

tum to the double of that distance.

COR. 4. The velocities of the bodies revolving in ellipses, at their mean

distances from the common focus, are the same as those of bodies revolving
in circles, at the same distances

;
that is (by Cor. 6. Prop. IV), recipro

cally in the subduplicate ratio of the distances. For the perpendiculars

are now the lesser semi-axes, and these are as mean proportionals between

the distances and the latera recta. Let this ratio inversely be compounded
with the subduplicate ratio of the latera recta directly, and we shall have

the subduplicate ratio of the distance inversely.

COR. 5. In the same figure, or even in different figures, whose principal

latera recta are equal, the velocity of a body is reciprocally as the perpen

dicular let fall from the focus on the tangent.

COR. 6. In a parabola, the velocity is reciprocally in the subduplicate

ratio.of the distance of the body from the focus of the figure; it is more

variable in the ellipsis, and less in the hyperbola, than according to this

ratio. For (by Cor. 2, Lem. XIV) the perpendicular let fall from the

focus on the tangent of a parabola is in the subduplicate ratio of the dis

tance. In the hyperbola the perpendicular is less variable ; in the ellipsis

more.

COR. 7. In a parabola, the velocity of a body at any distance from the

focus is to the velocity of a body revolving in a circle, at the same distance

from the centre, in the subduplicate ratio of the number 2 to 1
;

in the

ellipsis it is less, and in the hyperbola greater, than according to this ratio,

For (by Cor. 2 of this Prop.) the velocitv at the vertex of a parabola is ir
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this ratio, and (by Cor. 6 of this Prop, and Prop. IV) the same proportion

holds in all distances. And hence, also, in a parabola, the velocity is

everywhere equal to the velocity of a body revolving in a circle at half the

distance
;
in the ellipsis it is less, and in the hyperbola greater.

COR. S. The velocity of a body revolving in any conic section is to the

velocity of a body revolving in a circle, at the distance of half the princi

pal latus rectum of the section, as that distance to the perpendicular let

fall from the focus on the tangent of the section. This appears from

Cor. 5.

COR. 9. Wherefore since (by Cor. 6, Prop. IV), the velocity of a body

revolving in this circle is to the velocity of another body revolving in any
other circle reciprocally in the subduplicate ratio of the distances; there

fore, ex czqiiO) the velocity of a body revolving *in a conic section will be

to the velocity of a body revolving* in a circle at the same distance as a

mean proportional between that common distance, and half the principal

latus rectum of the section, to the perpendicular let fall from the common

focus upon the tangent of the section.

PROPOSITION XVII. PROBLEM IX.

Supposing the centripetal force to be reciprocally proportional to the

squares of the distances of places from the centre, and that the abso

lute quantity of that force is known ; it is required to determine t/te

line which a body will describe that is let gofrom a given place with a

given velocity in the direction of a given right line.

Let the centripetal force

tending to the point S be

such as will make the body

p revolve in any given orbit

pq ;
and suppose the velocity

of this body in the place p
is known. Then from the

place P suppose the body P
to be let go with a given ve

locity in the direction of the

line PR
;
but by virtue of a

centripetal force to be immediately turned aside from that right line into

the conic section PQ,. This, the right line PR will therefore touch in P.

Suppose likewise that the right line pr touches the orbit pq in p ;
and if

from S you suppose perpendiculars let fall on those tangents, the principal

latus rectum of the conic section (by Cor. 1, Prop. XVI) will be to the

principal latus rectum of that orbit in a ratio compounded of the duplicate

ratio of the perpendiculars, and the duplicate ratio of the velocities
;

arid

is therefore given. Let this latus rectum be L
;
the focus S of the conic
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section is also given. Let the angle RPH be the complement of the angle

RPS to two right ;
and the line PH, in which the other focus II is placed,

is given by position. Let fall SK perpendicular on PH, and erect the

conjugate semi-axis BC
;
this done, we shall have SP 2 2KPH + PH2

= SH2 = 4CH2 = 4BH2 4BC 2 = SP + PH2 L X SiM
SP2 + 2SPH + PH2 L x SP + PH. Add on both sides 2KPH
SP2 PH2 + L X SP + PH, and we shall have L X SP + PH= 2SPH
f 2KPH, or SP + PH to PH, as 2SP + 2KP to L. Whence PH is

given both in length and position. That is, if the velocity of the body
in P is such that the latus rectum L is less than 2SP + 2KP, PH will

lie on the same side of the tangent PR wr

ith the line SP
;
and therefore

the figure will be an ellipsis, which from the given foci S, H, and the

principal axis SP + PH, is given also. But if the velocity of the body
is so great, that the latus rectum L becomes equal to 2SP + 2KP, the

length PH will be infinite
;
and therefore, the figure will be a parabola,

which has its axis SH parallel to the line PK, and is thence given. But

if the body goes from its place P with a yet greater velocity, the length
PH is to be taken on the other side the tangent ;

and so the tangent pas

sing between the foci, the figure will be an hyperbola having its principal

axis equal to the difference of the lines SP and PH, and thence is given.

Por if the body, in these cases, revolves in a conic section so found, it is

demonstrated in Prop. XI, XII, and XIII, that the centripetal force will

be reciprocally as the square of the distance of the body from the centre

of force S
;
and therefore we have rightly determined the line PQ,, which

a body let go from a given place P with a given velocity, and in the di

rection of the right line PR given by position, would describe with such a

force. Q.E.F.

COR. 1. Hence in every conic section, from the principal vertex D, the

latus rectum L, and the focus S given, the other focus H is given, by

taking DH to DS as the latus rectum to the difference between the latus

rectum and 4US. For the proportion, SP + PH to PH as 2SP + 2KP
to L, becomes, in the case of this Corollary, DS + DH to DH as 4DS to

L, and by division DS to DH as 4DS L to L.

COR. 2. Whence if the velocity of a body in the principal vertex D ig

given, the orbit may be readily found
;

to wit, by taking its latus rectum

to twice the distance DS, in the duplicate ratio of this given velocity to

the velocity of a body revolving in a circle at the distance DS (by Cor.

3, Prop. XVI.), and then taking DH to DS as the latus rectum to the

difference between the latus rectum and 4DS.

COR. 3. Hence also if a body move in any conic section, and is forced

out of its orbit by any impulse, you may discover the orbit in which it will

afterwards pursue its Bourse. For bv compounding the proper motion oi
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the body with that motion, which the impulse alone would generate, you
will have the motion with which the body will go off from a given place
of impulse in the direction of a right line given in position.

COR. 4. And if that body is continually disturbed by the action of some

foreign force, we may nearly know its course, by collecting the changes
which that force introduces in some points, and estimating the continual

changes it will undergo in the intermediate places, from the analogy that

appears in the progress of the series.

SCHOLIUM.

If a body P, by means of a centripetal

force tending to any given point R, move

in the perimeter of any given conic sec

tion whose centre is C
;
and the law of

the centripetal force is required : draw

CG parallel to the radius RP, and meet

ing the tangent PG of the orbit in G
;

and the force required (by Cor. 1, and

CG3

Schol. Prop. X., and Cor. 3, Prop. VII.) will be as -

SECTION IV.

Of the finding of elliptic, parabolic, and hyperbolic orbits, from ttu.

focus given.

LEMMA XV.

Iffrom the two foci S, II, of any ellipsis or hyberbola, we draw to any
third point V the right lines SV, HV, whereof one HV is equal to the

principal axis of the figure, thai is, to the axis in which the foci are

situated, the other, SV, is bisected in T by t/ie perpendicular TR let

fall upon it ; that perpendicular TR will somewhere touch the conic

section : and, vice versa, if it does touch it,
HV will be equal to the

principal axis of the figure.

For, let the perpendicular TR cut the right line

HV, produced, if need be, in R
;
and join SR. Be

cause TS, TV are equal, therefore the right lines SR,

VR, as well as the angles TRS, TRV, will be also

equal. Whence the point R will be in the conic section, and the perpen
dicular TR will touch the same

;
and the contrary. Q.E.D.
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PROPOSITION XVIII. PROBLEM X.

From a focus and the principal axes given, to describe elliptic and hy

perbolic trajectories, which shall pass through given points, and touch

right lines given by position.

Let S be the common focus of the figures ;
ABA 33

the length of the principal axis of any trajectory ; r p T~*

P a point through which the trajectory should \ /R
pass ;

and TR a right line which it should touch. / \

About the centre P, with the interval AB SP, \ S
~~yf

if the orbit is an ellipsis, or AB {- SP, if the
y&amp;gt;

G ^

orbit is an hyperbola, describe the circle HG. On the tangent TR let fall

the perpendicular ST, and produce the same to V, so that TV may be

equal to ST; and about V as a centre with the interval AB describe the

circle FH. In this manner, whether two points P, p, are given, or two

tangents TR, tr, or a point P and a tangent TR, we are to describe two

circles. Let H be their common intersection, and from the foci S, H, with

the given axis describe the trajectory : I say, the thing is done. For (be

cause PH -f- SP in the ellipsis, and PH SP in the hyperbola, is equal

to the axis) the described trajectory will pass through the point P, and (by

the preceding Lemma) will touch the right line TR. And by the same

argument it will either pass through the two points P, p, or touch the two

right lines TR, tr. Q.E.F.

PROPOSITION XIX. PROBLEM XI.

About a given focus, to describe a parabolic trajectory, which shall pass

through given points, and touch right lines given by position.

Let S be the focus, P a point, and TR a tangent of

the trajectory to be described. About P as a centre,

with the interval PS, describe the circle FG. From
the focus let fall ST perpendicular on the tangent, and

produce the same to V, so as TV may be equal to ST.

After the same manner another circle fg is to be de

scribed, if another point p is given ;
or another point v

is to be found, if another tangent tr is given; then draw

the right line IF, which shall touch the two circles YG,fg, if two points

P, p are given ;
or pass through the two points V, v, if two tangents TR,

tr, are given : or touch the circle FG, and pass through the point V, if the

point P and the tangent TR are given. On FI let fall the perpendicular

SI, and bisect the same in K
;
and with the axis SK and principal vertex K

describe a parabola : I say the thing is done. For this parabola (because

SK is equal to IK, and SP to FP) will pass through the point P ;
and

/KS
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(by Cor. 3, Lem. XIV) because ST is equal to TV. and STR a light an

gle, it will touch the right line TR. Q.E.F.

PROPOSITION XX. PROBLEM XII.

About a givenfocus to describe any trajectory given in specie which shah

pass through given points, and touch right lines given by position.

CASE 1. About the focus S it is re-

uired to describe a trajectory ABC, pass

ing through two points B, C. Because the

trajectory is given in specie, the ratio of the

principal axis to the distance of the foci GAS H
will be given. In that ratio take KB to BS, and LC to CS. About the

centres B, C, with the intervals BK, CL, describe two circles
;
and on the

right line KL, that touches the same in K and L, let fall the perpendicu

lar SG
;
which cut in A and a, so that GA may be to AS, and Ga to aS,

as KB to BS
;
and with the axis A., and vertices A, a, describe a trajectory :

I say the thing is done. For let H be the other focus of the described

figure, and seeing GA is to AS as Ga to aS, then by division we shall

have Ga GA, or Aa to S AS, or SH in the same ratio
;
and therefore

in the ratio which the principal axis of the figure to be described has to

the distance of its foci
;
and therefore the described figure is of the same

species with the figure which was to be described. And since KB to BS,
and LC to CS, are in the same ratio, this figure will pass through tht-

points B, C, as is manifest from the conic sections.

CASE 2. About the focus S it is required to

describe a trajectory which shall somewhere

touch two right lines TR, tr. From the focus

on those tangents let fall the perpendiculars

ST, St, which produce to V, v, so that TV, tv

may be equal to TS, tS. Bisect Vv in O, and
j

erect the indefinite perpendicular OH, and cut I.

the right line VS infinitely produced in K and V

k, so that VK be to KS, and VA* to A~S, as the principal axis of the tra

jectory to be described is to the distance of its foci. On the diameter

K/J describe a circle cutting OH in H
;
and with the foci S, H, and

principal axis equal to VH, describe a trajectory : I say, the thing is done.

For bisecting Kk in X, and joining HX, HS, HV, Hv, because VK is to

KS as VA- to A*S
;
and by composition, as VK -f- V/c to KS + kS

;
and

by division, as VA* VK to kS KS, that is, as 2VX to 2KX, and

2KX to 2SX, and therefore as VX to HX and HX to SX, the triangles

VXH, HXS will be similar
;
therefore VH will be to SH as VX to XH

;

and therefore as VK to KS. Wherefore VH, the principal axis of the

described trajectory, has the same ratio to SH, the distance of the foci, as
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K S

the principal axis of the trajectory which was to be described has to the

distance of its foci
;
and is therefore of the same species. Arid seeing VH,

vH are equal to the principal axis, and VS, vS are perpendicularly bisected

by the right lines TR, tr, it is evident (by Lem. XV) that those right
lines touch the described trajectory. Q,.E.F.

CASE. 3. About the focus S it is required to describe a trajectory, which

shall touch a right line TR in a given Point R. On the right line TR
Jet fall the perpendicular ST, which produce to V, so that TV may be

equal to ST
; join VR, and cut the right line VS indefinitely produced

in K and k, so. that VK may be to SK, and V& to SAr, as the principal

axis of the ellipsis to be described to the distance of its foci
;
and on the

diameter KA: describing a circle, cut the H

right line VR produced in H
;
then with

the foci S, H, and principal axis equal to R
VH, describe a trajectory : I say, the thing .---

is done. For VH is to SH as VK to SK, V&quot; &quot;1

and therefore as the principal axis of the trajectory which was to be de

scribed to the distance of its foci (as appears from what we have demon

strated in Case 2) ;
and therefore the described trajectory is of the same

species with that which was to be described
;
but that the right line TR,

by which the angle VRS is bisected, touches the trajectory in the point R,

is certain from the properties of the conic sections. Q.E.F.

CASE 4. About the focus S it is r

required to describe a trajectory

APB that shall touch a right line

TR, and pass through any given

point P without the tangent, and

shall be similar to the figure apb,

described with the principal axis ab,

and foci s, h. On the tangent TR
let fall the perpendicular ST, which / .. ,.---&quot;

&quot;

produce to V, so that TV may be

equal to ST
;
and making the an

gles hsq, shq, equal to the angles VSP, SVP, about q as a centre, and

with an interval which shall be to ab as SP to VS, describe a circle cut

ting the figure apb in p : join sp, and draw

SH such that it may be to sh as SP is to sp,

and may make the angle PSH equal to the

angle psh, and the angle VSH equal to the

angle pyq. Then with the foci S, H, and B

principal axis AB, equal to the distance VH,
describe a conic section : I say, the thing is

done
;
for if sv is drawn so that it shall be to
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sp as sh is to sq, and shall make the angle vsp equal to the angle hsq, and

the angle vsh equal to the angle psq, the triangles svh, spq, will be similar,

and therefore vh will be to pq as sh is to sq ; that is (because of the simi

lar triangles VSP, hsq), as VS is to SP
?
or as ab to pq. Wherefore

vh and ab are equal. But, because of the similar triangles VSH, vsh, VH
is to SH as vh to sh ; that is, the axis of the conic section now described

is to the distance of its foci as the axis ab to the distance of the foci sh ;

and therefore the figure now described is similar to the figure aph. But,

because the triangle PSH is similar to the triangle psh, this figure passes

through the point P ;
and because VH is equal to its axis, and VS is per

pendicularly bisected by the rght line TR, the said figure touches the

right line TR. Q.E.F.

LEMMA XVI.

From three given points to draw to afonrth point that is not given three

right lines whose differences shall be either given, or none at all.

CASE 1. Let the given points be A, B, C, and Z the fourth point which

we are to find
;
because of the given difference of the lines AZ, BZ, the

locus of the point Z will be an hyperbola

whose foci are A and B, and whose princi

pal axis is the given difference. Let that

axis be MN. Taking PM to MA as MN
is to AB, erect PR perpendicular to AB,
and let fall ZR perpendicular to PR

;
then

from the nature of the hyperbola, ZR will

be to AZ as MN is to AB. And by the

like argument, the locus of the point Z will

be another hyperbola, whose foci are A, C, and whose principal axis is the

difference between AZ and CZ
;
and QS a perpendicular on AC may be

drawn, to which (QS) if from any point Z of this hyperbola a perpendicular

ZS is let fall (this ZS), shall be to AZ as the difference between AZ and

CZ is to AC. Wherefore the ratios of ZR and ZS to AZ are given, and

consequently the ratio of ZR to ZS one to the other
;
and therefore if the

right lines RP, SQ, meet in T, and TZ and TA are drawn, the figure

TRZS will be given in specie, and the right line TZ, in which the point

Z is somewhere placed, will be given in position. There will be given

also the right line TA, and the angle ATZ ;
and because the ratios of AZ

and TZ to ZS are given, their ratio to each other is given also
;
and

thence will be given likewise the triangle ATZ, whose vertex is the point

Z. Q.E.I.

CASE 2. If two of the three lines, for example AZ and BZ, are equal,

draw the right line TZ so as to bisect the right line AB
;
then find the

triangle ATZ as above. Q.E.I.
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CASE 3. If all the three are equal, the point Z will be placed in the

centre of a circle that passes through the points A, B, C. Q.E.I.

This problematic Lemma is likewise solved in Apollonius s Book oi

Tactions restored by Vieta.

PROPOSITION XXL PROBLEM XIII.

About a given focus to describe a trajectory that shall pass through

given points and touch right Hues given by position.

Let the focus S, the point P, and the tangent TR be given, and suppose
that the other focus H is to be found.

On the tangent let fall the perpendicular

ST, which produce to Y, so that TY may
be equal to ST, and YH will be equal

to the principal axis. Join SP, HP, and

SP will be the difference between HP and

the principal axis. After this manner,

if more tangents TR are given, or more

points P. we shall always determine as

many lines YH, or PH, drawn from the said points Y or P, to the focus

H, which either shall be equal to the axes, or differ from the axes by given

lengths SP
;
and therefore which shall either be equal among themselves,

or shall have given differences
;
from whence (by the preceding Lemma).

that other focus H is given. But having the foci and the length of the

axis (which is either YH, or, if the trajectory be an ellipsis, PH -f SP
;

or PH SP, if it be an hyperbola), the trajectory is given. Q.E.I.

SCHOLIUM.

When the trajectory is an hyperbola, I do not comprehend its conjugate

hyperbola under the name of tins trajectory. For a body going on with a

continued motion can never pass out of one hyperbola into its conjugate

hyperbola.

The case when three points are given

is more readily solved thus. Let B, C,

I), be the given points. Join BC, CD,
and produce them to E, F, so as EB may
be to EC as SB to SC

;
and FC to FD

as SC to SD. On EF drawn and pro

duced let fall the perpendiculars SG,

BH, and in GS produced indefinitely E
take GA to AS, and Ga to aS, as HB
is to BS ;

then A will be the vertex, and Aa the principal axis of the tra

jectory ; which, according as GA is greater than, equal to, or less than
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AS. will be either an ellipsis, a parabola, or an hyperbola ;
the point a in

the first case falling on the same side of the line GP as the point A ;
in

the second, going oft* to an infinite distance
;
in the third, falling on the

other side of the line GP. For if on GF the perpendiculars CI, DK are

let fall, TC will be to HB as EC to EB
;
that is, as SO to SB

;
and by

permutation, 1C to SC as HB to SB, or as GA to SA. And, by the like

argument, we may prove that KD is to SD in the same ratio. Where
fore the points B, C, D lie in a conic section described about the focus S,

in such manner that all the right lines drawn from the focus S to the

several points of the section, and the perpendiculars let fall from the same

points on the right line GF, are in that given ratio.

That excellent geometer M. De la Hire has solved this Problem much
after the same way, in his Conies, Prop. XXV., Lib. VIII.

SECTION V.

How the orbits are to befound when neitherfocus is given.

LEMMA XVII.

Iffrom any point P of a given conic section, to thefour produced sides

AB, CD, AC, DB, of any trapezium ABDC inscribed in that section,

as many right lines PQ, PR, PS, PT are drawn in given ang
7

ei,

each line to each side ; the rectangle PQ, X PR of those on the opposite
sides AB, CD, will be to the rectangle PS X PT of those on tie other

two opposite sides AC, BD, in a given ratio.

CASE 1. Let us suppose, first, that the lines drawn
to one pair of opposite sides are parallel to either of I^^ p ;T
the other sides

;
as PQ and PR to the side AC, and s

|

PS and PT to the side AB. And farther, that one

pair of the opposite sides, as AC and BD, are parallel

betwixt themselves; then the right line which bisects^ IQ I3

those parallel sides will be one of the diameters of the 1L

conic section, and will likewise bisect RQ. Let O be the point in which

RQ is bisected, and PO will be an ordinate to that diameter. Produce
PO to K, so that OK may be equal to PO, and OK will be an ordinate

on the other side of that diameter. Since, therefore, the points A, B ;
P

and K are placed in the conic section, and PK cuts AB in a given angle,
the rectangle PQK (by Prop. XVII., XIX., XXI. and XXI1L, Book III.,

of Apollonius s Conies) will be to the rectangle AQB in a given ratio.

But QK and PR are equal, as being the differences of the equal lines OK,
OP, and OQ, OR ;

whence the rectangles PQK and PQ X PR are equal ;

and therefore the rectangle PQ X PR is to the rectangle A^ B, that Is, to

the rectangle PS X PT in a given ratio. Q.E.D
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CASE 2. Let us next suppose that the oppo
site sides AC and BD of the trapezium are not

parallel. Draw Be/ parallel to AC, and meeting
as well the right line ST in /, as the conic section

in d. Join Cd cutting PQ in r, and draw DM
parallel to PQ, cutting Cd in M, and AB in N.

Then (because of the similar triangles BTt,

DBN), Et or PQ is to Tt as DN to NB. And ^^ Q N

so Rr is to AQ or PS asDM to AN. Wherefore, by multiplying the antece-

dents by the antecedents, and the consequents by the consequents, as the

rectangle PQ X Rr is to the rectangle PS X Tt, so will the rectangle

N i)M be to the rectangle ANB
;
and (by Case 1) so is the rectangle

PQ X Pr to the rectangle PS X Pt : and by division, so is the rectangle

PQ X PR to the rectangle PS X PT. Q.E.D.

CASE 3. Let us suppose, lastly, the four lines

?Q, PR, PS, PT, not to be parallel to the sides

AC, AB, but any way inclined to them. In their

place draw Pq, Pr, parallel to AC
;
and Ps, Pt

parallel to AB
;
and because the angles of the

triangles PQ&amp;lt;/, PRr, PSs, PTt are given, the ra-

tios of IQ to Pq, PR to Pr, PS to P*, PT to Pt

will b? also given; and therefore the compound
ed ratios Pk X PR to P? X Pr, and PS X PT to Ps X Pt are

given. But from what we have demonstrated before, the ratio of Pq X Pi

to Ps X Pt is given ;
and therefore also the ratio of PQ X PR to PS X

PT. Q.E.D.

LEMMA XVIII.

The s niL things supposed, if the rectangle PQ X PR of the lines drawn

to the two opposite sides of the trapezium is to the rectangle PS X PT

of those drawn to the other two sides in a given ratio, the point P,

from whence those lines are drawn, will be placed in a conic section

described about the trapezium.

Conceive a conic section to be described pas

sing through the points A, B, C, D, and any

one of the infinite number of points P, as for

example p ;
I say, the point P will be always c

1

placed in this section. If you deny the thing,

join AP cutting this conic section somewhere

else, if possible, than in P, as in b. Therefore

if from those points p and b, in the given angles ^ B
to the sides of the trapezium, we draw the right

lines pq, pr, ps, pt, and bk, bn, bf, bd, we shall have, as bk X bn to bf X bd,
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so (by Lem. XVII) pq X pr to ps X pt ; and so (by supposition) PQ x
PR to PS X PT. And because of the similar trapezia bkAf, PQAS, as

bk to bf, so PQ to PS. Wherefore by dividing the terms of the preceding

proportion by the correspondent terms of this, we shall have bn to bd as

PR to PT. And therefore the equiangular trapezia ~Dnbd, DRPT, are

similar, and consequently their diagonals D6, DP do coincide. Wherefore

b falls in the intersection of the right lines AP, DP, and consequently
coincides with the point P. And therefore the point P, wherever it is

taken, falls to be in the assigned conic section. Q.E.D.

COR. Hence if three right lines PQ, PR, PS, are drawn from a com
mon point P, to as many other right lines given in position, AB, CD, AC,
each to each, in as many angles respectively given, and the rectangle PQ
X PR under any two of the lines drawn be to the square of the third PS
in a given ratio

;
the point P, from which the right lines are drawn, will

be placed in a conic section that touches the lines AB
;
CD in A and C

and the contrary. For the position of the three right lines AB, CD, AC
remaining the same, let the line BD approach to and coincide with the

line AC
;
then let the line PT come likewise to coincide with the line PS

;

and the rectangle PS X PT will become PS2
,
and the right lines AB, CD,

which before did cut the curve in the points A and B, C and D, can no

(onger cut, but only touch, the curve in those coinciding points.

SCHOLIUM.
In this Lemma, the name of conic section is to be understood in a large

sense, comprehending as well the rectilinear section through the vertex of

the cone, as the circular one parallel to the base. For if the point p hap

pens to be in a right line, by which the points A and D, or C and B are

joined, the conic section will be changed into two right lines, one of which

is that right line upon which the point p falls,

and the other is a right line that joins the other

two of *he four points. If the two opposite an

gles of the trapezium taken together are equal c

to two right angles, and if the four lines PQ,
PR, PS, PT, are drawn to the sides thereof at

right angles, or any other equal angles, and the

rectangle PQ X PR under two of the lines

drawn PQ and PR, is equal to the rectangle

PS X PT under the other two PS and PT, the conic section will become

a circle. And the same thing will happen if the four lines are drawn in

any angles, and the rectangle PQ X PR, under one pair of the lines drawn,

is to the rectangle PS X PT under the other pair as the rectangle under

the sines of the angles S, T, in which the two last lines PS, PT are drawn

to the rectangle under the sines of the angles Q, R, in which the first tw
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PQ, PR are drawn. In all other cases the locus of the point P will be

one of the three figures which pass commonly by the name of the conic

sections. But in room of the trapezium ABCD, we may substitute a

quadrilateral figure whose two opposite sides cross one another like diago
nals. And one or two of the four points A, B, C, D may be supposed to

be removed to an infinite distance, by which means the sides of the figure

which converge to those points, will become parallel ;
and in this case the

conic section will pass through the other points, and will go the same way
as the parallels in, infinitum.

LEMMA XIX.

To find a point P from which if four right lines PQ, PR, PS, PT an
drawn to as many other right lines AB, CD, AC, BD, given by posi

tion, each to each, at given angles, the rectangle PQ X PR, under any
two of the lines drawn, shall be to the rectangle PS X PT, under the

other tivo. in a given ratio.

Suppose the lines AB, CD, to which the two

right lines PQ, PR, containing one of the rect

angles, are drawn to meet two other lines, given

by position, in the points A, B, C, D. From one

of those, as A, draw any right line AH, in which

you would find the point P. Let this cut the

opposite lines BD, CD, in H and I
; and, because

all the angles of the figure are given, the ratio of

PQ to PA, and PA to PS, and therefore of PQ
to PS, will be also given. Subducting this ratio from the given ratio oi

PQ X PR to PS X PT, the ratio of PR to PT will be given ;
and ad

ding the given ratios of PI to PR, and PT to PH, the ratio of PI to PH.

and therefore the point P will be given. Q.E.I.

COR. 1. Hence also a tangent may be drawn to any point D of the

locus of all the points P. For the chord PD, where the points P and D

meet, that is, where AH is drawn through the point D, becomes a tangent.

In which case the ultimate ratio of the evanescent lines IP and PH will

be found as above. Therefore draw CF parallel to AD, meeting BD in

F, and cut it in E in the same ultimate ratio, then DE will be the tan

gent ;
because CF and the evanescent IH are parallel, and similarly cut in

E and P.

COR. 2. Hence also the locus of all the points P may be determined.

Through any of the points A, B, C, D, as A, draw AE touching the locus,

and through any other point B parallel to the tangent, draw BF meeting

the locus in F
;
and find the point F by this Lemma. Bisect BF in G,

and, drawing the indefinite line AG, this will be the position of the dia

meter to which BG and FG are ordinates. Let this AG meet the locus
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in H, and AH will be its diameter or latus trans-

versum. to which the latus rectum will be as BG2

to AG X GH. If AG nowhere meets the locus,

the line AH being infinite, the locus will be a par
abola

;
and its latus rectum corresponding to the

diameter AG will be -.-7^AC*
But if it does meet it

anywhere, the locus will be an hyperbola, when
the points A and H are placed on the same side the point G ;

and an

ellipsis, if the point G falls between the points A and H
; unless, perhaps,

the angle AGB is a right angle, and at the same time BG2

equal to the

rectangle AGH, in which case the locus will be a circle.

And so we have given in this Corollary a solution of that famous Prob

lem of the ancients concerning four lines, begun by Euclid, and carried on

by Apollonius ;
and this not an analytical calculus, but a geometrical com

position, such as the ancients required.

LEMMA XX.

If the two opposite angularpoints A and P of any parallelogram ASPQ
touch any conic section in the points A and P

;
and the sides AQ, AS

of one of those angles, indefinitely produced, meet the same conic section

in B and C
;
and from the points of concourse, B and C to any fifth

point D of the conic section, two right lines BD, CD are drawn meet-

ing tlie two other sides PS, PQ of the parallelogram, indefinitely pro
duced in T and R

;
the parts PR and PT, cut off from the sides, will

always be one to the other in a given ratio. And vice versa, if those

parts cut off are one to the other in a given ratio, the locus of the point

D will be a conic section passing through the four points A, B, C, F
CASE 1. Join BP, CP, and from the point

D draw the two right lines DG, DE, of which

the first DG shall be parallel to AB, and

meet PB, PQ, CA in H, I, G ;
and the other

DE shall be parallel to AC, and meet PC,
PS, AB, in F, K, E ;

and (by Lem. XVII)
the rectangle DE X DF will be to the rect

angle DG X DH in a given ratio. But

PQ is to DE (or IQ) as PB to HB, and con

sequently as PT to DH
;
and by permutation PQ, is to PT as DE to

DH. Likewise PR is to DF as RC to DC, and therefore as (IG or) PS

to DG
;
and by permutation PR is to PS as DF to DG

; and, by com

pounding those ratios, the rectangle PQ X PR will be to the rectangle

PS X PT as the rectangle DE X DF is to the rectangle DG X DH.
and consequently in &quot;a given ratio. But PQ and PS are given, and there

fore the ratio of PR to PT is given. Q.E.D.
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CASE 2. But if PR and PT are supposed to be in a given ratio one to

the other, then by going back again, by a like reasoning, it will follow

that the rectangle DE X DF is to the rectangle DG X DH in a given

rati)
;
and so the point D (by Lem. XVIII) will lie in a conic section pass

ing through the points A., B, C, P, as its locus. Q.E.I).

COR. 1. Hence if we draw BC cutting PQ in r and in PT take Pt to

Pr in the same ratio which PT has to PR
;
then Et will touch the conic

section in the point B. For suppose the point D to coalesce with the point

B, so that the chord BD vanishing, BT shall become a tangent, and CD
and BT will coincide with CB and Bt.

COR. 2. And, vice versa, if Bt is a tangent, and the lines BD, CD meet

in any point D of a conic section, PR will be to PT as Pr to Pt. And,
on the contrary, if PR is to PT as Pr to Pt, then BD and CD will meet

in some point D of a conic section.

COR. 3. One conic section cannot cut another conic section in more than

four points. For, if it is possible, let two conic sections pass through the

hve points A, B, C, P, O ;
and let the right line BD cut them in the

points D, d, and the right line Cd cut the right line PQ, in
q. Therefore

PR is to PT as Pq to PT : whence PR and Pq are equal one to the other,

against the supposition.

LEMMA XXI.

If two moveable and indefinite right lines BM, CM drawn through given

points B, C, as poles, do by their point of concourse M describe a third

right line MN given by position ; and other two indefinite right lines

BD,CD are drawn, making with the former two at those givenpoints

B, C, given angles, MBD, MCD : I say, that those two right lines BD,
CD will by theirpoint of concourse D describe a conic section passing

through the points B, C. And, vice versa, if the right lints BD, CD
do by their point of concourse D describe a conic section passing

through the given points B, C, A, and the angle DBM is always

equal to the giren angle ABC, as well as the angle DCM always

equal to the given angle ACB, the point M will lie in a right line

given by position, as its locus.

For in the right line MN let a point

N be given, and when the moveable point

M falls on the immoveable point N. let

the moveable point D fall on an immo

vable point P. Join ON, BN, CP, BP,
and from the point P draw the right lines

PT, PR meeting BD, CD in T and R, C

and making the angle BPT c jual to the

given angle BNM, and the angle CPR
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equal to the given angle CNM. Wherefore since (by supposition) the an

gles MBD, NBP are equal, as also the angles MOD, NCP, take away the

angles NBD and NOD that are common, and there will remain the angles
NBM and PBT, NCM and PCR equal; and therefore the triangles NBM,
PBT are similar, as also the triangles NCM, PCR. Wherefore PT is to

NM as PB to NB
;
and PR to NM as PC to NC. But the points, B, C,

N, P are immovable: wheiefore PT and PR have a given ratio to NM,
and consequently a given ratio between themselves; and therefore, (by

Lemma XX) the point D wherein the moveable right lines BT and CR
perpetually concur, will be placed in a conic section passing through the

points B. C, P. Q.E.D.

And, vice versa, if the moveable point
D lies in a conic section passing through
the given points B, C, A ;

and the angle

DBM is always equal to the given an

gle ABC, and the angle DCM always

equal to the given angle ACB, and when

the point D falls successively on any
two immovable points p, P, of the conic

section, the moveable point M falls suc

cessively on two immovable points /?, N.

Through these points ??, N, draw the right line nN : this line nN will be

the perpetual locus of that moveable point M. For, if possible, let the

point M be placed in any curve line. Therefore the point D will be placed
in a conic section passing through the five points B, C, A, p, P, when the

point M is perpetually placed in a curve line. But from what was de

monstrated before, the point D will be also placed in a conic section pass

ing through the same five points B, C, A, p, P, when the point M is per

petually placed in a right line. Wherefore the two conic sections will both

pass through the same five points, against Corol. 3, Lem. XX. It is

therefore absurd to suppose that the point M is placed in a curve line.

QE.D.

PROPOSITION XXII. PROBLEM XIV.

To describe a trajectory that shall pass through Jive given points.

Let the five given points be A, B, C, P, D. c

From any one of them, as A, to any other
s v

two as B, C, which may be called the poles,

draw the right lines AB, AC, and parallel to

those the lines TPS, PRO, through the fourth

point P. Then from the two poles B, C,
draw through the fifth point D two indefinite

lines BDT, CRD, meeting with the last drawn lines TPS, PRQ (the
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former with the former, and the latter with the latter) in T and R. Then

drawing the right line tr parallel to TR, cutting off from the right lines

PT, PR, any segments Pt, Pr, proportional to PT, PR
;
and if through

their extremities, t, r, and the poles B, C, the right lines lit, Cr are drawn,

meeting in d, that point d will be placed in the trajectory required. For

(by Lena. XX) that point d is placed in a conic section passing through
the four points A, B, C, P ;

and the lines R/
,
TV vanishing, the point d

comes to coincide with the point D. Wherefore the conic section passes

through the five points A, B, C, P, D. Q.E.D.

The same otherwise.

Of the given points join any three, as A, B,

C
;
and about two of them 15, C, as poles,

making the angles ABC, ACB of a given

magnitude to revolve, apply the legs BA,

CA, first to the point D, then to the point P,

and mark the points M, N, in which the other

legs BL, CL intersect each other in both cases. C

Draw the indefinite right line MN, and let

those moveable angles revolve about their

poles B, C, in such manner that the intersection, which is now supposed to

be ???, of the legs BL, CL ;
or BM

7 CM, may always fall in that indefinite

right line MN
;
and the intersection, which is now supposed to be d, of the

legs BA ^A, or BD
; CD, will describe the trajectory required, PADc/B.

For (by Lem. XXI) the point d will be placed in a conic section passing-

through the points B, C ;
and when the point m comes to coincide with

the points L, M, N, the point d will (by construction) come to coin

cide with the points A, D, P. Wherefore a conic section will be described

that shall pass through the five points A, B. C, P, D. Q,.E.F.

COR. 1. Hence a right line may be readily drawn which shall be a tan

gent to the trajectory in any given point B. Let the point d come to co

incide with the point B, arid the right line Bt/ Avill become the tangent

required.

COR. 2. Hence also may be found the centres, diameters, and latera recta

of the trajectories, as in Cor. 2, Lem. XIX.

SCHOLIUM.
The former of these constructions will be- c

come something more simple by joining ,

and in that line, produced, if need be, aking

Bp to BP as PR is to PT ; and t rough p
draw the indefinite right inc j0e parallel to S

PT, and in that line pe taking always pe

equal to Pi
,
and draw the right lines Be, Cr
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to meet in d. For since Pr to Pt, PR to PT, pB to PB, pe to Pt, are all in

the same ratio, pe and Pr will be always equal. After this manner the

points of the trajectory are most readily found, unless you would rather

describe the curve mechanically, as in the second construction.

PROPOSITION XXIII. PROBLEM XV.

To describe a trajectory that shall pass throughfour given points, and

touch a right line given by position.

CASE 1. Suppose that HB is the

given tangent, B the point of contact,

and C, 1., P, the three other given

points. Jo n BC. and draw IS paral

lel to BH, and PQ parallel to BC
;

complete the parallelogram BSPQ.
Draw BD cutting SP in T, and CD
cutting PQ, in R. Lastly, draw any
line tr parallel to TR, cutting off

from PQ, PS, the segments Pr, Pt proportional to PR, PT respectively ;

and draw Cr, Bt their point of concourse d will (by Lem. XX) always fall

on the trajectory to be described.

The same otherwise.

1 et tl e angle CBH of a given magnitude re

volve about the pole B ;
as also the rectilinear ra-

d : us 1C, both ways produced, about the pole C.

Mark the points M, N, on which the leg BC of

the angle cuts that radius when BH
;
the other

leg thereof, meets the same radius in the points
P and D. Then drawing the indefinite line MN,
let that radius CP or CD and the leg BC of the

angle perpetually meet in this Ikie; and the

point of concourse of the other leg BH with the

radius will delineate the trajectory required.

For if in the constructions of the preceding Problem the point A comes

to a coincidence with the point B, the lines CA and CB will coincide, and

the line AB, in its last situation, will become the tangent BH ;
and there

fore the constructions there set down will become the same with the con

structions here described. Wherefore the concourse of the leg BH with

the radius will describe a conic section passing through the points C, D,

P, and touching the line BH in the point B. Q.E.F.

CASE 2. Suppose the four points B, C, D, P, given, being situated with-

ont the tangent HI. Join each two by the lines BD, CP meeting in G,

and cutting the tangent in H and I. Cut the tangent in A in such mannr:
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X IT

that HA may be to IA as the rectangle un

der a mean proportional between CG and

GP, and a mean proportional between BH
and HD is to a rectangle under a mean pro

portional between GD and GB, and a mean

proportional betweeen PI and 1C, and A will

be the point of contact. For if HX, a par

allel to the right line PI, cuts the trajectory

in any points X and Y, the point A (by the

properties of the conic sections) will come to be so placed, that HA2
will

become to AP in a ratio that is compounded out of the ratio of the rec

tangle XHY to the rectangle BHD, or of the rectangle CGP to the rec

tangle DGB; and the ratio of the rectangle BHD to the rectangle PIC.

But after the point of contac.t A is found, the trajectory will be described as

in the first Case. Q.E.F. But the point A may be taken either between

or without the points H and I, upon which account a twofold trajectory

may be described.

PROPOSITION XXIV. PROBLEM XVI.

To describe a trajectory that shall pass through three given points, and

touch two right lines given by position.

Suppose HI, KL to be the given tangents

and B, C, D, the given points. Through any
two of those points, as B, D, draw the indefi

nite right line BD meeting the tangents in

the points H, K. Then likewise through

any other two of these points, as C, D, draw

the indefinite right line CD meeting the tan

gents in the points I, L. Cut the lines drawn

in R and S, so that HR may be to KR as

the mean proportional between BH and HD is to the mean proportional

between BK and KD
;
and IS to LS as the mean pioportional between

CI and ID is to the mean proportional between CL and LD. But you

may cut, at pleasure, either within or between the points K and H, I and

L, or without them
;
then draw RS cutting the tangents in A and P, and

A and P will be the points of contact. For if A and P are supposed to

be the points of contact, situated anywhere else in the tangents, and through

any of the points H, I, K, L, as I, situated in either tangent HI, a right

line IY is drawn parallel to the other tangent KL, and meeting the curve

in X and Y, and in that right line there be taken IZ equal to a mean pro

portional between IX and IY, the rectangle XIY or IZ2
,
will (by the pro

perties of the conic sections) be to LP2 as the rectangle CID is to the rect

angle CLD, that is (by the construction), as SI is to SL2
;
and therefore
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IZ is to LP as SI to SL. Wherefore the points S, P, Z. are in one right

line. Moreover, since the tangents meet in G, the rectangle XIY or IZ2

will (by the properties of the conic sections) be to IA2 as GP2
is to GA2

,

and consequently IZ will be to IA as GP to GA. Wherefore the points

P, Z, A, lie in one right line, and therefore the points S, P, and A are in

one right line. And the same argument will prove that the points R, P,

and A are in one right line. Wherefore the points of contact A and P lie

in the right line RS. But after these points are found, the trajectory may
be described, as in the first Case of the preceding Problem. Q,.E.F.

In this Proposition, and Case 2 of the foregoing, the constructions are

the same, whether the right line XY cut the trajectory in X and Y, or

not
;

neither do they depend upon that section. But the constructions

being demonstrated where that right line does cut the trajectory, the con

structions where it does not are also known
;
and therefore, for brevity s

sake, I omit any farther demonstration of them.

LEMMA XXII.

To transform figures into otherfigures of the same kind.

Suppose that any figure HGI is to be

transformed. Draw, at pleasure, two par

allel lines AO, BL, cutting any third line

AB, given by position, in A and B, and from

any point G of the figure, draw out any

right line GD, parallel to OA, till it meet

the right line AB. Then from any given

point in the line OA, draw to the point

D the right line OD, meeting BL in d ; and

from the point of concourse raise the right

line dg containing any given angle with the right line BL, and having
such ratio to Qd as DG has to OD

;
and g will be the point in the new

figure hgi, corresponding to the point G. And in like manner the several

points of the first figure will give as many correspondent points of the new

figure. If we therefore conceive the point G to be carried along by a con

tinual motion through all the points of the first figure, the point g will

be likewise carried along by a continual motion through all the points of

the new figure, and describe the same. For distinction s sake, let us call

DG the first ordinate, dg the new ordinate, AD the first abscissa, ad the

new abscissa
;
O the pole. OD the abscinding radius, OA the first ordinate

radius, and Oa (by which the parallelogram OABa is completed) the new

ordinate radius.

I say, then, that if the point G is placed in a right line given by posi

tion, the point g will be also placed in a right line given by position. If

the point G is placed in a conic section, the point g will be likewise placed
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in a conic section. And here I understand the circle as one of the conic

sections. But farther, if the point G is placed in a line of the third ana

lytical order, the point g will also be placed in a line of the third order,

and so on in curve lines of higher orders. The two lines in which the

points G, g, are placed, will be always of the same analytical order. For
as ad is to OA, so are Od to OD, dg to DG, and AB to AD

;
and there-

OA X AB OA X dg
fore AD is equal to

, ,
and DG equal to 7 . Now if the

ad ad

point G is placed in a right line, and therefore, in any equation by which

the relation between the abscissa AD and the ordinate GD is expressed,
those indetermined lines AD and DG rise no higher than to one dimen-

v v xu- ,.
OA X AB . OA X dg

sion, by writing this equation . m place of AD, and -.
-

in place of DG, a new equation will be produced, in which the new ab

scissa ad and new ordinate dg rise only to one dimension
;
and which

therefore must denote a right line. But if AD and DG (or either of

them) had risen to two dimensions in the first equation, ad and dg would

likewise have risen to tAvo dimensions in the second equation. And so on

in three or more dimensions. The indetermined lines, ad
} dg in the

second equation, and AD, DG, in the first, will always rise to the same

number of dimensions
;
and therefore the lines in which the points G, g,

are placed are of the same analytical order.

I say farther, that if any right line touches the curve line in the first

figure, the same right line transferred the same way with the curve into

the new figure will touch that curve line in the new figure, and vice versa.

For if any two points of the curve in the first figure are supposed to ap

proach one the other till they come to coincide, the same points transferred

will approach one the other till they come to coincide in the new figure ;

and therefore the right lines with which those points are joined will be

come together tangents of the curves in both figures. I might have given
demonstrations of these assertions in a more geometrical form

;
but I study

to be brief.

Wherefore if one rectilinear figure is to be transformed into another, we

need only transfer the intersections of the right lines of which the first

figure consists, and through the transferred intersections to draw right lines

in the new figure. But if a curvilinear figure is to be transformed, we

must transfer the points, the tangents, and other right lines, by means of

which the curve line is denned. This Lemma is of use in the solution of

the more difficult Problems
;
for thereby we maj transform the proposed

figures, if they are intricate, into others that are more simple. Thus any

right lines converging to a point are transformed into parallels, by taking
for the first ordinate radius any right line that passes through the point

of concourse of the converging lines, and that because their point of con-
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course is by this means made to go off in infinitum ; and parallel lines

are such as tend to a point infinitely remote. And after the problem is

solved in the new figure, if by the inverse operations we transform the

new into the first figure, we shall have the solution required.

This Lemma is also of use in the solution of solid problems. For as

often as two conic sections occur, by the intersection of which a problem

may be solved, any one of them may be transformed, if it is an hyperbola

or a parabola, into an ellipsis, and then this ellipsis may be easily changed

into a circle. So also a right line and a conic section, in the construc

tion of plane problems, may be transformed into a right line and a circle

PROPOSITION XXV. PROBLEM XVII.

To describe a trajectory that shall pass through two given points, and

touch three right lines given by position.

Through the concourse of any two of the tangents one with the other,

and the concourse of the third tangent with the right line which passes

through the two given points, draw an indefinite right line
; and, taking

this line for the first ordinate radius, transform the figure by the preceding

Lemma into a new figure. In this figure those two tangents will become

parallel to each other, and the third tangent will be parallel to the right

line that passes through the two given points. Suppose hi, kl to be those

two parallel tangents, ik the third tangent, and hi a right line parallel

thereto, passing through those points a, b,

through which the conic section ought to pass

in this new figure; and completing the paral-

lelogra n fiikl, let the right lines hi, ik, kl be

BO cut in c, d, e, that he may be to the square
root of the rectangle ahb, ic, to id, and ke to

kd. as the sum of the right lines hi and kl is

to the sum of the three lines, the first whereof

is the right line ik, and the other two are the

square roots of the rectangles ahb and alb ; and c, d, e, will be the points

of contact. For by the properties of the conic sections, he2 to the rectan

gle ahb, and ic
2
to id2

,
and ke2

to kd2
,
and el

2
to the rectangle alb, are all

in the same ratio
;
and therefore he to the square root of ahb, ic to id, ke

to kdj and el to the square root of alb, are in the subduplicate of that

ratio
;
and by composition, in the given ratio of the sum of all the ante

cedents hi + kl
y
to the sum of all the consequents ^/ahb -\- ik : *Jalb,

Wherefore from that given ratio we have the points of contact c, d, e, in

the new figure. By the inverted operations of the last Lemma, let those

points be transferred into the first figure, and the trajectory will be there

described by Prob. XIV. Q.E.F. But according as the points a, b, fall

between the points //, /,
or without taem, the points c, d, e, must be taken
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Cither between the points, h, i, k, /, or without them. If one of the points

a, b, falls between the points h, i, and the other xvithout the points h, I,

the Problem is impossible.

PROPOSITION XXVI. PROBLEM XVIII.

To describe a trajectory that shall pass through a given point, and touch

four right lines given by position.

From the common intersections, of any two

of the tangents to the common intersection of

the other two, draw an indefinite right line
;
and

taking this line for the first ordinate radius
;

/ x
s o

transform the figure (by Lem. XXII) into a new

figure, and the two pairs of tangents, each of

which before concurred in the first ordinate ra-

dius, will now become parallel. Let hi and kl, Al l\

ik and hi, be those pairs of parallels completing the parallelogram hikl.

And let p be the point in this new figure corresponding to the given point
in the first figure. Through O the centre of the figure draw pq.: and O?
being equal to Op, q will be the other point through which the conic sec

tion must pass in this new figure. Let this point be transferred, by the

inverse operation of Lem. XXII into the first figure, and there we shall

have the two points through which the trajectory is to be described. But

through those points that trajectory may be described by Prop. XVII.

LEMMA XXIII.

If two right lines, as AC, BD given by position, and terminating in

given points A, B, are in a given ratio one to the other, and the right

line CD, by which the, indetermined points C, D are joined is cut in

K in a given ratio ; I say, that the point K will be placed in a right

line given by position.

For let the right lines AC, BD meet in

E, and in BE take BG to AE as BD is to

AC, and let FD be always equal to the given

line EG
; and, by construction, EC will be

to GD, that is, to EF, as AC to BD, and

therefore in a given ratio
;
and therefore the %- ,.--- I \

triangle EFC will be given in kind. Let E K cT^&quot;^

CF be cut in L so as CL may be to CF in the ratio of CK to CD
;
and

because that is a given ratio, the triangle EFL will be given in kind, and

therefore the point L will be placed in the right line EL given by position.

Join LK, and the triangles CLK, CFD will be similar
;
and because FD

is a given line, and LK is to FD in a given ratio, LK will be also given
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To this let EH be taken equal, and ELKH will be always a parallelogram.

And therefore the point K is always placed in the side HK (given by po

tiition) of that parallelogram. Q.E.D.

COR. Because the figure EFLC is given in kind, the three right lines

EF, EL, and EC, that is, GD, HK, and EC, will have given ratios to

each other.

LEMMA XXIV.

If three right lines, two whereof are parallel, and given by position, touch

any conic section ; I say, that the semi-diameter of the section wkiJt

is parallel to those two is a mean proportional between the segments

of those two that are intercepted between thepoints of contact and the.

third tangent.

Let AF, GB be the two parallels touch

ing the conic section ADB in A and B
;

EF the third right line touching the conic

section in I, and meeting the two former

tangents in F and G, and let CD be the

semi-diameter of the figure parallel to

those tangents ;
I say. that AF, CD, BG

are continually proportional.

For if the conjugate diameters AB, DM G Q

meet the tangent FG in E and H, and cut one the other in C
;
and the

parallelogram IKCL be completed ;
from the nature of the conic sections,

EC will be to CA as CA to CL
;
and so by division, EC CA to CA -

CL, orEAto AL; and by composition, EA to EA + AL or EL, as EC to

EC+CA or EB
;
and therefore (because of the similitude of the triangles

EAF, ELI, ECH, EBG) AF is to LI as CH to BG. Likewise, from tli?

nature of the conic sections, LI (or CK) is to CD as CD to CH
;
and

therefore (ex aquo pertnrhatfy AF is to CD as CD to BG. Q.E.D.
COR. 1. Hence if two tangents FG, PQ, meet two parallel tangents AF,

BG in F and G, P and Q,, and cut one the other in O; AF (ex cequo per-
tnrbot,

)
will be to BQ as AP to BG, and by division, as FP to GQ, and

therefore as FO to OG.
COR. 2. Whence also the two right lines PG, FQ, drawn through the

points P and G, F and Q, will meet in the right line ACB passing through
the centre of the figure and the points of contact A, B.

LEMMA XXV.

Iffour sides of a parallelogram indefinitely produced touch any conic

section, and are cut by a fifth tangent ; I say, that, taking those seg
ments of any two conterminous sides that terminate in opposite angles

10
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of the parallelogram, either segment is to the side from which it is

cut off as that part of the other conterminous side which is intercepted
between the point of contact and the third side is to Uie other segment,
Let the four sides ML, IK, KL, MI,

of the parallelogram MLJK touch the

conic section in A, B, C, I)
;
and let the

fifth tangent FQ cut those sides in F,

Q, H, and E : and taking the segments

ME, KQ of the sides Ml, KJ, or the

segments KH, MF of the sides KL,

ML, 1 s/.y, that ME is to MI as BK to

KQ; and KH to KL as AM to MF.

For, by Cor. 1 of the preceding Lemma, ME is to El as (AM or) BK to

BQ
; and, by composition, ME is to MI as BK to KQ. Q.E.D. Also

KH is to HL as (BK or) AM to AF
;
and by division, KH to KL as AM

to MF. Q.E.D.

COR. 1. Hence if a parallelogram IKLM described about a given conic

section is given, the rectangle KQ X ME, as also the rectangle KH X ME

equal thereto, will be given. For, by reason of the similar triangles KQH
MFE, those rectangles are equal.

COR. 2. And if a sixth tangent eq is drawn meeting the tangents Kl.

MI in q and e, the rectangle KQ X ME will be equal to the rectangle

K&amp;lt;/
X Me, and KQ will be to Me as Kq to ME, and by division ns

Q? to Ee.

COR. 3. Hence, also, if
E&amp;lt;?, eQ, are joined and bisected, and a right line

is drawn through the points of bisection, this right line will pass through

the centre of the conic section. For since
Q&amp;lt;/

is to Ee as KQ to Me, the

same right line will pass through the middle of all the lines Eq, eQ, MK
(by Lem. XXIII), and the middle point of the right line MK is the

centre of the section.

PROPOSITION XXVII. PROBLEM XIX.

To describe a trajectory that may touch jive right lines given by position.

Supposing ABG
; BCF,

GCD, FDE, EA to be the

tangents given by position.

Bisect in M and N, AF, BE,
the diagonals of the quadri

lateral

tained

figure

under

ABFE con-

any four of

them
;
and (by Cor. 3, Lem.

XXV) the right line MN
draAvn through the points (,f
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bisection will pass through the centre of the trajectory. Again, bisect in

P and Q, the diagonals (if I may so call them) Bl), GF of the quadrila
teral figure EC OF contained under any other four tangents, and the right

line PQ, drawn through the points of bisection will pass through the cen

tre of the trajectory ;
and therefore the centre will be given in the con

course of the bisecting lines. Suppose it to be O. Parallel to any tan

gent BG draw KL at such distance that the centre O may be placed in the

middle between the parallels; this KL will touch the trajectory to be de

scribed. Let this cut any other two tangents GCD, FJ)E, in L and K.

Through the points G and K, F and L, where the tangents not parallel,

CL, FK meet the parallel tangents CF, KL, draw GK, FL meeting in

K
;
and the right line OR drawn and produced, will cut the parallel tan

gents GF, KL, in the points of contact. This appears from Gor. 2, Lem.

XXIV. And by the same method the other points of contact may be

found, and then the trajectory may be described by Prob. XIV. Q.E.F.

SCPIOLTUM.

Under the preceding Propositions are comprehended those Problems

wherein either the centres or asymptotes of the trajectories are given. For

when points and tangents and the centre are given, as many other points

and as many other tangents are given at an equal distance on the other

side of the centre. And an asymptote is to be considered as a tangent, ami

its infinitely remote extremity (if we may say so) is a point of contact.

Conceive the point of contact of any tangent removed in infinitum, and

the tangent will degenerate into an asymptote, and the constructions of

the preceding Problems will be changed into the constructions of those

Problems wherein the asymptote is given.

After the trajectory is described, we may
find its axes and foci in this manmr. In the

construction and figure of Lem. XXI, let those ,

legs BP, CP, of the moveable angles PEN, ^

PCN, by the concourse of which the trajec- \

tory was described, be made parallel one to

the other : and retaining that position, let

them revolve about their poles I
, C, in that

figure. In the mean while let the other legs

GN, BN, of those angles, by their concourse

K or k, describe the circle BKGC. Let O be the centre of this circle;

and from this centre upon the ruler MN, wherein those legs CN, BN did

concur while the trajectory was described, let fall the perpendicular OH
meeting the circle in K and L. And when those other legs CK, BK meet

in the point K that is nearest to the ruler, the first legs CP, BP will be

parallel to the greater axis, and perpendicular on the lesser
;
and the con-
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trary will hajpen if those legs meet in the remotest point L. Whence ii

the centre of the trajectory is given, the axes will be given ;
and those be-

ing given, the foci will be readily found.

But the squares of the axes are one to the

other as KH to LH, and thence it is easy to

describe a trajectory given in kind through
fmr given points. For if two of the given

points are made the poles C, 13, the third will

give the moveable angles PCK, PBK ;
but

those being given, the circle BGKC may be

described. Then, because the trajectory is

given in kind, the ratio of OH to OK, and

and therefore OH itself, will be given. About
the centre O, with the interval OH, describe another circle, and the right
line that touches this circle, and passes through the concourse of the legs

CK, BK, when the first legs CP;
BP meet in the fourth given point, will

be the ruler MN, by means of which the trajectory may be described

Whence also on the other hand a trapezium given in kind (excepting a

few cases that are impossible) may be inscribed in a given conic section.

There are also other Lemmas, by the help of which trajectories given in

kind may be described through given points, and touching given lines.

Of such a sort is this, that if a right line is drawn through any point

given by position, that may cut a given conic section in two points, and

the distance of the intersections is bisected, the point of bisection will

to ich ano her conic section of the same kind with the former, arid havin^

its axes parallel to the axes of the former. But I hasten to things of

greater use.

LEMMA XXVI.

To place 1ht lit rev angles of a triangle, given both in kind and magni
tude, in, respect of as many rigid lines given by position, -provided th\]

are not all parallel among themselves, in such manner tfia t jic spiral

angles may touch the several lines.

Three indefinite right lines AB, AC, BC, are

given by position, and it is required so to place

the triangle DEF that its angle 1) may touch

the line AB, its angle E the line AC, and

its angle F the line BC. Upon DE, DF, and

EF, describe three segments of circles DRE,
DGF. EMF, capable of angles equal to the

Rubles BAG, ABC, ACB respectively. But those segments are to be de

scribed t wards such sides of the lines DE, DF
;
EF

;
that the letters
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DRED may turn round about in the same order with the letters I1ACB :

the letters DGFD in the same order with the letters ABCA
;
and the

letters EMFE in the same order with the letters ACBA
; then, completing

th se segmerts into entire circles let the two former circles cut one the

other in G, and suppose P and Q to be their centres. Then joining GP,

PQ, take Ga to AB as GP is to PQ
;
and about the centre G, with the

interval Ga, describe a circle that may cut the first circle DGE in a.

Join aD cutting the second circle DFG in b, as well as aE cutting the

third circle EMF in c. Complete the figure ABCdef similar and equal
to the figure a&cDEF : I say, the thing is done.

For drawing Fc meeting D in n,

and joining aG
; bG, QG, QD. PD, by

construction the angle EaD is equal to

the angle CAB, and the angle acF equal
to the angle ACB; and therefore the

triangle aiic equiangular to the triangle

ABC. Wherefore the angle anc or FnD
is equal to the angle ABC, and conse-

&amp;lt; uently to the angle F/&amp;gt;D
;
and there

fore the point n falls on the point b,

Moreover the angle GPQ, which is half

the angle GPD at the centre, is equal
to the angle GaD at the circumference \

and the angle GQP, which is half the angle GQD at the centre, is equal

to the complement to two right angles of the angle GbD at the circum

ference, and therefore equal to the angle Gba. Upon which account the

triangles GPQ, Gab, are similar, and Ga is to ab as GP to PQ.
;
that is

(by construction), as Ga to AB. Wherefore ab and AB are equal; and

consequently the triangles abc, ABC, which we have now proved to be

similar, are also equal. And therefore since the angles I), E, F, of the

triangle DEF do respectively touch the sides ab, ar, be of the triangle
afjc

/
the figure AECdef may be completed similar and equal to the figure

afrcDEFj and by completing it the Problem will be solved. Q.E.F.

COR. Hence a right line may be drawn whose parts given in length may
be intercepted between three right lines given by position. Suppose the

triangle DEF, by the access of its point D to the side EF, arid by having
the sides DE, DF placed i&amp;gt;t directum to be changed into a right line

whose given part DE is to be interposed between the right lines AB
;
AC

given by position; and its given part DF is to be interposed between the

right lines AB
; BC, given by position; then, by applying the preceding

construction to this case, the Problem will be solved.
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PROPOSITION XXVIII. PROBLEM XX.
To describe a trajectory giren both in kind and magnitude, given parts

of which shall be interposed between three right lines given by position.

Suppose a trajectory is to be described that

may be similar and equal to the curve line DEF,
-and may be cut by three right lines AB, AC,
BC, given by position, into parts DE and EF,
similar and equal to the given parts of this

curve line.

Draw the right lines DE, EF, DF: and

place the angles D, E, F, of this triangle DEF, so

as to touch those right lines given by position (by
Lem. XXVI). Then about the triangle describe

the trajectory, similar and equal to the curve DEF.
Q.E.F.

LEMMA XXVII.
To describe a trapezium given in kind, the angles whereof may be ,

placed, in respect offour right lines given by position, that are neither

all paralhl among themselves, nor converge to one common point, //////

the several angles may touch the several lines.

Let the four right lines ABC, AD, BD, CE, be

given by position ;
the first cutting the second in A,

the third in B, and the fourth in C and suppose a

trapezium fghi is to be described that may be similar

to the trapezium FCHI, and whose angle /, equal to

the given angle F, may touch the right line ABC
;
and

(lie other angles g, h, i, equal to the other given angles,

G, H, I, may touch the other lines AD, BD, CE, re

spectively. Join FH, and upon FG. FH, FI describe J%
as many segments of circles FSG, FTH, FVI, the first

of which FSG may be capable of an angle equal to

the angle BAD ;
the second FTH capable of an angle

equal to the angle CBD ;
and the third FVI of an angle equal to the angle

ACE. Bnrf&amp;gt;, the segments are to be described towards those sides of the

lines FG, FH, FI, that the circular order of the letters FSGF may be

the same as of the letters BADB, and that the letters FTHF may turn

.ibout in the same order as the letters CBDC and the letters FVIF in the

game order as the letters ACEA. Complete the segments into entire cir

cles, and let P be the centre of the first circle FSG, Q, the centre of the

second FTH. Join and produce both ways the line PQ,, and in it take

QR in the same ratio to PQ as BC has to AB. But QR is to be taken

towards that side of the point Q that the order of the letters P, Q,, R
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may be the same as of the letters A, B, C ;

and about the centre R with the interval

RF describe a fourth circle FNc cutting

(lie third circle FVI in c. Join Fc1 cut

ting the first circle in a, and the second in

/ . Draw aG, &H, cl, and let the figure

ABC/ 4f/ii
be made similar to the figure

w^cFGHI; and the trapezium fghi will

be that which was required to be de

scribed.

For let the two first circles FSG, FTH
cut one the other in K

; join PK, Q,K,

RK, &quot;K, 6K, cK, and produce QP to L.

The angles FaK, F6K, FcK at the circumferences are the halves of the

angles FPK, FQK, FRK, at the centres, and therefore equal to LPK,
LQ.K, LRK, the halves of those angles. Wherefore the figure PQRK is

iquiangular and similar to the figure 6cK, and consequently ab is to be

res PQ, to Q,R, that is, as AB to BC. But by construction, the angles

Air, /B//,/C? ,
are equal to the angles FG, F&H, Fcl. And therefore

the figure ABCfghi may be completed similar to the figure abcFGHl.
vVliich done a trapezium fghi will be constructed similar to the trapezium

FGHI, and which by its angles/, g, h, i will touch the right lines ABC,
AD, BD, CE. Q.E.F.

COR. Hence a right line may be drawn whose parts intercepted in a

given order, between four right lines given by position, shall have a given

proportion among themselves. Let the angles FGH, GHI, be so far in

creased that the right lines FG, GH, HI, may lie in directum ; and by

constructing the Problem in this case, a right line fghi will be drawn,
whose parts fg, gh, hi, intercepted between the four right lines given by

position, AB and AD, AD and BD, BD and CE, will be one to another

as the lines FG, GH, HI, and will observe the same order among them

selves. But the same thing may be more readily done in this manner.

Produce AB to K and BD to L,

so as BK may be to AB as HI to

GH
;
and DL to BD as GI to FG;

and join KL meeting the right line

CE in i. Produce iL to M, so as

LM may be to iL as GH to HI
;

then draw MQ, parallel to LB, and

meeting the right line AD in g, and

join gi cutting AB, BD in f, h
;
I M*

say, the thing is done.

For let MO- cut the right line AB in Q, and AD the right line KL iu

II
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S, arid draw AP parallel to BD, and meeting iL in P, and -M to Lh (g\

to hi, Mi to Li, GI to HI, AK to BK) and AP to BL, will be in the same

ratio. Cut DL in 11, so as DL to RL may be in that same ratio; and be

cause ffS to g~M, AS to AP. and DS to DL are proportional; therefore

(ex ceqit.o)
as gS to LA, so will AS be to BL, and DS to RL

;
and mixtly.

BL RL to Lh BL, as AS DS to gS AS. That is, BR is to

Eh as AD is to Ag, and therefore as BD to gQ. And alternately BR is

to BD as 13/i to g-Q,, or asfh to fg. But by construction the line BL
was cut in D and R in the same ratio as the line FI in G and H

;
and

therefore BR is to BD as FH to FG. Wherefore fh is to fg as FH to

FG. Since, therefore, gi to hi likewise is as Mi to Li, that is, as GI to

HI, it is manifest that the lines FI, fi, are similarly cut in G and H, g
and //.. Q.E.F.

In the construction of this Corollary, after the line LK is drawn cutting

CE in
i,
we may produce iE to V, so as EV may be to Ei as FH to HI,

arid then draw V/~ parallel to BD. It will come to the same, if about the

centre i with an interval IH, we describe a circle cutting BD in X, and

produce iX to Y so as iY may be equal to IF, and then draw Yf parallel

to BO.
Sir Christopher Wren and Dr. Wallis have long ago given other solu

tions of this Problem.

PROPOSITION XXIX. PROBLEM XXI.

To describe a trajectory given in kind, that may be cut by four right

lines given by position, into parts given in order, kind, and proportion.

Suppose a trajectory is to be described that may be

similar to the curve line FGHI, and whose parts,

similar and proportional to the parts FG, GH, HI of

the other, may be intercepted between the right lines

AB and AD, AD, and BD, BD and CE given by po

sition, viz., the first between the first pair of those lines,

the second between the second, and the third between

the third. Draw the right lines FG, GH, HI, FI;

and (by Lem. XXVII) describe a trapezium fghi that

may be similar to the trapezium FGHI, and whose an

gles/, g, h, i, may touch the right lines given by posi

tion AB, AD, BD, CE, severally according to their order. And then about

bins trapezium describe a trajectory, that trajectory will be similar to the

curve line FGHI.

SCHOLIUM.

This problem may be likewise constructed in the following manner.

Joining FG, GH, HI, FI, produce GF to Y, and join FH, IG, and make
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El

the angles CAK. DAL equal to

the angles PGH, VFH. Let

AK, AL meet the right line

BD in K and L, and thence

draw KM, LN, of which let

KM make the angle AKM equal

to the angle CHI, and be itself

to AK as HI is to GH
;
and let

LN make the angle ALN equal to the angle FHI, and be itself

to AL as HI to FH. But AK, KM. AL, LN are to be drawn

towards those sides of the lines AD, AK, AL, that the letters

OA.KMC, ALKA, DALND may be carried round in the same

order as the letters FGHIF
;
and draw MN meeting the right v

line CE in L Make the angle iEP equal to the angle IGF,
and let PE be to Ei as FG to GI

;
and through P draw PQ/ that may

with the right line ADE contain an angle PQE equal to the angle FIG,
and may meet the right line AB in /, and join fi. But PE and PQ arc-

to be drawn towards those sides of the lines CE, PE, that the circular

order of the letters PEtP and PEQP may be the same as of the letters

FGHIF
;
and if upon the line/i, in the same order of letters, and similar

to the trapezium FGHI, a trapezium /^//.i is constructed, and a trajectory

given in kind is circumscribed about it, the Problem will be solved.

So far concerning the finding of the orbits. It remains that we deter

mine the motions of bodies in the orbits so found.

SECTION VI.

How the motions are to be found in given, orbits.

PROPOSITION XXX. PROBLEM XXII.

To find at any assigned time the place of a body moving in, a given

parabolic trajectory.

Let S be the focus, and A the principal vertex of

the parabola; and suppose 4AS X M equal to the

parabolic area to be cut off APS, which either was

described by the radius SP, since the body s departure
from the vertex, or is to be described thereby before

its arrival there. Now the quantity of that area to

be cut off is known from the time which is propor
tional to it. Bisect AS in G, and erect the perpendicular GH equal to

3M, and a circle described about th j centre H, with the interval HS, will

cut the parabola in the place P required. For letting fall PO perpendic
ular on the axis, and drawing PH, there will be AG 2

-f- GH2
(=.= HP2 -_

AO^TAGJ* + PO GH|
2

)
= AO2 + PO2 2CA &amp;gt; ?G!I f PO

A G S
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AG* + GH2
. Whence 2GH X PO

(
AO2 + PO2

2GAO) = AOJ

PO2

-f
|
PO 2

. For AO2 write AO X
;

then dividing all the terms by

2PO
;
and multiplying them by 2AS, we shall have ^GH X AS (= IAO

the area APO SPO)| = to the area APS. But GH was 3M, and
therefore ^GH X AS is 4AS X M. Wherefore the area cut off APS is

equal to the area that was to be cut off 4AS X M. Q.E.D.
Con. 1. Hence GH is to AS as the time in which the body described

the arc AP to the time in which the body described the arc between the

vertex A and the perpendicular erected from the focus S upon the axis.

COR. 2. And supposing a circle ASP perpetually to pass through the

moving body P, the xelocity of the point H is to the velocity which the

body had in the vertex A as 3 to 8; and therefore in the same ratio is

the line GH to the right line which the body, in the time of its moving
from A to P, would describe with that velocity which it had in the ver

tex A.

COR. 3. Hence, also, on the other hand, the time may be found in which

the body has described any assigned arc AP. Join AP, and on its middle

point erect a perpendicular meeting the right line GH in H,

LEMMA XXVIII.

There is no ovalfigure whose area, cut off by right lines at pleasure, can,

be universally found by means of equations of any number of finite

terms and dimensions.

Suppose that within the oval any point is given, about which as a pole

a right line is perpetually revolving with an uniform motion, while in

that right line a mov cable point going out from the pole moves always
forward with a velocity proportional to the square of that right line with

in the oval. By this motion that point will describe a spiral with infinite

circumgyrations. Now if a portion of the area of the oval cut off by that

right line could be found by a finite equation, the distance of the point

from the pole, which is proportional to this area, might be found by the

same equation, and therefore all the points of the spiral might be found

by a finite equation also
;
and therefore the intersection of a right line

given in position with the spiral might also be found by a finite equation.

But every right line infinitely produced cuts a spiral in an infinite num

ber of points ;
and the equation by which any one intersection of two lines

is found at the same time exhibits all their intersections by as many roots,

and therefore rises to as many dimensions as there are intersections. Be

cause two circles mutually cut one another in two points, one of those in-
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terscctions is not to be found but by an equation of two dimensions, fo

which the other intersection may be also found. Because there may b(-

four intersections of two conic sections, any one of them is not to be found

universally, but by an equation of four dimensions, by which they may bi&amp;gt;

all found together. For if those intersections are severally sought, be

cause the law and condition of all is the same, the calculus will be the

same in every case, and therefore the conclusion always the same, which

must therefore comprehend all those intersections at once within itself, and

exhibit them all indifferently. Hence it is that the intersections of the

conic se&quot;
fions with the curves of the third order, because they may amount

to six, (\,me out together by equations of six dimensions
;
and the inter

sections of two curves of the third order, because they may amount to nine,

come out together by equations of nine dimensions. If this did not ne

cessarily happen, we might reduce all solid to plane Problems, and those

higher than solid to solid Problems. But here i speak of curves irreduci

ble in power. For if the equation by which the curve is defined may bo

reduced to a lower power, the curve will not be one single curve, but com

posed of two, or more, whose intersections may be severally found by different

calculusses. After the same manner the two intersections of right lines

with the conic sections come out always by equations of two dimensions
;
the

three intersections of right lines with the irreducible curves of the third

urder by equations of three dimensions
;
the four intersections of right

lines with the irreducible curves of the fourth order, by equations of four

dimensions
;
and so on in iitfinitum. Wherefore the innumerable inter

sections of a right line with a spiral, since this is but one simple curve

and not reducible to more curves, require equations infinite in r- .imber of

dimensions and roots, by which they may be all exhibited together. For

the law and calculus of all is the same. For if a perpendicular is let fall

from the pole upon that intersecting right line, and that perpendicular

together with the intersecting line revolves about the pole, the intersec

tions of the spiral will mutually pass the one into the other
;
and that

which was first or nearest, after one revolution, will be the second
;
after

two, the third
;
and so on : nor will the equation in the mean time be

changed but as the magnitudes of those quantities are changed, by which

the position of the intersecting line is determined. Wherefore since those

quantities after every revolution return to their first magnitudes, the equa
tion will return to its first form

;
and consequently one and the same

equation will exhibit all the intersections, and will therefore have an infi

nite number of roots, by which they may be all exhibited. And therefore

the intersection of a right line with a spiral cannot be universally found by

any finite equation ;
and of consequence there is no oval figure whose area,

cut off by right lines at pleasure, can be universally exhibited by an^

such equation.
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By the same argument, if the interval of the pole and point by which

the spiral is described is taken proportional to that part of the perimeter
of the oval which is cut off, it may be proved that the length of the peri

meter cannot be universally exhibited by any finite equation. But here I

speak of ovals that are not touched by conjugate figures running out in

infinitvm.

COR. Hence the area of an ellipsis, described by a radius drawn from

the focus to the moving body, is not to be found from the time given by a

finite equation ;
and therefore cannot be determined by the description ol

curves geometrically rational. Those curves I call geometrically rational,

all the points whereof may be determined by lengths that are definable

by equations ;
that is, by the complicated ratios of lengths. Other curves

(such as spirals, quadratrixes, and cycloids) I call geometrically irrational.

For the lengths which are or are not as number to number (according to

the tenth Book of Elements) are arithmetically rational or irrational.

And therefore I cut off an area of an ellipsis proportional to the time in

which it is described by a curve geometrically irrational, in the following
manner.

PROPOSITION XXXI. PROBLEM XXIII.

Tofind the place of a body moving in a given elliptic trajectory at any

assigned time.

Suppose A to be

the principal vertex,

S the focus, and O
the centre of the

ellipsis APB
;

and

let P be the place of

the body to be found.

Produce OA to G so

as OG may be to OA
as OA to OS. Erect

the perpendicular GH; and about the centre O, with the interval OG, de

scribe the circle*GEF
;
and on the ruler GH, as a base, suppose the wheel

GEF to move forwards, revolving about its axis, and in the mean time by

its point A describing the cycloid ALL Which done, take GK to the

perimeter GEFG of the wheel, in the ratio of the time in which the body

proceeding from A described the arc AP, to the time of a whole revolution

in the ellipsis. Erect the perpendicular KL meeting the cycloid in L ;

then LP drawn parallel to KG will meet the ellipsis in P, the required

place of the body.

For about the centre O with the interval OA describe the semi-circle

AQB, and let LP, produced, if need be, meet the arc AQ, in Q, and join
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SQ, OQ. Let OQ meet the arc EFG in F, and upon OQ let fall the

perpendicular Sll. The area APS is as the area AQS, that is, as tlie

difference between the sector OQA and the triangle OQS, or as the difLi-

ence of the rectangles *OQ, X AQ, and -J.OQ X SR, that is, because .
&amp;gt;,_

is given, as the difference between the arc AQ and the right line Sll : ai.;l

therefore (because of the equality of the given ratios SR to the sine of the

arc AQ,, OS to OA, OA to OG, AQ to GF; and by division, AQ Sii

to GF sine of the arc AQ) as GK, the difference between the arc C 1

and tlie sine of the arc AQ. Q.E.D.

SCHOLIUM.

But since the description of this curve

is difficult, a solution by approximation

will be preferable. First, then, let there

be found a certain angle B which may
be to an angle of 57,29578 degrees,

which an arc equal to the radius subtends,

as SH, the distance of the foci, to AB,
the diameter of the ellipsis. Secondly, a certain length L, which may be to

the radius in the same ratio inversely. And these being found, the Problem

may be solved by the following analysis. By any construction (or even

by conjecture), suppose we know P the place of the body near its true

place jo.
Then letting fall on the axis of the ellipsis the ordinate PR

from the proportion of the diameters of the ellipsis, the ordinate RQ of

the circumscribed circle AQB will be given ;
which ordinate is the sine of

the angle AOQ, supposing AO to be the radius, and also cuts the ellipsis

in P. It will .be sufficient if that angle is found by a rude calculus in

numbers near the truth. Suppose we also know the angle proportional to

the time, that is, which is to four right a iules as the time in which tlie

body described the arc A/?, to the time of one revolution in the ellipsis.

Let this angle be N. Then take an angle D, which may be to the angle

B as the sine of the angle AOQ to the radius
;
and an angle E which

may be to the angle N AOQ -fD as the length L to the same length

L diminished by the cosine of the angle AOQ, when that angle is less

than a right angle, or increased thereby when greater. In the next

place, take an angle F that may be to the angle B as the sine of the angle

1OQ H- E to the radius, and an angle G, that may be to the angle N-
AOQ E -f F as the length L to the same length L diminished by the

cosine of the angle AOQ + E, when that angle is less than a right angle,

or increased thereby when greater. For the third time take an angle H,
that may be to the angle B as the sine of the angle AOQ f- E 4- G to the

radius; and an angle I to the angle N AOQ E G -f- H, as the
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length L is to the same length L diminished by the cosine of the angle

AOQ -f- E + G, when that angle is less than a right angle, or increased

thereby when greater. And so we may proceed in infinitum. Lastly,

take the angle AOy equal to the angle AOQ -f-
E 4- G + I -\-}

&c. and

from its cosine Or and the ordinatejor, which is to its sine qr as the lesser

axis of the ellipsis to the greater, \\ e shall have p the correct place of the

body. When the angle N AOQ, -f D happens to be negative, the

sign -|- of the angle E must be every where changed into
,
and the sign

into +. And the same thing is to be understood of the signs of the angles

G and I, when the angles N AOQ E -f F, and N AOQ E
G + H come out negative. But the infinite series AOQ -f- E -f- G -|- I +,
&c. converges so very fast, that it will be scarcely ever needful to pro

ceed beyond the second term E. And the calculus is founded upon
this Theorem, that the area APS is as the difference between the arc

AQ and the right line let fall from the focus S perpendicularly upon the

radius OQ.
And by a calculus not unlike, the Problem

is solved in the hyperbola. Let its centre be

O, its vertex A, its focus S, and asymptote
OK

;
and suppose the quantity of the area to

be cut off is known, as being proportional to

the time. Let that be A, and by conjecture

suppose we know the position of a rij;ht i ne

SP, that cuts off an area APS near the truth.

Join OP, and from A and P to the asymptote
T A S

draw AI, PK parallel to the other asymptote ;
and by the table of loga

rithms the area AIKP will be given, and equal thereto the area OPA,
which subducted from the triangle OPS, will leave the area cut off APS.
And by applying 2APS 2A, or 2A 2A PS, the double difference of

the area A that was to be cut off, and the area APS that is cut off, to the

line SN that is let fall from the focus S, perpendicular upon the tangent

TP, we shall have the length of the chord PQ. Which chord PQ is to

be inscribed between A and P, if the area APS that is cut off be greater

than the area A that was to be cut off, but towards the contrary side of the

point P, if otherwise : and the point Q will be the place of the body more

accurately. And by repeating the computation the place may be found

perpetually to greater and greater accuracy.

And by such computations we have a general

analytical resolution of the Problem. But the par

ticular calculus that follows is better fitted for as

tronomical purposes. Supposing AO, OB, OD, to

be the semi-axis of the ellipsis, and L its latus rec

tum, and D the difference betwixt the lesser semi-
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axis OD, and -,L the half of the latus rectum : let an angle Y be found, whose

sine may be to the radius as the rectangle under that difference J), and

AO 4- OD the half sum of the axes to the square of the greater axis AB.

Find also an angle Z, whose sine may be to the radius as the double rec

tangle under the distance of the foci SH and that difference D to triple

the square of half the greater semi-axis AO. Those angles being once

found, the place of the body may be thus determined. Take the angle T
proportional to the time in which the arc BP was described, or equal to

what is called the mean motion
;
and an angle V the first equation of thr

mean motion to the angle Y, the greatest first equation, as the sine of

double the angle T is to the radius
;
and an angle X, the second equation,

to the angle Z, the second greatest equation, as the cube of the sine of the

angle T is to the cube of the radius. Then take the angle BHP the mean

motion equated equal to T + X + V, the sum of the angles T, V. X,

if the angle T is less than a right angle; or equal to T + X V, the

difference of the same, if that angle T is greater than one and less than

two right angles ;
and if HP meets the ellipsis in P, draw SP, and it will

cut off the area BSP nearly proportional to the time.

This practice seems to be expeditious enough, because the angles V and

X, taken in second minutes, if you please, being very small, it will be suf

ficient to find two or three of their first figures. But it is likewise

sufficiently accurate to answer to the theory of the planet s motions.

For even in the orbit of Mars, where the greatest equation of the centre

amounts to ten degrees, the error will scarcely exceed one second. But

when the angle of the mean motion equated BHP is found, the angle oi

the true motion BSP, and the distance SP, are readily had by the known

methods.

And so far concerning the motion of bodies in curve lines. But it mav
also come to pass that a moving body shall ascend or descend in a right

line : and I shall now go on to explain what belongs to such kind of

motions.

SECTION VII.

Concerning the rectilinear ascent and descent of bodies,

PROPOSITION XXXII. PROBLEM XXIV.

Supposing that the centripetal force is reciprocally proportional to tht

square of tlie distance of the places from the centre ; it is required
to define the spaces which a body, falling directly, describes in given
times.

CASE 1. If the body does not fall perpendicularly, it will (by Cor. I
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Prop. XIII) describe some conic section whose focus is A

placed in the centre of force. Suppose that conic sec

tion to be ARPB and its focus S. And, first, if the

figure be an ellipsis, upon the greater axis thereof AB
describe the semi-circle ADB, and let the right line

I) PC pass through the falling body, making right angles

with the axis; and drawing DS, PS, the area ASD will c

be proportional to the area ASP, and therefore also to

the time. The axis AB still reaiaining the same, let the

breadth of the ellipsis be perpetually diminished, and s

the area ASD will always remain proportional to the

time. Suppose that breadth to be diminished in, in fruitum ; and the orbit

APB in that case coinciding with the axis AB, and the focus S with the

extreme point of the axis B, the body will descend in the right line AC 1

.

and the area ABD will become proportional to the time. Wherefore the

space AC will be given which the body describes in a given time by its-

perpendicular fall from the place A, if the area ABD is taken proportional

to the time, and from the point D the right line DC is let fall perpendic

ularly on the right line AB. Q,.E.I.

CASE 2. If the figure RPB is an hyperbola, on the

same principal diameter AB describe the rectangular

hyperbola BED ;
and because the areas CSP, CB/P,

SPy13, are severally to the several areas CSD, CBED,
SDEB, in the given ratio of the heights CP, CD, and

the area SP/B is proportional to the time in which

the body P will move through the arc P/B. the area

SDEB will be also proportional to that time. Let

the latus rectum of the hyperbola RPB be diminished

in infitiitum, the latus transversum remaining the

same; and the arc PB will come to coincide with the

right line CB, and the focus S, with the vertex B, A-

and the right line SD with the right line BD. And therefore the area

BDEB will be proportional to the time in which the body C, by its per

pendicular descent, describes the line CB. Q.E.I.

CASE 3. And by the like argument, if the figure

RPB is a parabola, and to the same principal ver

tex B another parabola BED is described, that

may always remain given while the former para
bola in whose perimeter the body P moves, by

having its latus rectum diminished and reduced

to nothing, comes to coincide with the line CB,
the parabolic segment BDEB will be proportional if

to the time in which that body P or C will descend to the centre S or B
Q.K.T
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PROPOSITION XXXIII. THEOREM IX.

The tilings above found being supposed. I say, thai the, velocity of a Jai

ling body in any place C is to the velocity of a body, describing a

circle about the centre B at the distance BC, in, the subduplicate ratio

of AC, the distance of the body from the remoter vertex A of the circle

or rectangular hyperbola, to iAB, the principal semi-diameter of the

Let AB, the common dia

meter of both figures RPB,
DEB, be bisected in O; and

draw the right line PT that

may touch the figure RPB
in P, and likewise cut that

common diameter AB (pro

duced, if need be) in T; and

let SY be perpendicular to

this line, and BQ to this di

ameter, and suppose the latus

rectum of the figure RPB to

be L. Prom Cor. 9, Prop.

XVI, it is manifest that the

velocity of a body, moving
in the line RPB about the

centre S, in any place P, is

to the velocity of a body describing a circle about the same centre, at the

distance SP, in the subduplicate ratio of the rectangle L X SP to SY 2

Por by the properties of the conic sections ACB is to CP 2
as 2AO to L.

2CP 5 X AO
and therefore rrrr; is equal to L. Therefore those, velocities an

o--

ACB

to each other in the subduplicate ratio of
CP 3 X AO X SP

ACB
toSY~. More

over, by the properties of the conic sections, CO is to BO as BO to TV.?

and (by composition or division) as CB to BT. Whence (by division cs

composition) BO or + CO will be to BO as CT to BT, that is, AC
CP2 X AO X SP

ACB&quot;
is equal towill be to AO as CP to BQ; and therefore

~AO X BC * ^ W suPPose GV, tne breadth of the figure RPB, to

be diminished in infinitum, so as the point P may come to coincide with

the point C, and the point S with the point B. and the line SP with the

line BC, and the line SY with the line BQ; and the velocity of the body
now descending perpendicularly in the line CB will be to the velocity of

11
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a body describing a circle about the centre B, at the distance BC, in thr

BQ2 X AC X SP
subduplicate ratio of-

-r-^
-^- to SY2

,
that is (neglecting the ra-

X Jo

tios of equality of SP to BC, and BQ,2 to SY2
),

in the subduplicate ratio

of AC to AO, or iAB. Q.E.D.

COR. 1 . When the points B and S come to coincide, TC will become to

TS as AC to AO.
COR. 2. A body revolving in any circle at a given distance from the

centre, by its motion converted upwards, will ascend to double its distance

from the centre.

PROPOSITION XXXIV. THEOREM X.

If the. figure BED is a parabola, I say, that the velocity of a falling

body in any place C is equal to the velocity by which a body may
uniformly describe a circle about the centre B at half the interval BC
For (by Cor. 7, Prop. XVI) the velocity of a

body describing a parabola RPB about the cen

tre S, in any place P, is equal to the velocity of

a body uniformly describing a circle about the c

same centre S at half the interval SP. Let the

breadth CP of the parabola be diminished in

itifiiiitirni,
so as the parabolic arc P/B may come

to coincide with the right line CB, the centre S s

with the vertex B, and the interval SP with the

interval BC, and the proposition will be manifest. Q.E.D.

PROPOSITION XXXV. THEOREM XL
The same things supposed, I say, that the area of the figure DES, de

scribed by the indefinite radius SD, is equal to the area which a body

with a radius equal to h df the latus rectum of the figure DES, by

uniformly revolving about the centre S, may describe in the same tijiw.

1 JD/

AJ
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For suppose a body C in the smallest moment of time describes in fal

ling the infinitely little line Cc. while another body K, uniformly revolv

ing about the centre S in the circle OK/r, describes the arc KA:. Erect the

perpendiculars CD, cd, meeting the figure DES in D, d. Join SD, Sf/.

SK. SA*
;
and draw Del meeting the axis AS in T, and thereon let fall the

perpendicular SY.

CASE 1. If the figure DES is a circle, or a rectangular hyperbola, bisect

its transverse diameter AS in O, and SO will be half the latus rectum.

And because TC is to TD as Cc to Dd, and TD to TS as CD to SY
;

ex aquo TC will be to TS as CD X Cc to SY X Dd. But (by Cor. 1,

Prop. XXXIII) TC is to TS as AC to AO; to wit, if in the coalescence

of the points D, d, the ultimate ratios of the lines are taken. Wherefore

AC is to AO or SK as CD X Cc to SY X Vd, Farther, the velocity of

the descending body in C IF, to the velocity of a body describing a circle

about the centre S, at the interval SC, in the subduplicate ratio of AC to

AO or SK (by Pi-op. XXXIII) ;
and this velocity is to the velocity of a

body describing the circle OKA: in the subduplicate ratio of SK to SC

(by Cor. 6, Prop IV) ; and, ex aqnnj the first velocity to the last, that is,

the little line Cc to the arc K/r, in the subduplicate ratio of AC to SC,

that is, in the ratio of AC to CD. Wherefore CD X Cc is equal to AC
X KA*, and consequently AC to SK as AC X KA: to SY X IW. and

thence SK X KA: equal to SY X Drf, and iSK X KA: equal to SY X DC/,

that is, the area KSA* equal to the area SDrf. Therefore in every moment

of time two equal particles, KSA&quot; and SDrf, of areas are generated, which,

if their magnitude is diminished, and their number increased in iiifinif t-w,

obtain the ratio cf equality, and consequently (by Cor. Lem. IV), the whole

areas together generated are always equal. Q..E.D.

CASE 2. But if the figure DES is a

parabola, we shall find, as above. CD X
Cc to SY X Df/ as TC to TS, that is,

as 2 to 1
;
and that therefore |CD X Cc

is equal to i SY X Vd. But the veloc

ity of the falling body in C is equal to

the velocity writh which a circle may be

uniformly described at the interval 4SC

(by Prop&quot; XXXIV). And this velocity

to the velocity with which a circle may
be described with the radius SK, that is,

the little line Cc to the arc KA
,
is (by

Cor. 6, Prop. IV) in the subduplicate ratio of SK to iSC
;
that is, in the

ratio of SK to *CD. Wherefore iSK X KA: is equal to 4CD X Cc, and

therefore equal to SY X T)d ; that is, the area KSA* is equal to the area

SIW, as above. Q.E.D.
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PROPOSITION XXXVI. PROBLEM XXV.
To determine the times of the descent of a body fallingfrom

place A.

Upon the diameter AS, the distance of the body from the

centre at the beginning, describe the semi-circle ADS, as

likewise the semi-circle OKH equal thereto, about the centre

S. From any place C of the body erect the ordinate CD.
Join SD, and make the sector OSK equal to the area ASD.
It is evident (by Prop. XXXV) that the body in falling will

describe the space AC in the same time in which another body,

uniformly revolving about the centre S, may describe the arc

OK. Q.E.F. M

a given

PROPOSITION XXXVII. PROBLEM XXVI.

To define the times of the ascent or descent of a body projected upwards
or downwardsfrom a given place.

Suppose the body to go oif from the given place G, in the direction of

the line GS, with any velocity. In the duplicate ratio of this velocity to

the uniform velocity in a circle, with which the body may revolve about

\

H

D

the centre S at the given interval SG, take GA to AS. If that ratio is

the same as of the number 2 to 1, the point A is infinitely remote
;
in

which case a parabola is to be described with any latus rectum to the ver

tex S, and axis SG
;
as appears by Prop. XXXIV. But if that ratio is

less or greater than the ratio of 2 to 1, in the former case a circle, in the

latter a rectangular hyperbola, is to be described on the diameter SA; as

appears by Prop. XXXIII. Then about the centre S, with an interval

equal to half the latus rectum, describe the circle H/vK
;
and at the place

G of the ascending or descending body, and at any other place C, erect the

perpendiculars GI, CD, meeting the conic section or circle in I and D.

Then joining SI, SD, let the sectors HSK, HS& be made equal to the

segments SEIS, SEDS. and (by Prop. XXXV) the body G will describe
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the space GO in the same time in which the body K may describe t*he arc

Kk. Q.E.F.

PROPOSITION XXXVIII. THEOREM XII.

Supposing that the centripetal force is proportional to the altitude or

distance ofplacesfrom the centre, I say, that the times and velocities

offalling bodies, and the spaces which they describe, are respectively

proportional to the arcs, and the right and versed sines of the arcs.

Suppose the body to fall from any place A in the A.

right line AS
;
and about the centre of force S, with

the interval AS, describe the quadrant of a circle AE
;

and let CD be the right sine of any arc AD
;
and the

body A will in the time AD in falling describe the

space AC, and in the place C will acquire the ve

locity CD.
This is demonstrated the same way from Prop. X, as Prop. XXX11 was

demonstrated from Prop. XI.

COR. 1. Hence the times are equal in which one body falling from the

place A arrives at the centre S, and another body revolving describes the

quadrantal arc ADE.
COR. 2. Wherefore all the times are equal in which bodies falling from

whatsoever places arrive at the centre. For all the periodic times of re

volving bodies are equal (by Cor. 3
; Prop. IV).

PROPOSITION XXXIX. PROBLEM XXVIT.

Supposing a centripetal force of any kind, and granting the quadra-
tnres of curvilinearfigures ; it is required to find the velocity of a bod)/,

ascending or descending in a right line, in the several places through
which it passes ; as also the time in which it will arrive at any place :

and vice versa.

Suppose the body E to fall from any place

A in the right line ADEC
;
and from its place

E imagine a perpendicular EG always erected

proportional to the centripetal force in that

place tending to the centre C
;
and let BFG

be a curve line, the locus of the point G. And D
in the beginning of the motion suppose EG to

coincide with the perpendicular AB ;
and the

velocity of the body in any place E will be as

a right line whose square is equal to the cur

vilinear area ABGE. Q.E.I.

In EG take EM reciprocally proportional to

E
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a right line whose square is equal to the area ABGE, and let VLM be a

curve line wherein the point M is always placed, and to which the right
line AB produced is an asymptote; and the time in which the body in

falling- describes the line AE, will be as the curvilinear area ABTVME.
Q.E.I.

For in the right line AE let there be taken the very small line DE of

a given length, and let DLF be the place of the line EMG, when the

body was in D
;
and if the centripetal force be such, that a right line,

whose square is equal to the area ABGE
;
is as the velocity of the descend

ing body, the area itself will be as the square of that velocity ;
that is, if

for the velocities in D and E we write V and V + I, the area ABFD will

be as VY, and the area ABGE as YY + 2VI -f II; and by division, the

area DFGE as 2VI -f LI, and therefore ^ will be as--^r

that is. if we take the first ratios of those quantities when just nascent, the

2YI
length DF is as the quantity -|yrr

an(i therefore also as half that quantity

1 X Y
But the time in which the body in falling describes the very

line DE, is as that line directly and the velocity Y inversely ;
and

the force will be as the increment I of the velocity directly and the time

inversely ;
and therefore if we take the first ratios when those quantities

I X V
are just nascent, as

-jy==r-.
that is, as the length DF. Therefore a force

proportional to DF or EG will cause the body to descend with a velocity

that is as the right line whose square is equal to the area ABGE. Q.E.D.

Moreover, since the time in which a very small line DE of a given

length may be described is as the velocity inversely, and therefore also

inversely as a right line whose square is equal to the area ABFD
;

and

since the line DL. and by consequence the nascent area DLME, will be as

(he same right line inversely, the time will be as the area DLME, and

the sum of all the times will be as the sum of all the areas : that is (by

Cor. Lern. IV), the whole time in which the line AE is described will be

as the whole area ATYME. Q.E.D.

COR. 1. Let P be the place from whence a body ought to fall, so as

that, when urged by any known uniform centripetal force (such as

gravity is vulgarly supposed to be), it may acquire in the place D a

velocity equal to the velocity which another body, falling by any force

whatever, hath acquired in that place D. In the perpendicular DF let

there be taken DR., which may be o DF as that uniform force to

the other force in the place D. Complete the rectangle PDRQ,, and cut

iff the area. ABFD equal to that rectangle. Then A will be the place
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from whence the other body fell. For com

pleting the rectangle DRSE, since the area

ABFD is to the area DFGE as VV to 2VI,

and therefore as 4V to I, that is, as half the

whole velocity to the increment of the velocity

of the body falling by the unequable force
;
and

in like manner the area PQRD to the area

DRSE as half the whole velocity to the incre

ment of the velocity of the body falling by the

uniform force
;
and since those increments (by

reason of the equality of the nascent times)

are as the generating forces, that is, as the or-

dinates DF, DR, and consequently as the nascent areas DFGE, DRSE :

therefore, ex aq-uo, the whole areas ABFD, PQRD will be to one another

as the halves of the whole velocities
;
and therefore, because the velocities

are equal, they become equal also.

COR. 2. Whence if any body be projected either upwards or downwards

with a given velocity from any place D, and there be given the law of

centripetal force acting on it, its velocity will be found in any other place,

as e, by erecting the ordinate eg, and taking that velocity to the velocity

in the place D as a right line whose square is equal to the rectangle

PQRD, either increased by the curvilinear area DFge, if the place e is

below the place D, or diminished by the same area DFg-e, if it be higher,

is to the right line whose square is equal to the rectangle PQRD alone.

COR. 3. The time is also known by erecting the ordinate em recipro

cally proportional to the square root of PQRD -f- or T)Fge, and taking

the time in which the body has described the line De to the time in which

another body has fallen with an uniform force from P, and in falling ar

rived at D in the proportion of the curvilinear area DLme to the rectan

gle 2PD X DL. For the time in which a body falling with an uniform

force hath described the line PD, is to the time in which the same body

has described the line PE in the subduplicate ratio of PD to PE
;
that is

(the very small line DE being just nascent), in the ratio of PD to PD -f

^DE;
or 2PD to 2PD -f- DE, and, by division, to the time in which the

body hath described the small line DE, as 2PD to DE, and therefore as

the rectangle 2PD X DL to the area DLME
;
and the time in which

both the bodies described the very small line DE is to the time in which

the body moving unequably hath described the line De as the area DLME
to the area DLme ; and, ex aquo, the first mentioned of these times is to

the last as the rectangle 2PD X DL to the area DLrae.
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SECTION VIII.

Of the invention of orbits wherein bodies will revolve, being acted upon

by any sort of centripetal force.

PROPOSITION XL. THEOREM XIII.

// a body, acted upon by any centripetal force, is any how moved, and

another body ascends or descends in a right line, and their velocities

be equal in amj one case of equal altitudes, t/ieir velocities will be also

equal at all equal altitudes.

Let a body descend from A through D and E, to the centre

(j : and let another body move from V in the curve line VIK&.

From the centre C, with any distances, describe the concentric

circles DI, EK, meeting the right line AC in I) and E
;
and

the curve VIK in I and K. Draw 1C meeting KE in N, and

on IK let fall the perpendicular NT and let the interval DE
or IN between the circumferences of the circles be very small

;

K
/

and imagine the bodies in D and I to have equal velocities.

Then because the distances CD and CI are equal, the centri

petal forces in D and I will be also equal. Let those forces be k)

expressed by the equal lineoke DE and IN
;
and let the force

IN (by Cor. 2 of the Laws of Motion) be resolved into two

others, NT and IT.
r

l hen the force NT acting in the direction

line NT perpendicular to the path ITK of the body will not at all affect

or change the velocity of the body in that path, but only draw it aside

from a rectilinear course, and make it deflect perpetually from the tangent
of the orbit, and proceed in the curvilinear path ITK/j. That whole

force, therefore, will be spent in producing this effect: but the other force

IT, acting in the direction of the course of the body, will be all employed
in accelerating it, and in the least given time will produce an acceleration

proportional to itself. Therefore the accelerations of the bodies in D and

I, produced in equal times, are as the lines DE, IT (if we take the first

ratios of the nascent lines DE, IN, IK, IT, NT) ;
and in unequal times as

those lines and the times conjunctly. But the times in which DE and IK
are described, are, by reason of the equal velocities (in D and I) as the

spaces described DE and IK, and therefore the accelerations in the course

of the bodies through the lines DE and IK are as DE and IT, and DE
and IK conjunctly ;

that is, as the square of DE to the rectangle IT into

IK. But the rectangle IT X IK is equal to the square of IN, that is,

equal to the square of DE
;
and therefore the accelerations generated in

the passage of the bodies from D and I to E and K are equal. Therefore

the velocities of the holies in E and K are also equal, and by the same

reasoning they will always be found equal in any subsequent equal dis

tances. Q..E.D.
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By the same reasoning, bodies of equal velocities and equal distances

from the centre will be equally retarded in their ascent to equal distances.

Q.E.D.

COR. 1. Therefore if a body either oscillates by hanging to a string, or

by any polished and perfectly smooth impediment is forced to move in a

curve line
;
and another body ascends or descends in a right line, and their

velocities be equal at any one equal altitude, their velocities will be also

equal at all other equal altitudes. For by the string of the pendulous

body, or by the impediment of a vessel perfectly smooth, the same thing

will be effected as by the transverse force NT. The body is neither

accelerated nor retarded by it, but only is obliged to leave its rectilinear

course.

COR. 2. Suppose the quantity P to be the greatest distance from the

centre to which a body can ascend, whether it be oscillating, or revolving
in a trajectory, and so the same projected upwards from any point of a

trajectory with the velocity it has in that point. Let the quantity A be

the distance of the body from the centre in any other point of the orbit
;
and

let the centripetal force be always as the power An
,
of the quantity A, the

index of which power n 1 is any number n diminished by unity. Then

the velocity in every altitude A will be as v/ P 11

A&quot;,
and therefore will

be given. For by Prop. XXXIX, the velocity of a body ascending and

descending in a right line is in that very ratio.

PROPOSITION XLI. PROBLEM XXVTII.

Supposing a centripetal force of any kind, and granting the quadra
tures of curvilinear figures, it is required to find as well the trajecto

ries in which bodies will move, as the times of their motions in the

trajectories found.
Let any centripetal force tend to

the centre C, and let it be required

to find the trajectory VIKAr. Let R,

there be given the circle VR, described

from the centre C with any interval

CV; and from the same centre de

scribe any other circles ID, KE cut

ting the trajectory in I and K, and

the right line CV in D and E. Then
draw the right line CNIX cutting the c

circles KE, VR in N and X, and the right line CKY meeting the circle

VJi in Y. Let the points I and K be indefinitely near
;
and let the body

go on from V through I and K to k ; and let the point A be the place

from whence anothe body is to fall, so as in the place D to acquire a ve

locity equal to the velocity of the first body in I. And things remaining

as in Prop. XXXIX, the lineola IK, described in the least given time
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trill be as the velocity, and therefore as the right line whose square is

equal to the area ABFD, and the triangle ICK proportional to the time

will be given, and therefore KN will be reciprocally as the altitude 1C :

that is (if there be given any quantity Q, and the altitude 1C be called

A), as -T-. This quantity call Z, and suppose the magnitude of Q, to

oe such that in some case v/ABFD may be to Z as IK to KN, and then

in all cases V ABFD will be to Z as IK to KN, and ABFD to ZZ as

IK2 to KN 2

,
and by division ABFD ZZ to ZZ as IN 2

to KN 2
,
and there-

fore V ABFD ZZ to Z, or as IN to KN; and therefore A x KN

Q. x IN
\vill be equal to . Therefore since YX X XC is to A X KN

ZZ
Q. X IN x CX 2

as CX 2

,
to AA, the rectangle XY X XC will be equal to-

AAv/ABFD ZZ.
Therefore in the perpendicular DF let there be taken continually I)//, IV

Q ax ex 2

equal to ,
=. respectively, and

2 v/ ABFD ZZ 2AA V ABFD ZZ
let the curve lines ab, ac, the foci of the points b and c, be described : and

from the point V let the perpendicular Va be erected to the line AC, cut

ting off the curvilinear areas VD&a, VDra, and let the ordi nates Es:
?

E#, be erected also. Then because the rectangle D& X IN or DbzR is

equal to half the rectangle A X KN, or to the triangle ICK
;
and the

rectangle DC X IN or Dc.rE is equal to half the rectangle YX X XC, or

to the triangle XCY; that is, because the nascent particles I)6d3, ICK
of the areas VD/&amp;gt;#,

VIC are always equal; and the nascent particles

Dc^-E, XCY of the areas VDca, VCX are always equal : therefore the

generated area VD6a will be equal to the generated area VIC, and there

fore proportional to the time; and the generated area VDco- is equal to

the generated sector VCX. If, therefore, any time be given during which

the body has been moving from V, there will be also given the area pro

portional to it VD/&amp;gt;;
and thence will be given the altitude of the body

CD or CI
;
and the area VDca, and the sector VCX equal there o, together

with its angle VCL But the angb VCI, and the altitude CI being given,

there is also given the place I, in which the body will be found at the end

of that time. Q.E.I.

COR. 1. Hence the greatest and least altitudes of the bodies, that is, the

apsides of the trajectories, may be found very readily. For the apsides

are those points in which a right line 1C drawn through the centre falls

perpendicularly upon the trajectory VTK; which comes to pass when the

right lines IK and NK become equal; that is, when the area ABFD ig

C nl to ZZ.
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COR. 2. So also the angle KIN, in which the trajectory at any place

cuts the line 1C. may be readily found by the given altitude 1C of the

body : to wit, by making the sine of that angle to radius as KN to IK

that is, as Z to the square root of the area ABFD.
COR. 3. If to the centre C, and the

principal vertex V, there be described a

conic section VRS
;
and from any point

thereof, as R, there be drawn the tangent T
RT meeting the axis CV indefinitely pro

duced in the point T ;
and then joining C

CR there be drawn the right line CP, Q-

equal to the abscissa CT, making an angle VCP proportional to the sector

VCR
;
and if a centripetal force, reciprocally proportional to the cubes

of the distances of the places from the centre, tends to the centre C
;
and

from the place V there sets out a body with a just velocity in the direc

tion of a line perpendicular to the right, line CV; that body will proceed
in a trajectory VPQ,, which the point P will always touch

;
and therefore

if the conic section VI\ S be an hyberbola, the body will descend to the cen

tre
;
but if it be an ellipsis, it will ascend perpetually, and go farther and

farther off in infinilum. And, on the contrary, if a body endued with any

velocity goes off from the place V, and according as it begins either to de

scend obliquely to the centre, or ascends obliquely from it, the figure VRS
be either an hyperbola or an ellipsis, the trajectory may be found by increas

ing or diminishing the angle VCP in a given ratio. And the centripetal

force becoming centrifugal, the body will ascend obliquely in the trajectory

VPQ, which is found by taking the angle VCP proportional to the elliptic

sector VRC, and the length CP equal to the length CT, as before. All these

things follow from the foregoing Proposition, by the quadrature of a certain

ourve, the invention of which, as being easy enough, for brevity s sake I omit.

PROPOSITION XLII. PROBLEM XXIX.
The law of centripetalforce being given, it is required tofind the motion

of a body setting out from a given place, with a given velocity, in the

direction of a given right line.

Suppose the same things as in

Ihe three preceding propositions;

and let the body go off from

the place I in the direction of the

little line, IK, with the same ve

locity as another body, by falling

with an uniform centripetal force

from the place P, may acquire in

I); and let this uniform force be

to the force with which the body
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is at first urged in I, as DR to DF. Let the body go on towards k; and

about the centre C, with the interval Ck, describe the circle ke, meeting
the right line PD in e, and let there be erected the lines eg, ev, ew, ordi-

nately applied to the curves BF*, abv
}
acw. From the given rectangle

PDRQ, and the given law of centripetal force, by which the first body is

acted on, the curve line BF* is also given, by the construction of Prop.

XXVII, and its Cor. 1. Then from the given angle CIK is given the

proportion of the nascent lines 1K
;
KN

;
and thence, by the construction

of Prob. XXVIII, there is given the quantity Q,, with the curve lines abv,

acw ; and therefore, at the end of any time Dbve, there is given both

the altitude of the body Ce or Ck, and the area Dcwe, with the sector

equal to it XCy, the angle 1C A:, and the place k
}
in which the body will

then be found. Q.E.I.

We suppose in these Propositions the centripetal force to vary in its

recess from the centre according to some law, which any one may imagine
at pleasure; but at equal distances from the centre to be everywhere the

Bame.

I have hitherto considered the motions of bodies in immovable orbits.

It remains now to add something concerning their motions in orbits which

revolve round the centres of force.

SECTION IX.

Of the motion of bodies in moveable orbits ; and of the motion of the

apsides.

PROPOSITION XLIII. PROBLEM XXX.
Ft is required to make a body move in a trajectory that revolves about

the centre offorce in the same manner as another body in the same

trajectory at rest.

In. the orbit VPK, given by position, let the body
P revolve, proceeding from V towards K. From
the centre C let there be continually drawn Cp, equal

to CP, making the angle VC/? proportional to the

angle VCP ;
and the area which the line Cp describes

will be to the area VCP, which the line CP describes

at the same time, ns the velocity of the describing

line Cp to the velocity of the describing line CP
;

that is, as the angle VC/? to the angle VCP, therefore in a given ratio,

and therefore proportional to the time. Since, then, the area described by

the line Cp in an immovable plane is proportional to the time, it is manifest

that a body, being acted upon by a just quantity of centripetal force may
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revolve with the point p in the curve line which the same point p, by the

method just now explained, may be made to describe an immovable plane.

Make the angle VC^ equal to the angle PC/?, and the line Cu equal to

CV, and the figure uCp equal to the figure VCP
;
and the body being al

ways in the point p}
will move in the perimeter of the revolving figure

nCp, and will describe its (revolving) arc up in the same time the* the

other body P describes the similar and equal arc VP in the quiescov.t fig

ure YPK. Find, then, by Cor. 5, Prop. VI., the centripetal force by which

the body may be made to revolve in the curve line which the pom* p de

scribes in an immovable plane, and the Problem will be solved. O/E.K.

PROPOSITION XLIV. THEOREM XIV.

The difference of the forces, by which two bodies may be madi, to KMVG

equally, one in a quiescent, the other in the same orbit revolving, i 1 in

a triplicate ratio of their common altitudes inversely.

Let the parts of the quiescent or

bit VP, PK be similar and equal to

the parts of the revolving orbit up,

pk ; and let the distance of the points

P and K be supposed of the utmost

smallness Let fall a perpendicular
kr from the point k to the right line

pC, and produce it to m, so that mr

may be to kr as the angle VC/? to the /2\-

angle VCP. Because the altitudes

of the bodies PC and pV, KG and

kC
}
are always equal, it is manifest

that the increments or decrements of

the lines PC and pC are always

equal ;
and therefore if each of the

several motions of the bodies in the places P and p be resolved into two

(by Cor. 2 of the Laws of Motion), one of which is directed towards the

centre, or according to the lines PC, pC, and the other, transverse to the

former, hath a direction perpendicular to the lines PC and pC ;
the mo

tions towards the centre will be equal, and the transverse motion of the

body p will be to the transverse motion of the body P as the angular mo
tion of the line pC to the angular motion of the line PC

;
that is, as the

angle VC/? to the angle VCP. Therefore, at the same time that the bodv

P, by both its motions, comes to the point K, the body p, having an equal

motion towards the centre, will be equally moved from p towards C
;

arid

therefore that time being expired, it will be found somewhere in the

line mkr, which, passing through the point k, is perpendicular to the line

pC ;
and by its transverse motion will acquire a distance from the line



174 THE MATHEMATICAL PRINCIPLES [BOOK J.

C, that will be to the distance which the other body P acquires from the

line PC as the transverse motion of the body p to the transverse motion of

the other body P. Therefore since kr is equal to the distance which the

body P acquires from the line PC, and mr is to kr as the angle VC/? to

the angle VCP, that is, as the transverse motion of the body p to the

transverse motion of the body P, it is manifest that the body p, at the ex

piration of that time, will be found in the place m. These things will be

so, if the bodies jo and P are equally moved in the directions of the lines

pC and PC, and are therefore urged with equal forces in those directions.

I: ut if we take an angle pCn that is to the angle pCk as the angle VGj0
to the angle VCP, and nC be equal to kG, in that case the body p at the

expiration of the time will really be in n ; and is therefore urged with a

greater force than the body P, if the angle nCp is greater than the angle

kCp, that is, if the orbit npk, move either in cmiseqnentia, or in antece-

denticij with a celerity greater than the double of that with which the line

CP moves in conseqnentia ; and with a less force if the orbit moves slower

in antecedent-la. And ihj difference of the forces will be as the interval

mn of the places through which the body would be carried by the action of

that difference in that given space of time. About the centre C with the

interval Cn or Ck suppose a circle described cutting the lines mr, tun pro

duced in s and
,
and the rectangle mn X nit will be equal to the rectan-

*//? n ^* */?? ^

&quot;le mk X ins, and therefore mn will be equal to . But since
mt

the triangles pCk, pCn, in a given time, are of a given magnitude, kr and

mr. a id their difference mk, and their sum ms, are reciprocally as the al

titude pC, and therefore the rectangle mk X ms is reciprocally as the

square of the altitude pC. But, moreover, mt is directly as |//z/, that is, as

the altitude pC. These are the first ratios of the nascent lines
;
and hence

r - that is, the nascent lineola mn. and the difference of the forces
mt

proportional thereto, are reciprocally as the cube of the altitude pC.

Q.E.D.

COR. I. Hence the difference of the forces in the places P and p, or K and

/.*,
is to the force with which a body may revolve with a circular motion

from R to K, in the same time that the body P in an immovable orb de

scribes the arc PK, as the nascent line m,n to the versed sine of the nascent

mk X ms rk2

arc RK, that is, as to
^g,

or as mk X ms to the square of

rk ; that is. if we take given quantities F and G in the same ratio to one

another as the angle VCP bears to the angle VQ?, as GG FF to FF.

And, therefore, if from the centre C, with any distance CP or Cp, there be

described a circular sector equal to the whole area VPC, which the body
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revolving in an immovable orbit has by a radius drawn to the centre de-

bribed in any certain time, the difference of the forces, with which the

body P revolves in an immovable orbit, and the body p in a movable or

bit, will be to the centripetal force, with which another body by a radius

drawn to the centre can uniformly describe that sector in the same time

as the area VPC is described, as GG FF to FF. For that sector and

the area pCk are to one another as the times in which they are described.

COR. 2. If the orbit YPK be an

ellipsis, having its focus C, and its

highest apsis Y, and we suppose the

the ellipsis upk similar and equal to
..

it, so that pC may be always equal /

to PC, and the angle YC/? be to the
;

angle YCP in the given ratio of G \

to F
;
and for the altitude PC or pC \

we put A, and 2R for the latus rec- /t\
turn of the ellipsis, the force with *

which a body may be made to re

volve in a movable ellipsis will be as

FF RGG RFF
- + -

-rg ,
and vice versa.

/Y A. A.

Let the force with which a body may

revolve in an immovable ellipsis be expressed by the quantity ,
and the

-. 7

force in V will be
FF

But the force with which a body may revolve in

a circle at the distance CY, with the same velocity as a body revolving in

an ellipsis has in Y, is to the force with which a body revolving in an ellip

sis is acted upon in the apsis Y, as half the latus rectum of the ellipsis to the

RFF
semi-diameter CY of the circle, and therefore is as ,

=- : and tlu

RFF
which is to this, as GG FF to FF, is as -

~py^~~
~

: and this force

(by Cor. 1 cf this Prop.) is the difference of the forces in Y, with which the

body P revolves in the immovable ellipsis YPK, and the body p in the

movable ellipsis upk. Therefore since by this Prop, that difference at

any other altitude A is to itself at the altitude CY as -r-, to ^TF- the same
AJ CYJ

R C^ (
&quot;* R P^ T*

1

difference in every altitude A will be as -
3

:

. Therefore to the

FF
force -T-:

, by which the body may revolve in an immovable ellipsis VPK
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idd the excess -:-=
,
and the sum will be the whole force -r-r -\-A AA

RGG RFF,
.-5 by which a body may revolve in the same time in the mot-
A.

able ellipsis upk.
COR. 3. In the same manner it will be found, that, if the immovable or

bit VPK be an ellipsis having its centre in the centre of the forces C
}
and

there be supposed a movable ellipsis -upk, similar, equal, and concentrical

to it
;
and 2R be the principal latus rectum of that ellipsis, and 2T the

latus transversum, or greater axis
;
and the angle VCjo be continually to the

angle TCP as G to F
;
the forces with which bodies may revolve in the im-

FFA FFA
movable and movable ellipsis, in equal times, will be as ^ and -p~

RGG RFF
+ .-3 respectively.A
COR. 4. And universally, if the greatest altitude CV of the body be called

T, and the radius of the curvature which the orbit VPK has in Y, that is,

the radius of a circle equally curve, be called R, and the centripetal force

with which a body may revolve in any immovable trajectory VPK at the place

VFF
V be called -

f-=Trri ,
and in other places P be indefinitely styled X ;

and the

altitude CP be called A, and G be taken to F in the given ratio of the

angle VCjD to the angle VCP ;
the centripetal force with which the same

body will perform the same motions in the same time, in the same trajectory

upk revolving with a circular motion, will be as the sum of the forces X -f-

VRGG VRFF
~

A*

COR. 5. Therefore the motion of a body in an immovable orbit being

given, its angular motion round the centre of the forces may be increased

or diminished in a given ratio; and thence new immovable orbits may be

found in which bodies may revolve with new centripetal forces.

COR. 6. Therefore if there be erected the line VP of an indeterminate

-p length, perpendicular to the line CV given by po

sition, and CP be drawn, and Cp equal to it, mak

ing the angle VC/? having a given ratio to the an

gle VCP, the force with which a body may revolve

in the curve line Vjo/r, which the point p is con

tinually describing, will be reciprocally as the cube
C

of the altitude Cp. For the body P, by its vis in

ertia alone, no other force impelling it, will proceed uniformly in the right

line VP. Add, then, a force tending to the centre C reciprocally as the

cube of the altitude CP or Cp, and (by what was just demonstrated) the
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body will deflect from the rectilinear motion into the curve line Ypk. But

this curve ~Vpk is the same with the curve VPQ found in Cor. 3, Prop

XLI, in which, I said, hodies attracted with such forces would ascend

obliquely.

PROPOSITION XLV. PROBLEM XXXL
To find the motion of the apsides in orbits approaching very near to

circles.

This problem is solved arithmetically by reducing the orbit, which a

body revolving in a movable ellipsis (as in Cor. 2 and 3 of the above

Prop.) describes in an immovable plane, to the figure of the orbit whose

apsides are required ;
and then seeking the apsides of the orbit which that

body describes in an immovable plane. But orbits acquire the same figure,

if the centripetal forces with which they are described, compared between

themselves, are made proportional at equal altitudes. Let the point V be

the highest apsis, and write T for the greatest altitude CV, A for any other

altitude CP or C/?, and X for the difference of the altitudes CV CP :

and the force writh which a body moves in an ellipsis revolving about its

p -p T? C* f
^

T? F*F
focus C (as in Cor. 2), and which in Cor. 2 was as -r-r -\ -.-3 ,

FFA + RGG RFF
,

that is as, -^ , by substituting T X for A, will be-A
RGG RFF + TFF FFX

come as
-p

. In like manner any other cen

tripetal force is to be reduced to a fraction whose denominator is A3
,
and

the numerators are to be made analogous by collating together the homo

logous terms. This will be made plainer by Examples.
EXAMPLE 1. Let us suppose the centripetal force to be uniform,

A3

and therefore as
3 or, writing T X for A in the numerator, as

T3 3TTX + 3TXX X3

=-. Ihen collating together the correspon-A3

dent terms of the numerators, that is, those that consist of given quantities,
with those of given quantities, and those of quantities not given with those

of quantities not given, it will become RGG RFF -f- TFF to T3
as

FFX to 3TTX -f 3TXX X3
,
or as FF to 3TT + 3TX XX.

Now since the orbit is supposed extremely near to a circle, let it coincide

with a circle
;
and because in that case R and T become equal, and X is

infinitely diminished, the last ratios will be, as RGG to T2
,
so FF to

3TT, or as GG to TT, so FF to 3TT; and again, as GG to FF, so TT
to 3TT, that is, as 1 to 3

;
and therefore G is to F, that is, the angle VC/?

to the angle VCP, as 1 to v/3. Therefore since the body, in an immovable
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ellipsis, in descending from the upper to the lower apsis, describes an angle,

if I may so speak, of ISO deg., the other body in a movable ellipsis, and there

fore in the immovable orbit we are treating of, will in its descent from

180
the upper to the lower apsis, describe an angle VCjt? of ^ deg. And this

\/o

comes to pass by reason of the likeness of this orbit which a body acted

upon by an uniform centripetal force describes, and of that orbit which a

body performing its circuits in a revolving ellipsis will describe in a quies

cent plane. By this collation of the terms, these orbits are made similar
;

not universally, indeed, but then only when they approach very near to a

circular figure. A body, therefore revolving with an uniform centripetal

180
force in an orbit nearly circular, will always describe an angle of deg/, or

v/o

103 deg., 55 m., 23 sec., at the centre; moving from the upper apsis to the

lower apsis when it has once described that angle, and thence returning to

the upper apsis when it has described that angle again ;
and so on in in-

finitwn.

EXAM. 2. Suppose the centripetal force to be as any power of the alti-

A n

tude A, as, for example, A
n 3

, or-r^ ;
where n 3 and n signify any in-

A.

dices of powers whatever, whether integers or fractions, rational or surd,

affirmative or negative. That numerator An
or T X|

n
being reduced to

an indeterminate series by my method of converging series, will become

Tn
&amp;gt;/XT

n T + ^ XXTn 2
,
&c. And conferring these terms

with the terms of the other numerator RGG RFF + TFF FFX, it

becomes as RGG RFF 4- TFF to Tn
,
so FF to ?/.T

n r +
?

~^
XT n 2

, &c. And taking the last ratios where the orbits approach to

circles, it becomes as RGG to T 1

, so FF to nT- 1 T

,
or as GG to

T&quot;
,
so FF to ?*Tn

;
and again, GG to FF, so Tn l

to nT&quot;
1

,
that

is, as 1 to n ; and therefore G is to F, that is the angle VCp to the angle

VCP, as 1 to ^/n. Therefore since the angle VCP, described in the de

scent of the body from the upper apsis to the lower apsis in an ellipsis, is

of 180 deg., the angle VC/?, described in the descent of the body from the

upper apsis to the lower apsis in an orbit nearly circular which a body de

scribes with a centripetal force proportional to the power A
n 3

,
will be equal

ISO
to an angle of -

deg., and this angle being repeated, the body will re-

\/ti

turn from the lower to the upper apsis, and so on in infinitum. As if the

centripetal force be as the distance of the body from the centre, that is, as A,

A4

or -p, n will be equal to 4, and ^/n equal to 2
;
and thereLre the angle
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ISO
between the upper and the lower apsis will be equal to deg., or 90 deg.

Therefore the body having performed a fourth part of one revolution, will

arrive at the lower apsis, and having performed another fourth part, will

arrive at the upper apsis, and so on by turns in infiuitum. This appears

also from Prop. X. For a body acted on by this centripetal force will re

volve in an immovable ellipsis, whose centre is the centre of force. If the

1 A 2

centripetal force is reciprocally as the distance, that is, directly as or
A A&quot;

ji will be equal to 2
;
and therefore the angle between the upper and lower

180
apsis will be -

deg., or 127 deg., 16 min., 45 sec.
;
and therefore a body re

v/2

volving with such a force, will by a perpetual repetition of this angle, move

alternately from the upper to the lower and from the lower to the upper

apsis for ever. So. also, if the centripetal force be reciprocally as the

biquadrate root of the eleventh power of the altitude, that is, reciprocally

as A
, and, therefore, directly as

-r-fp
or as

Ts&amp;gt;

n wil* ^e et
l
ual f

\&amp;gt;

an(1
4 A^- A

1
Of)
-

deg. will be equal to 360 deg. ;
and therefore the body parting from

v/ n

the upper apsis, and from thence perpetually descending, will arrive at the

lower apsis when it has completed one entire revolution
;
and thence as

cending perpetually, when it has completed another entire revolution, it

will arrive again at the upper apsis ;
and so alternately for ever.

EXAM. 3. Taking m and n for any indices of the powers of the alti

tude, and b and c for any given numbers, suppose the centripetal force

6A ra + cA&quot; b into T X&amp;gt; -f- c into T X
to be as r^ that is, asA3 A3

or (by the method of converging series above-mentioned) as

bTm + cT n
m6XT&quot; - 1 //cXTn mm m vvrpm un n

~~2
--0A.A1 ^

t-XXT&quot;
2

,
fcc.

T$~
~ and comparing the terms of the numerators, there will

arise RGG IIFF -f TFF to ^Tm + cT&quot; as FF to mbTm
i

&quot;
- + 2

&quot; m
bXT&quot;

- * +
&quot;^p

cXTn- .fee. And tak-

ing the last ratios that arise when the orbits come to a circular form, there

will come forth GG to 6Tm l
-f cTn 1

as FF to mbTm l + ncT&quot;
J

;

and again, GG to FF as 6Tm + cTn to mbTn 1
-f ncTn

\

This proportion, by expressing the greatest altitude CV or T arithmeti

cally by unity, becomes, GG to FF as b -{- c to mb -\- ?/c, and therefore as I
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tub ~h nc
to -

y7 Whence G becomes to P, that is, the angle VCjo to the an-
f) ~T~ C

gle VCP. as 1 to
&amp;gt;/-

.
-

-. And therefore since the angle VCP between

the upper and the lower apsis, in an immovable ellipsis, is of 180 deg., thr

angle VC/? between the same apsides in an orbit which a body describes

b A m I c A n

with a centripetal force, that is. as - r ,
will be equal to an angle of

A.

ISO v/ 1~TT~; deg. And y tne same reasoning, if the centripetal force

be as -
73 ,

the angle between the apsides will be found equal to

fi f*

18o V
- -

deg. After the same manner the Problem is solved in
nib &amp;gt;ic

more difficult cases. The quantity to which the centripetal force is pro

portional must always be resolved into a converging series whose denomi

nator is A*. Then the given part of the numerator arising from that

operation is to be supposed in the same ratio to that part of it which is not

given, as the given part of this numerator RGG RFF -f TFF FFX.
is to that part of the same numerator which is not given. And taking

away the superfluous quantities, and writing unity for T, the proportion
of G to F is obtained.

COR. 1 . Hence if the centripetal force be as any power of the altitude,

that power may be found from the motion of the apsides ;
and so contra

riwise. That is, if the whole angular motion, with which the body returns

to the same apsis, be to the angular motion of one revolution, or 360 deg.,

MS any number as m to another as n, and the altitude called A
;
the force

nn

will be as the power A HSii
3 of the altitude A; the index of which power is

- 3. This appears by the second example. Hence it is plain that

the force in its recess from the centre cannot decrease in a greater than a

triplicate ratio of the altitude. A body revolving with such a force, and

parting from the apsis, if it once begins to descend, can never arrive at the

lower apsis or least altitude, but will descend to the centre, describing the

curve line treated of in Cor. 3, Prop. XLL But if it should, at its part

ing from the lower apsis, begin to ascend never so little, it will ascend in

irtfimtifm, and never come to the upper apsis ;
but will describe the curve

line spoken of in the same Cor., and Cor. 6, Prop. XLIV. So that where

the force in its recess from the centre decreases in a greater than a tripli

cate ratio of the altitude, the body at its parting from the apsis, will either

descend to the centre, or ascend in iiiftnitum, according as it descends or

Ascends at the beginning of its motion. But if the force in its recess from
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the centre either decreases in a less than a triplicate ratio of the altitude,

or increases in any ratio of the altitude whatsoever, the body will never

descend to the centre, but will at some time arrive at the lower apsis ; and,

on the contrary, if the body alternately ascending and descending from one

apsis to another never comes to the centre, then either the force increases

in the recess from the centre, or it decreases in a less than a triplicate ratio

of the altitude; and the sooner the body returns from one apsis to another,

the farther is the ratio of the forces from the triplicate ratio. As if the

body should return to and from the upper apsis by an alternate descent and

ascent in 8 revolutions, or in 4, or 2, or \\ that is, if m should be to n as 8,

or 4, or 2, or H to 1. and therefore --- 3, be g\ 3,or TV~ 3, or i
3, ormm

3

I
- 3

;
then the force will be as A~ ?

or AT
&quot;~

3j
or A*~~ 3j or A&quot;&quot;

G

that is. it will be reciprocally as A 3 C4 or A 3 T^ or A 3
4 or A 3

&quot;&quot;

If the body after each revolution returns to the same apsis, and the apsis
nn _

remains unmoved, then m will be to n as 1 to 1, and therefore A&quot;

will be equal to A 2
,
or -

;
and therefore the decrease of the forces willAA

be in a duplicate ratio of the altitude
;
as was demonstrated above. If the

body in three fourth parts, or two thirds, or one third, or one fourth part

of an entire revolution, return to the same apsis ;
m will be to n as or ?

n n i_6 _ 3
9 _

3
o

or ^ or i to 1, and therefore Amm 3
is equal to A 9 or A 4 or A

_ 3
1 6 _ 3 l_l

or A
;
and therefore the force is either reciprocally as A fl or

3 613
A 4 or directly as A or A . Lastly if the body in its progress from the

upper apsis to the same upper apsis again, goes over one entire revolution

and three deg. more, and therefore that apsis in each revolution of the body
moves three deg. in consequentia ; then m will be to u as 363 deg. to

360 deg. or as 121 to 120, and therefore Amm will be equal to

2 9_ 5_ 2_ JJ

A
&quot;

and therefore the centripetal force will be reciprocally as

^T4&quot;6TT&amp;gt; or reciprocally as A
2 ^ 4 ^

very nearly. Therefore the centripetal

force decreases in a ratio something greater than the duplicate ;
but ap

proaching 59f times nearer to the duplicate than the triplicate.

COR. 2. Hence also if a body, urged by a centripetal force which is re

ciprocally as the square of the altitude, revolves in an ellipsis whose focus

is in the centre of the forces
;
and a new and foreign force should be added

to or subducted from this centripetal force, the motion of the apsides arising

from that foreign force may (by the third Example) be known
;
and so on

the contrary. As if the force with which the body revolves in the ellipsis
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oe as -r-r-
;
and the foreign force subducted as cA, and therefore the remain-A .A.

^ c^4
ing force as

-^ ;
then (by the third Example) b will be equal to 1.

m equal to 1, and n equal to 4
;
and therefore the angle of revolution be

1 c
tween the apsides is equal to 180

&amp;lt;*/- deg. Suppose that foreign force

to be 357.45 parts less than the other force with which the body revolves

in the ellipsis : that is, c to be
-3 }y j ;

A or T being equal to 1
;
and then

l8(Vl~4c
will be 18&amp;lt;Vfff Jf or 180.7623, that is, 180 deg., 45 min.,

44 sec. Therefore the body, parting from the upper apsis, will arrive at

the lower apsis with an angular motion of 180 deg., 45 min., 44 sec
,
and

this angular motion being repeated, will return to the upper apsis ;
and

therefore the upper apsis in each revolution will go forward 1 deg., 31 min.,

28 sec. The apsis of the moon is about twice as swift

So much for the motion of bodies in orbits whose planes pass through
the centre of force. It now remains to determine those motions in eccen

trical planes. For those authors who treat of the motion of heavy bodies

used to consider the ascent and descent of such bodies, not only in a per

pendicular direction, but at all degrees of obliquity upon any given planes ;

and for the same reason we are to consider in this place the motions of

bodies tending to centres by means of any forces whatsoever, when those

bodies move in eccentrical planes. These planes are supposed to be

perfectly smooth and polished, so as not to retard the motion of the bodies

in the least. Moreover, in these demonstrations, instead of the planes upon
which those bodies roll or slide, and which are therefore tangent planes to

the bodies, I shall use planes parallel to them, in which the centres of the

bodies move, and by that motion describe orbits. And by the same method

I afterwards determine the motions of bodies performer
1 in curve superficies.

SECTION X.

Of the motion of bodies in given superficies, and of the reciprocal motion

offnnependulous bodies.

PROPOSITION XLVI. PROBLEM XXXII.

Any kind of centripetal force being supposed, and the centre offorce,
atfft

any plane whatsoever in which the body revolves, being given, and tint

quadratures of curvilinearfigures being allowed; it is required to de

termine the motion of a body going off from a given place., with a

given velocity, in the direction of a given right line in, that plane.
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Let S be the centre of force, SC the

least distance of that centre from the given

plane, P a body issuing from the place P

in the direction of the right line PZ, Q,

the same body revolving in its trajectory,

and PQ,R the trajectory itself which is

required to be found, described in that

given plane. Join CQ, Q.S, and if in Q,S

we take SV proportional to the centripetal

force with which the body is attracted to

wards the centre S, and draw VT parallel

to CQ, and meeting SC in T
; then will the force SV be resolved into

two (by Cor. 2, of the Laws of Motion), the force ST, and the force TV
;
of

which ST aMracting the body in the direction of a line perpendicular to

that plane, does not at all change its motion in that plane. But the action

c f the other force TV, coinciding with the position of the plane itself, at

tracts the body directly towards the given point C in that plane ;
ad

t icreftre causes the body to move in this plane in the same manner as if

the force S F were taken away, and the body were to revolve in free space

about the centre C by means of the force TV alone. But there being given
the centripetal force TV with which the body Q, revolves in free space

about the given centre C, there is given (by Prop. XLII) the trajectory

PQ.R which the body describes
;
the place Q,, in which the body will be

found at any given time
; and, lastly, the velocity of the body in that place

Q,. And so e contra. Q..E.I.

PROPOSITION XLV1L THEOREM XV.

Supposing the centripetal force to be proportional to t/ie distance of the

body from the centre ; all bodies revolving in any planes whatsoever

will describe ellipses, and complete their revolutions in equal times ;

and those which move in right lines, running backwards andforwards
alternately ,

will complete ttieir several periods of going and returning
in the same times.

For letting all things stand as in the foregoing Proposition, the force

SV, with which the body Q, revolving in any plane PQ,R is attracted to

wards the centre S, is as the distance SO.
;
and therefore because SV and

SQ,, TV and CQ, are proportional, the force TV with which the body is

attracted towards the given point C in the plane of the orbit is as the dis

tance CQ,. Therefore the forces with which bodies found in the plane

PQ,R are attracted towaitis the point O, are in proportion to the distances

equal to the forces with which the same bodies are attract-ed every way to

wards the centre S
;
and therefore the bodies will move in the same times,

and in the same figures, in any plane PQR about the point C. n* they
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would do in free spaces about the centre S
;
and therefore (by Cor. 2, Prop.

X, ai d Cor. 2, Prop. XXXVIII.) they will in equal times either describe

ellipses m that plane about the centre C, or move to and fro in right lines

passing through the centre C in that plane; completing the same periods
of time in all cases. Q.E.D.

SCHOLIUM.
The ascent and descent of bodies in curve superficies has a near relation

to these motions we have been speaking of. Imagine curve lines to be de

scribed on any plane, and to revolve about any given axes passing through
the centre of force, and by that revolution to describe curve superficies ;

and
that the bodies move in such sort that their centres may be always found
m those superficies. If those bodies reciprocate to and fro with an oblique
ascent and descent, their motions will be performed in planes passing through
tiie axis, and therefore in the curve lines, by whose revolution those curve

superficies were generated. In those cases, therefore, it will be sufficient to

consider thp motion in those curve lines.

PROPOSITION XLVIII. THEOREM XVI.

If a wheel stands npon the outside of a globe at right angles thereto, and

revolving about its own axis goesforward in a great circle, the length

of lite curvilinear path which any point, given in the perimeter of the

wheel, hath described, since, the time that it touched the globe (which
curvilinear path w~e may call the cycloid, or epicycloid), will be to double

the versed sine of half the arc which since that time has touched the

globe in passing over it, as the sn,m of the diameters of the globe and
the wheel to the semi-diameter of the globe.

PROPOSITION XLIX. THEOREM XVII.

ff a wheel stand upon the inside of a concave globe at right angles there

to, and revolving about its own axis go forward in one of the great
circles of the globe, the length of the curvilinear path which any point,

given in the perimeter of the wheel^ hath described since it toncJied the

globe, imll be to the double of the versed sine of half the arc which in

all that time has touched the globe in passing over it, as the difference

of the diameters of the globe and the wheel to the semi-diameter of the

globe.

Let ABL be the globe. C its centre, BPV the wheel insisting thereon,

E the centre of the wheel, B the point of contact, and P the given point

in the perimeter of the wheel. Imagine this wheel to proceed in the great

circle ABL from A through B towards L, and in its progress to revolve in

such a manner that the arcs AB, PB may be always equal one to the other,

:if;d the given point P in the peri meter of the wheel may describe in thf
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mean time the curvilinear path AP. Let AP be the whole curvilinear

path described since the wheel touched the globe in A, and the length cf

this path AP will be to twice the versed sine of the arc |PB as 20E to

CB. For let the right line CE (produced if need be) meet the wheel in V,

and join CP, BP, EP, VP ; produce CP, and let fall thereon the perpen

dicular VF. Let PH, VH, meeting in H, touch the circle in P and V,

and let PH cut YF in G, and to VP let fall the perpendiculars GI, HK.
From the centre C with any interval let there be described the circle wow,

cutting the right line CP in n
t
the perimeter of the wheel BP in o, and

the curvilinear path AP in m ; and from the centre V with the interval

Vo let there be described a circle cutting VP produced in q.

Because the wheel in its progress always revolves about the point of con

tact B. it is manifest that the right line BP is perpendicular to that curve line

AP which the point P of the wheel describes, and therefore that the right

line VP will touch this curve in the point P. Let the radius of the circle nmn
be gradually increased or diminished so that at last it become equal to the

distance CP
;
and by reason of the similitude of the evanescent figure

Pnn-mq, and the figure PFGVI, the ultimate ratio of the evanescent lined ae

Pra, P//, Po, P&amp;lt;y,
that is, the ratio of the momentary mutations of the curve

AP, the right line CP, the circular arc BP, and the right line VP, will &amp;lt;
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the same as of the lines PV, PF, PG, PI, respectively. But since VF is

perpendicular to OF, and VH to CV, and therefore the angles HVG, VCF
equal: and the angle VHG (because the angles of the quadrilateral figure

HVEP are right in V and P) is equal to the angle CEP, the triangles

V HG, CEP will be similar
;
and thence it will come to pass that as EP is

to CE so is HG to HV or HP, and so KI to KP, and by composition or

division as CB to CE so is PI to PK, and doubling the consequents asCB
to 2CE so PI to PV, and so is Pq to Pm. Therefore the decrement of the

line VP, that is, the increment of the line BY VP to the increment of the

curve line AP is in a given ratio of CB to 2CE, and therefore (by Cor.

Lena. IV) the lengths BY YP and AP, generated by those increments, arc

in the same ratio. But if BY be radius, YP is the cosine of the angle BYP
or -*BEP, and therefore BY YP is the versed sine of the same angle, and

therefore in this wheel, whose radius is ^BV, BY YP will be double the

versed sine of the arc ^BP. Therefore AP is to double the versed sine oi

the arc ^BP as 2CE to CB. Q.E.D.

The line AP in the former of these Propositions we shall name the cy

cloid without the globe, the other in the latter Proposition the cycloid within

the globe, for distinction sake.

COR. 1. Hence if there be described the entire cycloid ASL, and the

same be bisected in S, the lenc th of the part PS will be to the length PV

(which is the double of the sine of the angle YBP, when EB is radius) as

2CE to CB, and therefore in a given ratio.

COR. 2. And the length of the semi-perimeter of the cycloid AS will be

equal to a right line which is to the dumeter of the wheel BY as 2CF
toCB.

PROPOSITION L. PROBLEM XXXIII.

To cause a pendulous body to oscillate in a given cycloid.

Let there be given within the globe QYS de-

scribed with the centre C, the cycloid QRS, bi

sected in R, and meeting the superficies of the

globe with its extreme points Q and S on either

hand. Let there be drawn CR birxcting the arc

QS in O, and let it be produced to A in such

sort that CA may be to CO as CO to CR.

About the centre C, with the interval CA, let

there be described an exterior globe DAF ;
and

within this globe, by a wheel whose diameter is

AO, let there be described two semi-cycloids AQ,,

AS, touching the interior globe in Q, and S, and meeting the exterior globe

in A. From that point A, with a thread APT in length equal to the line

AR, let the body T depend, and oscillate in such manner between the two
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semi-cycloids AQ, AS, that, as often as the pendulum parts from the per

pendicular AR, the upper part of the thread AP may be applied to that

semi-cycloid APS towards which the motion tends, and fold itself round

that curve line, as if it were some solid obstacle, the remaining part of the

same thread PT which has not yet touched the semi-cycloid continuing

straight. Then will the weight T oscillate in the given cycloid QRS.
Q.E.F.

For let the thread PT meet the cycloid QRS in T, and the circle QOS
m V, and let 0V be drawn

j
and to the rectilinear part of the thread PT

from the extreme points P and T let there be erected the perpendiculars

BP, T W, meeting the right line CV in B and W. It is evident, from the

construction and generation of the similar figures AS, SR, that those per

pendiculars PB, TVV, cut off from CV the lengths VB, VVV equal the

diameters of the wheels OA, OR. Therefore TP is to VP (which is dou

ble the sine of the angle VBP when ^BV is radius) as BYV to BV, or AO
-f-OR to AO, that is (since CA and CO, CO and CR

;
and by division AO

and OR are proportional), as CA + CO to CA, or, if BV be bisected in E,

as 2CE to CB. Therefore (by Cor. 1, Prop. XLIX), the length of the

rectilinear part of the thread PT is always equal to the arc of the cycloid

PS, and the whole thread APT is always equal to the half of the cycloid

APS, that is (by Cor. 2, Prop. XLIX), to the length AR. And there

fore contrariwise, if the string remain always equal to the length AR, the

point T will always move in the given cycloid QRS. Q.E.D.

COR. The string AR is equal to the semi-cycloid AS, and therefore has

the same ratio to AC the semi-diameter of the exterior globe as the like

semi-cycloid SR has to CO the semi-diameter of the interior globe.

PROPOSITION LI. THEOREM XVIII.

If a centripetalforce tending on all sides to the centre C of a globe, be in

all places as the distance of the placefrom the centre, and by thisforce
alone acting upon it, the body T oscillate (in the manner above de

scribed] in the perimeter of the cycloid QRS ;
/ say, that all the oscil

lations, how unequal soever in tfiemselves, will be performed in equal
times.

For upon the tangent TW infinitely produced let fall the perpendicular

CX, and join CT. Because the centripetal force with which the body T
is impelled towards C is as the distance CT, let this (by Cor. 2, of the

I ,aws) be resolved into the parts CX, TX, of which CX impelling the

body directly from P stretches the thread PT, and by the resistance the

rhread makes to it is totally employed, producing no other effect
;
but the

3ther part TX, impelling the body transversely or towards X, directly

accelerates the motion in the cycloid. Then it is plain that the accelera

tion of the body, proportional to this accelerating force, will bo every
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moment as the length TX, that is (because CV\

WV, and TX, TW proportional to them are given),
as the length TW, that is (by Cor. 1, Prop. XLIX)
as the length of the arc of the cycloid TR. If there

fore two pendulums APT, Apt, be unequally drawn

aside from the perpendicular AR, and let fall together,

their accelerations will be always as the arcs to be de

scribed TR, tR. But the parts described at the

beginning of the motion are as the accelerations, thai

is, as the wholes that are to be described at the be

ginning, and therefore the parts which remain to be

described, and the subsequent accelerations proportional to those parts, are

also as the wholes, and so on. Therefore the accelerations, and consequently
the velocities generated, and the parts described with those velocities, and

the parts to be described, are always as the wholes
;
and therefore the parts

to be described preserving a given ratio to each other will vanish together,

that is, the two bodies oscillating will arrive together at the perpendicular AR.
And since on the other hand the ascent of the pendulums from the lowest place

R through the same cycloidal arcs with a retrograde motion, is retarded in

the several places they pass through by the same forces by which their de

scent was accelerated : it is plain that the velocities of their ascent and de

scent through the same arcs are equal, and consequently performed in equal

times
; and, therefore, since the two parts of the cycloid RS and RQ lying

on either side of the perpendicular are similar and equal, the two pendu
lums will perform as well the wholes as the halves of their oscillations in

the same times. Q.E.D.
COR. The force with which the body T is accelerated or retarded in any

place T of the cycloid, is to the whole weight of the same body in the

highest place S or Q, as the arc of the cycloid TR is to the arc SR or QR

PROPOSITION LIL PROBLEM XXXIV.
To define the velocities of the pendulums in the several places, and the

times in which both the entire oscillations, and the several parts of them

are performed.

About any centre G, with the interval GH equal to

the arc of the cycloid RS, describe a semi-circle HKM
bisected by the semi-diameter GK. And if a centripe

tal force proportional to the distance of the places from

the centre tend to the centre G, and it be in the peri

meter HIK equal to the centripetal force in the perime

ter of the globe Q,OS tending towards its centre, and at

the same time that the pendulum T is let fall from the

highest place S, a body, as L, is let fall from H to G
;
then because th&amp;lt;
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forces which act upon the bodies are equal at the be

ginning, and always proportional to the spaces to be

described TR, LG, and therefore if TR and LG are

equal, are also equal in the places T and L, it is plain

that those bodies describe at the beginning equal spaces
M

ST, HL, and therefore are still acted upon equally, and continue to describe

equal spaces. Therefore by Prop. XXXVIII, the time in which the body

describes the arc ST is to the time of one oscillation, as the arc HI the time

in which the body H arrives at L, to the semi-periphery HKM, the time

in which the body H will come to M. And the velocity of the pendulous

body in the place T is to its velocity in the lowest place R, that is, the

velocity of the body H in the place L to its velocity in the place G, or the

momentary increment of the line HL to the momentary increment of the

line HG (the arcs HI, HK increasing with an equable flux) as the ordinato

LI to the radius GK. or as v/SR
2 Til2

to SR. Hence, since in unequal

oscillations there are described in equal time arcs proportional to the en

tire arcs of the oscillations, there are obtained from the times given, both

the velocities and the arcs described in all the oscillations universally.

Which was first required.

Let now any pendulous bodies oscillate in different cycloids described

within different globes, whose absolute forces are also different
;
and if the

absolute force of any globe Q.OS be called V, the accelerative force with

which the pendulum is acted on in the circumference of this globe, when it

begins to move directly towards its centre, will be as the distance of the

pendulous body from that centre and the absolute force of the globe con-

junctly, that is, as CO X V. Therefore the lineola HY, which is as this

accelerated force CO X V, will be described in a given time : and if there

be erected the perpendicular YZ meeting the circumference in Z, the nascent

arc HZ will denote that given time. But that nascent arc HZ is in the

subduplicate ratio of the rectangle GHY, and therefore as v/GH X CO X V
Whence the time of an entire oscillation in the cycloid Q,RS (it being as

the semi-periphery HKM, wrhich denotes that entire oscillation, directly :

and as the arc HZ which in like manner denotes a given time inversely)

will be as GH directly and v/GH X CO X V inversely ;
that is, because

GH and SR are equal, as Vnr, . or (by Cor. Prop. L,) as X/-TTVT-UU X V AO X V

Therefore the oscillations in all globes and cycloids, performed with what

absolute forces soever, are in a ratio compounded of the subduplicate ratio of

the length of the string directly, and the subduplicate ratio of the distance

between the point of suspension and the centre of the globe inversely, and

the subduplicate ratio of the absolute force of the globe inversely also

Q.E.I.
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COR. 1. Hence also the times of oscillating, falling, and revolving bodies

may be compared among themselves. For if the diameter of the wheel

with which the cycloid is described within the globe is supposed equal to

the semi-diameter of the globe, the cycloid will become a right line passing

through the centre of the globe, and the oscillation will be changed into a

descent and subsequent ascent in that right line. Whence there is given
both the time of the descent from any place to the centre, and the time equal
to it in which the body revolving uniformly about the centre of the globe
at any distance describes an arc of a quadrant For this time (by

Case 2) is to the time of half the oscillation in any cycloid QJR.S as 1 to

AR
V AC
COR. 2. Hence also follow what Sir Christopher Wren and M. Huygevs

have discovered concerning the vulgar cycloid. For if the diameter of the

globe be infinitely increased, its sphacrical superficies will be changed into a

plane, and the centripetal force will act uniformly in the direction of lines

perpendicular to that plane, and this cycloid of our s will become the same

with the common cycloid. But in that case the length of the arc of the

cycloid between that plane and the describing point will become equal to

four times the versed sine of half the arc of the wheel between the same

plane and the describing point, as was discovered by Sir Christopher Wren.

And a pendulum between two such cycloids will oscillate in a similar and

equal cycloid in equal times, as M. Huygens demonstrated. The descent

of heavy bodies also in the time of one oscillation will be the same as M.

Huygens exhibited.

The propositions here demonstrated are adapted to the true constitution

of the Earth, in so far as wheels moving in any of its great circles will de

scribe, by the motions of nails fixed in their perimeters, cycloids without the

globe ;
and pendulums, in mines and deep caverns of the Earth, must oscil

late in cycloids within the globe, that those oscillations may be performed

in equal times. For gravity (as will be shewn in the third book) decreases

in its progress from the superficies of the Earth
; upwards in a duplicate

ratio of the distances from the centre of the Earth
;
downwards in a sim

ple ratio of the same.

PROPOSITION LIII. PROBLEM XXXV.

Granting the quadratures of curvilinear figures, it is required to find
the forces with which bodies moving in given curve lines may always

perform their oscillations in equal times.

Let the body T oscillate in any curve line STRQ,, whose axis is AR
passing through the centre of force C. Draw TX touching that curve in

any place of the body T, and in that tangent TX take TY equal to the

arc TR. The length of that arc is known from the common methods used
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for the quadratures of figures. From the point Y
draw the right line YZ perpendicular to the tangent.

Draw CT meeting that perpendicular in Z, and the

centripetal force will be proportional to the right line

TZ. Q.E.I.

For if the force with which the body is attracted

from T towards C be expressed by the right line TZ
taken proportional to it, that force will be resolved

into two forces TY, YZ, of which YZ drawing the

body in the direction of the length of the thread PT,
docs not at all change its motion

;
whereas the other

force TY directly accelerates or retards its mction in the curve STRQ.
Wherefore since that force is as the space to be described TR, the acceler

ations or retardations of the body in describing two proportional parts (u

greater arid a less) of two oscillations, will be always as those parts, and

therefore will cause those parts to be described together. But bodies which

continually describe together parts proportional to the wholes, will describe

the wholes together also. Q,.E.l).

COR. 1. Hence if the body T, hanging by a rectilinear thread

AT from the centre A, describe the circular arc STRQ,,
and in the mean time be acted on by any force tending

downwards with parallel directions, which is to the uni

form force of gravity as the arc TR to its sine TN, the

times of the several oscillations will be equal. For because

TZ, AR are parallel, the triangles ATN, ZTY are similar
;
and there

fore TZ will be to AT as TY to TN
;
that is, if the uniform force of

gravity be expressed by the given length AT, the force TZ. by which the

oscillations become isochronous, will be to the force of gravity AT, as the

arc TR equal to TY is to TN the sine of that arc.

COR. 2. And therefore in clocks, if forces were impressed by some ma
chine upon the pendulum which preserves the motion, and so compounded
with the force of gravity that the whole force tending downwards should

be always as a line produced by applying the rectangle under the arc TR
and the radius AR to the sine TN, all the oscillations will become

isochronous.

PROPOSITION LIV. PROBLEM XXXYI.

Granting the quadratures of curvilinear figures, it is required to find
the times in which bodies by means of any centripetal force will descend

or ascend in any curve lines described in, a plane passing through the

centre of force.

Let the body descend from any place S, and move in any curve ST/R

given in a plane passing through the centre of force C. Join CS, and lei
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Q it be divided into innumerable equal parts, and let

Dd be one of those parts. From the centre C, with

the intervals CD, Cd, let the circles DT, dt be de

scribed, meeting the curve line ST*R in T and t.

And because the law of centripetal force is given.
and also the altitude CS from which the body at

first fell, there will be given the velocity of the body
in any other altitude CT (by Prop. XXXIX). But
the time in which the body describes the lineola Tt
is as the length of that lineola, that is, as the secant

of the angle /TC directly, and the velocity inversely.

Lei, the ordinate DN, proportional to this time, be made perpendicular to

the right line CS at the point D, and because Dd is given, the rectangle
Dd X DN, that is, the area DNwc?, will be proportional to the same time.

Therefore if PN/?, be a curve line in which the point N is perpetually found,
and its asymptote be the right line SQ, standing upon the line CS at right

angles, the area SQPJN D will be proportional to the time in which the body
in its descent hath described the line ST

;
and therefore that area being

found, the time is also given. Q.E.I.

PROPOSITION LV. THEOREM XIX.

If a body move in any curve superficies, whose axis passes through the

centre offorce, andfrom the body a perpendicular be letfall iipon the

axis \ and a line parallel and equal thereto be drawnfrom any given

point of the axis ; I say, that this parallel line will describe an area

proportional to the time.

Let BKL be a curve superficies, T a body

revolving in it, STR a trajectory which the

body describes in the same, S the beginning
of the trajectory, OMK the axis of the curve

superficies, TN a right line let fall perpendic

ularly from the body to the axis ; OP a line

parallel and equal thereto drawn from the

given point O in the axis
;
AP the orthogra

phic projection of the trajectory described by
the point P in the plane AOP in which the

revolving line OP is found : A the beginning
of that projection, answering to the point S

;

TO a right line drawn from the body to the centre
;
TG a part thereof

proportional to the centripetal force with which the body tends towards the

centre C
;
TM a right line perpendicular to the curve superficies ;

TI a

part thereof proportional to the force of pressure with which the body urges
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the superficies, and therefore with which it is again repelled by the super

ficies towards M
;
PTF a right line parallel to the axis and passing through

the body, and OF, IH right lines let fall perpendicularly from the points

G and I upon that parallel PHTF. I say, now. that the area AGP, de

scribed by the radius OP from the beginning of the motion, is proportional

to the time. For the force TG (by Cor. 2, of the Laws of Motion) is re

solved into the forces TF, FG ;
and the force TI into the forces TH, HI

;

but the forces TF, TH, acting in the direction of the line PF perpendicular

to the plane AOP, introduce no change in the motion of the body but in a di

rection perpendicular to that plane. Therefore its motion, so far as it has

the same direction with the position of the plane, that is, the motion of the

point P, by which the projection AP of the trajectory is described in that

plane, is the same as if the forces TF, TH were taken away, and the body
wei e acted on by the forces FG, HI alone

;
that is, the same as ,f the body

were to describe in the plane AOP the curve AP by means of a centripetal

force tending to the centre O, and equal to the sum of the forces FG and

HI. But with such a force as that (by Prop. 1) the area AOP will be de

scribed proportional to the time. Q.E.D.

COR. By the same reasoning, if a body, acted on by forces tending to

two or more centres in any the same right line CO, should describe in a

free space any curve line ST, the area AOP would be always proportional

to the time.

PROPOSITION LVI. PROBLEM XXXVII.

Granting the quadratures of curvilinear figures, and supposing that

there are given both the law of centripetalforce tending to a given cen

tre, and the curve superficies whose axis passes through that centre
;

it is required tofind the trajectory which a body will describe in that

superficies, when going offfrom a given place with a given velocity,

and in a given direction in that superficies.

The last construction remaining, let the

body T go from the given place S, in the di

rection of a line given by position, and turn

into the trajectory sought STR, whose ortho

graphic projection in the plane BDO is AP.
And from the given velocity of the body in

the altitude SC, its velocity in any other al

titude TC will be also given. With that

velocity, in a given moment of time, let the

body describe the particle Tt of its trajectory,
and let P/? be the projection of that particle
described in the plane AOP. Join Op, and

a little circle being described upon the curve superficies about the centre T
13
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with the interval TV let the projection of that little circle in the plane AOP
be the ellipsis pQ. And because the magnitude of that little circle T/, and

TN or PO its distance from the axis CO is also given, the ellipsis pQ, will

be given both in kind and magnitude, as also its position to the right line

PO. And since the area PO/? is proportional to the time, and therefore

given because the time is given, the angle POp will be given. And thence

will be given jo the common intersection of the ellipsis and. the right line

Op, together with the angle OPp, in which the projection APp of the tra

jectory cuts the line OP. But from thence (by conferring Prop. XLI, with

Us 2d Cor.) the mariner of determining the curve APp easily appears.

Then from the several points P of that projection erecting to the plane

AOP, the perpendiculars PT meeting the curve superficies in T, there will

be iven the several points T of the trajectory. Q.E.I.

SECTION XL
f f the motions of bodies tending to each other with centripetal forces.

I have hitherto been treating of the attractions of bodies towards an im

movable centre; though very probably there is no such thing existent in

nature. For attractions are made towards bodies, and the actions of the

bodies attracted and attracting are always reciprocal and equal, by Law III
;

BO that if there are two bodies, neither the attracted nor the attracting body
is truly at rest, but both (by Cor. 4, of the Laws of Motion), being as it

were mutually attracted, revolve about a common centre of gravity. And
if there be more bodies, which are either attracted by one single one which

is attracted by them again, or which all of them, attract each other mutu

ally ,
these bodies will be so moved among themselves, as that their common

centre of gravity will either be at rest, or move uniformly forward in a

right line. I shall therefore at present go on to treat of the motion of

bodies mutually attracting each other
; considering the centripetal forces

as attractions
; though perhaps in a physical strictness they may more truly

be called impulses. But these propositions are to be considered as purely

mathematical; and therefore, laying aside all physical considerations, I

make use of a familiar way of speaking, to make myself the more easily

understood by a mathematical reader.

PROPOSITION LVII. THEOREM XX.
Two bodies attracting each other mutually describe similarfigures about

their common centre of gravity, and about each other mutually.

For the distances of the bodies from their common centre of gravity are

leciprocally as the bodies; and therefore in a given ratio to each other:

*nd thence, bv composition of ratios, in a given ratio to the whole distance
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between the bodies. Now these distances revolve about their common term

with an equable angular motion, because lying in the same right line they

never change their inclination to each other mutually But right lines

that are in a given ratio to each other, and revolve about their terms with

an equal angular motion, describe upon planes, which either rest with

those terms, or move with any motion not angular, figures entirely similar

round those terms. Therefore the figures described by the revolution ot

these distances are similar. Q.E.D.

PROPOSITION LVIll. THEOREM XXI.

If two bodies attract each other mutually with forces of any kind, and

in the mean time revolve about the common centre of gravity ; I say,

that, by the same forces, there may be described round either body un

moved ajigure similar and equal to the figures ivhich the bodies so

moving describe round each other mutually.
Let the bodies S and P revolve about their common centre of gravity

C, proceeding from S to T, and from P to Q,. From the given point s lot

there be continually drawn sp, sq, equal and parallel to SP, TQ,
;
and the

;urve pqv, which the point p describes in its revolution round the immovable

point s, will be similar and equal to the curves which the bodies S and P
describe about each other mutually ;

and therefore, by Theor. XX, similar

to the curves ST and PQ,V which the same bodies describe about their

common centre of gravity C and that because the proportions of the lines

SC. CP, and SP or sp, to each other, are given.

CASE 1. The common centre of gravity C (by Cor. 4, of the Laws of Mo
tion) is either at rest, or moves uniformly in a right line. Let us first

suppose it at rest, and in s and p let there be placed two bodies, one im

movable in s, the other movable in p, similar and equal to the bodies S arid

P. Then let the right lines PR and pr touch the curves PQ, and pq ki P
and p, and produce CQ, and sq to R and r. And because the figures

CPRQ, sprq are similar, RQ, will be to rq as CP to sp, and therefore in a

given ratio. Hence if the force with which the body P is attracted to

wards the body S, and by consequence towards the intermediate point the

centre C, were to the force with which the body p is attracted towards the

Centre 5. in the same given ratio, these forces would in equal times attract
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the bodies from the tangents PR, pr to the arcs PQ, pq, through the in

tervals proportional to them RQ,, rq ; and therefore this last force (tending
to s) would make the body p revolve in the curve pqv, which would becomr

similar to the curve PQV, in which the first force obliges the body P i(

revolve
;
and their revolutions would be completed in the same timeg

But because those forces are not to each other in the ratio of CP to sp, bu;

(by reason of the similarity and equality of the bodies S and s, P and /
and the equality of the distances SP, sp) mutually equal, the bodies ii

equal times will be equally drawn from the tangents; and therefore tLV

the body p may be attracted through the greater interval rq, there is re

quired a greater time, which will be in the subduplicate ratio of the inter

vals
; because, by Lemma X, the spaces described at the very beginning ol

the motion are in a duplicate ratio of the times. Suppose, then the velocity

of the body p to be to the velocity of the body P in a subduplicate ratio of

the distance sp to the distance CP, so that the arcs pq, PQ, which are in a

simple proportion to each other, may be described in times that are in n

subduplicate ratio of the distances
;
and the bodies P, p, always attracted

by equal forces, will describe round the quiescent centres C and s similar

figures PQV, pqv, the latter of which pqv is similar and equal to the figure

ivhich the body P describes round the movable body S. Q.E.I)

CASE 2. Suppose now that the common centre of gravity, together with

the space in which the bodies are moved among themselves, proceeds uni

formly in a right line
;
and (by Cor. 6, of the Laws of Motion) all the mo

tions in this space will be performed in the same manner as before
;
and

therefore the bodies will describe mutually about each other the same fig

ures as before, which will be therefore similar and equal to the figure pqv.

Q.E.D.

COR. 1. Hence two bodies attracting each other with forces proportional

to their distance, describe (by Prop. X) both round their common centre ol

gravity, and round each other mutually concentrical ellipses ; and, vice

versa, if such figures are described, the forces are proportional to the dis

tances.

COR. 2. And two bodies, whose forces are reciprocally proportional to

the square of their distance, describe (by Prop. XI, XII, XIII), both round

their common centre of gravity, and round each other mutually, conic sec

tions having their focus in the centre about which the figures are described.

And, vice versa, if such figures are described, the centripetal forces are re

ciprocally proportional to the squares of the distance.

COR. 3. Any two bodies revolving round their common centre of gravity

describe areas proportional to the times, by radii drawn both to that centre

and to each other mutually-
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PROPOSITION LIX. THEOREM XXII.

The periodic time of two bodies S and P revolving round their common
centre of gravity C,is to the periodic time of one of the bwlies 1? re

volving round the other S remaining unmoved, and describing a fig
ure similar and equal to those which the bodies describe about each

other mutually
r

,
in a subduplicate ratio of the other body S to the sii/rn

of the bodies S -f P.

For, by the demonstration of the last Proposition, the times in which

any similar arcs PQ and pq are described are in a subduplicate ratio of the

distances CP and SP, or sp, that is, in a subduplicate ratio of the ody S

to the sum of the bodies S + P. And by composition of ratios, the sums

of the times in which all the similar arcs PQ and pq are described, that is,

the whole times in which the whole similar figures are described are in the

same subduplicate ratio. Q.E.D.

PROPOSITION LX. THEOREM XXIII.

If two bodies S and P, attracting each other with forces reciprocally pro

portional to the squares of their distance, revolve about their common
centre of gravity ; I say, that the principal axis of the ellipsis which

either of the bodies, as P, describes by this motion about the other S,

will be to the principal axis of the ellipsis, which the same body P may
describe in the same periodical time about the other body S quiescent,

as the sum of the two bodies S + P to the first of two mean, propor
tionals between that sum and the other body S.

For if the ellipses described were equal to each other, their periodic times

by the last Theorem would be in a subduplicate ratio of the body S to the

sum of the bodies S 4- P. Let the periodic time in the latter ellipsis be

diminished in that ratio, and the periodic times will become equal ; but,

by Prop. XV, the principal axis of the ellipsis will be diminished in a ratio

sesquiplicate to the former ratio
;
that is, in a ratio to which the ratio of

S to S 4- P is triplicate ;
and therefore that axis will be to the principal

axis of the other ellipsis as the first of two mean proportionals between S

-f- P and S to S 4- P. And inversely the principal axis of the ellipsis de

scribed about the movable body will be to the principal axis of that described

round the immovable as S + P to the first of two mean proportionals be

tween S 4- P and S. Q.E.D.

PROPOSITION LXI. THEOREM XXIV.

If two bodies attracting each other with any kind of forces, and not

otherwise agitated or obstructed, are moved in any manner whatsoever,

those motions will be the same as if they did not at all attract each

other mutually, but were both attracted with the same forces by a third

body placed in their common centre of gravity ; and the law of the
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attracting Jones will be the sam# in respect of the distance of the.

bodies from, the common centre, as in respect of the distance between

the two bodies.

For those forces with which the bodies attract each other mutually, by

tending to the bodies, tend also to the common centre of gravity lying di

rectly between them
;
and therefore are the same as if they proceeded from

an intermediate body. QJG.D.

And because there is given the ratio of the distance of either body from

that common centre to the distance between the two bodies, there is given,

of course, the ratio of any power of one distance to the same power of the

. ther distance
;
and also the ratio of any quantity derived in any manner

from one of the distances compounded any how with given quantities, to

another quantity derived in like manner from the other distance, and as

many given quantities having that given ratio of the distances to the first

Therefore if the force with which one body is attracted by another be di

rectly or inversely as the distance of the bodies from each other, or as any

power of that distance
; or, lastly, as any quantity derived after any man

ner from that distance compounded with given q-uantities ;
then will the

same force with which the same body is attracted to the common centre of

gravity be in like manner directly or inversely as the distance of the at

tracted body from the common centre, or as any power of that distance
;

or, lastly, as a quantity derived in like sort from that distance compounded
with analogous given quantities. That is, the law of attracting force will

be the same with respect to both distances. Q,.E.D.

PROPOSITION LXII. PROBLEM XXXVIII.

To determine the motions of two bodies which attract each other with

forces reciprocally proportional to the squares of the distance between

them, aflid are, letfallfrom given places.

The bodies, by the last Theorem, will be moved in the same manner as

if they were attracted by a third placed in the common centre of their

gravity ;
and by the hypothesis that centre will be quiescent at the begin

ning of their motion, and therefore (by Cor. 4, of the Laws of Motion) will

be always quiescent. The motions of the bodies are therefore to be deter

mined (by Prob. XXV) in the same manner as if they were impelled by

forces tending to that centre: and then we shall have the motions of the

bodies attracting each other mutually. Q.E.I.

PROPOSITION LXIII. PROBLEM XXXIX.
To determine the motions of two bodies attracting each other with forces

reciprocally proportional to the squares of their distance, and going

offfrom given places in, given directions with given velocities.

The motions of the bodies at the beginning being given, there is given
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also the uniform motion of the common centre of gravity, and the motion

of the space which moves along with this centre uniformly in a right line,

and also the very first, or beginning motions of the bodies in respect of this

space. Then (by Cor. 5, of the Laws, and the last Theorem) the subse

quent motions will be performed in the same manner in that space, as if

that space together with the common centre of gravity were at rest, and as

if the bodies did not attract each other, but were attracted by a third body

placed in that centre. The motion therefore in this movable space of each

body going off from a given place, in a given direction, with a given velo

city, and acted upon by a centripetal force tending to that centre, is to be

determined by Prob. IX and XXVI, and at the same time will be obtained

the motion of the other round the same centre. With this motion com

pound the uniform progressive motion of the entire system of the space and

the bodies revolving in it, and there will be obtained the absolute motion

of the bodies in immovable space. Q..E.I.

PROPOSITION LXIV. PROBLEM XL.

Supposingforces with which bodies mutually attract each other to in

crease in a simple ratio of their distancesfrom the centres ; it is ro-

quired tofind the motions of several bodies among themselves.

Suppose the first two bodies T and L
to have their common centre of gravity in

L). These, by Cor. 1, Theor. XXI, will
S

describe ellipses having their centres in D,
the magnitudes of which ellipses are

known by Prob. V.
J-

--

\- ? L

Let now a third body S attract the two

former T and L with the accelerative forces ST, SL, and let it be attract

ed again by them. The force ST (by Cor. 2, of the Laws of Motion) is

resolved into the forces SD, DT ;
and the force SL into the forces SD and

DL. Now the forces DT, DL. which are as their sum TL, and therefore

as the accelerative forces with which the bodies T and L attract each other

mutually, added to the forces of the bodies T and L, the first to the first,

and the last to the last, compose forces proportional to the distances DT
and DL as before, but only greater than those former forces : and there

fore (by Cor. 1, Prop. X, and Cor. l,and 8, Prop. IV) they will cause those

bodies to describe ellipses as before, but with a swifter motion. The re

maining accelerative forces SD and DL, by the motive forces SD X Tand
SD X L, which are as the bodies attracting those bodies equally and in the

direction of the lines TI, LK parallel to DS, do not at all change their situ

ations with respect to one another, but cause them equally to approach to

the line IK
;
which must be imagined drawn through the middle of the

body S, and perpendicular to the line DS. But that approach to the line
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IK will be hindered by causing the system of the bodies T and L on one

side, and the body S on the other, with proper velocities, to revolve round

the common centre of gravity C. With such a motion the body S, because

the sum of the motive forces SD X T and SD X L is proportional to the

distance OS, tends to the centre C, will describe an ellipsis round the same

centre C; and the point D, because the lines CS and CD are proportional,
will describe a like ellipsis over against it. But the bodies T and L, at

tracted by the motive forces SD X T and SD X L, the first by the first,

and the last by the last, equally and in the direction of the parallel lines TI
and LK, as was said before, will (by Cor. 5 and 6, of the Laws of Motion)
continue to describe their ellipses round the movable centre D, as before.

Q.E.I.

Let there be added a fourth body V, and, by the like reasoning, it will

be demonstrated that this body and the point C will describe ellipses about

the common centre of gravity B ;
the motions of the bodies T, L, and S

round the centres D and C remaining the same as before
;
but accelerated.

Arid by the same method one may add yet more bodies at pleasure. Q..E.I.

^This would be the case, though the bodies T and L attract each other

mutually with accelerative forces either greater or less than those with

which they attract the other bodies in proportion to their distance. Let

all the mutual accelerative attractions be to each other as the distances

multiplied into the attracting bodies
;
and from what has gone before it

will easily be concluded that all the bodies will describe different ellipses

with equal periodical times about their common centre of gravity B, in an

immovable plane. Q.E.I.

PROPOSITION LXV. THEOREM XXV.

Bodies, whoseforces decrease in a duplicate ratio of their distancesfrom
their centres, may move

among&quot;
themselves in ellipses ; and by radii

drawn to the foci may describe areas proportional to the times very

nearly.

In the last Proposition we demonstrated that case in which the motions

will be performed exactly in ellipses. The more distant the law of the

forces is from the law in that case, the more will the bodies disturb each

other s motions
;
neither is it possible that bodies attracting each other

mutually according to the law supposed in this Proposition should move

exactly in ellipses, unless by keepirg a certain proportion of distances from

each other. However, in the following crises the orbits will not much dif

fer from ellipses.

CASE I. Imagine several lesser bodies to revolve about some very great

one at different distances from it, and suppose absolute forces tending to

rvery one of the bodies proportional to each. And because (by Cor. 4, ol

the I aws) the common centre of gravity of them all is either at rest, 01
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moves uniformly forward in a right line, suppose the lesser bodies so small

that the groat body may be never at a sensible distance from that centre
;

and then the great body will, without any sensible error, be either at rest,

or move uniformly forward in a right line; and the lesser will revolve

about that great one in ellipses, and by radii drawn thereto will describe

areas proportional to the times
;

if we except the errors that may be intro

duced by the receding of the great body from the common centre of gravity,

or by the mutual actions of the lesser bodies upon each other. But the

lesser bodies may be so far diminished, as that this recess and the mutual

actions of the bodies on each other may become less than any assignable;

and therefore so as that the orbits may become ellipses, and the areas an

swer to the times, without any error that is not less than any assignable.

Q.E.O.

CASE 2. Let us imagine a system of lesser bodies revolving about a very

great one in the manner just described, or any other system of two bodies

revolving about each other to be moving uniformly forward in a right line, and

in the mean time to be impelled sideways by the force ofanother vastly greater

body situate at a great distance. And because the equal accelerative forces

with which the bodies are impelled in parallel directions do not change the

situation of the bodies with respect to each other, but only oblige the whole

system to change its place while the parts still retain their motions among
themselves, it is manifest that no change in those motions of the attracted

bodies can arise from their attractions towards the greater, unless by the

inequality of the accelerative attractions, or by the inclinations of the lines

towards each other, in whose directions the attractions are made. Suppose,

therefore, all the accelerative attractions made towards the great body
to be among themselves as the squares of the distances reciprocally ;

and

then, by increasing the distance of the great body till the differences of fhe

right lines drawn from that to the others in respect of their length, and the

inclinations of those lines to each other, be less than any given, the mo
tions of the parts of the system will continue without errors that are not

less than any given. And because, by the small distance of those parts from

each other, the whole system is attracted as if it were but one body, it will

therefore be moved by this attraction as if it were one body ;
that is, its

centre of gravity will describe about the great bod/ one of the conic sec

tions (that is, a parabola or hyperbola when the attraction is but languid
and an ellipsis when it is more vigorous) ;

and by radii drawn thereto, it

will describe areas proportional to the times, without any errors but thos

which arise from the distances of the parts, which are by the supposition

exceedingly small, and may be diminished at pleasure. Q,.E.O.

By a like reasoning one may proceed to more compounded cases in in-

finitum.

COR 1. In the second Case, the nearer the very great body approaches to
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the system of two or more revolving bodies, the greater will the pertur
bation be of the motions of the parts of the system among themselves; be

cause the inclinations of the lines drawn from that great body to those

parts become greater ;
and the inequality of the proportion is also greater.

COR. 2. But the perturbation will be greatest of all, if we suppose the

uccelerative attractions of the parts of the system towards the greatest body
of all are not to each other reciprocally as the squares of the distances

from that great body ; especially if the inequality of this proportion be

greater than the inequality of the proportion of the distances from the

great body. For if the accelerative force, acting in parallel directions

and equally, causes no perturbation in the motions of the parts of the

system, it must of course, when it acts unequally, cause a perturbation some

where, which will be greater or less as the inequality is greater or less.

The excess of the greater impulses acting upon some bodies, and not acting

upon others, must necessarily change their situation among themselves. And
this perturbation, added to the perturbation arising from the inequality

and inclination of the lines, makes the whole perturbation greater.

COR. *. Hence if the parts of this system move in ellipses or circles

without any remarkable perturbation, it is manifest that, if they are at all

impelled by accelerative forces tending to any other bodies, the impulse is

very weak, or else is impressed very near equally and in parallel directions

upon all of them.

PROPOSITION LXVL THEOREM XXVI.

Tf three bodies whose forces decrease in a duplicate ratio of the distances

attract each other mutually ; and the accelerative attractions of any
two towards the third be between themselves reciprocally as the squares,

of the distances ; and the two least revolve about the greatest ; I say,

that the interior of the tivo revolving bodies will, by radii drawn to the

innermost and greatest, describe round thai body areas more propor
tional to the times, and a figure more approaching to that of an ellip

sis having itsfocus in the point of concourse of the radii, if that great

body be agitated by those attractions, than it would do if lhat great

body were not attracted at all by the lesser, but remained at rest ; or

than it would if that great body were very much more or very much
less attracted, &amp;lt;&amp;gt;r very much more or very much less agitated, by the

attractions.

This appears plainly enough from the demonstration of the second

Corollary of tl.e foregoing Proposition; but it may be made out after

this manner by a way of reasoning more distinct and more universally

convincing.

CASE 1. Let the lesser bodies P and S revolve in the same plane about

the greatest body T, the body P describing the interior orbit PAB, and S
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the exterior orbit ESE. Let SK be the mean distance of the bodies P and

S
;
and let the accelerative attraction of the body P towards S, at that

mean distance, be expressed by that line SK. Make SL to SK as the

E C

square of SK to the square of SP, and SL will be the accelerative attrac

tion of the body P towards S at any distance SP. Join PT, and draw

LM parallel to it meeting ST in M; and the attraction SL will be resolv

ed (by Cor. 2. of the Laws of Motion) into the attractions SM, LM. And
so the body P will be urged with a threefold accelerative force. One of

these forces tends towards T, and arises from the mutual attraction of the

bodies T and P. By this force alone the body P would describe round the

body T, by the radius PT, areas proportional to the times, and an

ellipsis whose focus is in the centre of the body T ;
and this it would do

whether the body T remained unmoved, or whether it were agitated by that

attraction. This appears from Prop. XI, and Cor. 2 and 3 of Theor.

XXI. The other force is that of the attraction LM, which, because it

tends from P to T, will be superadded to and coincide with the former

force
;
and cause the areas to be still proportional to the times, by Cor. 3,

Theor. XXI. But because it is not reciprocally proportional to the square
of the distance PT, it will compose, when added to the former, a force

varying from that proportion : which variation will be the greater by how

much the proportion of this force to the former is greater, cceteris paribus.

Therefore, since by Prop. XI, and by Cor. 2, Theor. XXI, the force with

which the ellipsis is described about the focus T ought to be directed to

that focus, and to be reciprocally proportional to the square of the distance

PT, that compounded force varying from that proportion will make the

orbit PAB vary from the figure of an ellipsis that has its focus in the point
I
1

;
and so much the more by how much the variation from that proportion

is greater ;
and by consequence by how much the proportion of the second

force LM to the first force is greater, cceteris paribus. But now the third

force SM, attracting the body P in a direction parallel to ST, composes with

the other forces a new force which is no longer directed from P to T : and which

varies so much more from this direction by how much the proportion of this

third force to the other forces is greater, cceterisparibus ; arid therefore causes

the body P to describe, by the radius TP, areas no longer proportional to the

times : and therefore makes the variation from that proportionality so much

greater by how much the proportion of this force to the others is greater.

But this third force will increase the variation of the orbit PAB from th*
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elliptical figure before-mentioned upon two accounts
;

first because that

force is not directed from P to T
; and, secondly, because it is not recipro

cally proportional to the square of the distance PT. These things being

premised, it is manifest that the areas are then most nearly proportional to

the times, when that third force is the least possible, the rest preserving

their former quantity ;
and that the orbit PAB does then approach nearest

to the elliptical figure above-mentioned, when both the second and third,

but especially the third force, is the least possible; the first force remain

ing in its former quantity.

Let the accelerative attraction of the body T towards S be expressed by

the line SN
;
then if the accelerative attractions SM and SN were equal,

these, attracting the bodies T and P equally and in parallel directions

would not at all change their situation with respect to each other. The mo
tions of the bodies between themselves would be the same in that case as if

those attractions did not act at all, by Cor. 6, of the Laws of Motion. And,

by a like reasoning, if the attraction SN is less than the attraction SM, it

will take away out of the attraction SM the part SN, so that there will re

main only the part (of the attraction) MN to disturb the proportionality of

the areas and times, and the elliptical figure of the orbit. And in like

manner if the attraction SN be greater than the attraction SM, the pertur

bation of the orbit and proportion will be produced by the difference MN
alone. After this manner the attraction SN reduces always the attraction

SM to the attraction MN, the first and second attractions rema ning per

fectly unchanged ;
and therefore the areas and times come then nearest to

proportionality, and the orbit PAB to the above-mentioned elliptical figure,

when the attraction MN is either none, or the least that is possible; that

is, when the accelerative attractions of the bodies P and T approach as near

as possible to equality ;
that is, when the attraction SN is neither none at

all, nor less than the least of all the attractions SM, but is, as it were, a

mean between the greatest and least of all those attractions SM, that
is,

not much greater nor much less than the attraction SK. Q.E.D.

CASE 2. Let now the lesser bodies P. S, revolve about a greater T in dif

ferent planes ;
and the force LM, acting in the direction of the line PT

situate in the plane of the orbit PAB, will have the same effect as before
;

neither will it draw the body P from the plane of its orbit. But the other

force NM acting in the direction of a line parallel to ST (and which, there

fore, when the body S is without the line of the nodes is inclined to the

plane of the orbit PAB), besides the perturbation of the motion just now

spoken of as to longitude, introduces another perturbation also as to latitude,

attracting the body P out of the plane of its orbit. And this perturbation,

in any given situation of the bodies P and T to each other, will be as the

generating force MN
;
and therefore becomes least when the force MN is

least, that is (as was just now shewn), where the attraction SN is not nrirb

greater nor much less than the attraction SK. Q.E.D.
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COR. 1. Hence it may be easily collected, that if several less bodies P

8, R, &c.
;
revolve about a very great body T, the motion of the innermost

revolving body P will be least disturbed by the attractions of the others.

when the great body is as well attracted and agitated by the rest (accord

ing to the ratio of the accelerative forces) as the rest are by each other

mutually.

COR. 2. In a system of three bodies, T, P, S, if the accelerative attrac

tions of any two of them towards a third be to each other reciprocally as the

squares of the distances, the body P, by the radius PT, will describe its area

about the body T swifter near the conjunction A and the opposition B than it

will near the quadratures C arid D. For every force with which the body P

is acted on and the body T is not, and which does not act in the direction of

the line PT, does either accelerate or retard the description of the area,

according as it is directed, whether in consequentia or in cwtecedentia.

Such is the force NM. This force in the passage of the body P frcm C
to A is directed in consequentia to its motion, and therefore accelerates

it; then as far as D in atttecedentia, and retards the motion; then in, con

sequentia as far as B
;
and lastly in antecedentia as it moves from B to C.

COR. 3. And from the same reasoning it appears that the body P ccBteris

paribuSj moves more swiftly in the conjunction and opposition than in the

quadratures.

COR. 4. The orbit of the body P, cc&teris paribus, is more curve at the

quadratures than at the conjunction and opposition. For the swifter

bodies move, the less they deflect from a rectilinear path. And besides the

force KL, or NM, at the conjunction and opposition, is contrary to the

force with which the body T attracts the body P, and therefore diminishes

that force
;
but the body P will deflect the less from a rectilinear path the

less it is impelled towards the body T.

COR. 5. Hence the body P, cceteris paribus, goes farther from the body
T at the quadratures than at the conjunction and opposition. This is said,

E C_ L

B

however, supposing no regard had to the motion of eccentricity. For if

the orbit of the body P be eccentrical, its eccentricity (as will be shewn

presently by Cor. 9) will be greatest when the apsides are in the syzy-

gies; and thence it may sometimes come to pass that the body P. in its

near approach to the farther apsis, may go farther from the body T at the

syzygies than at the quadratures.

COR. 6. Because the centripetal force of the central body T, by which
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the body P is retained in its orbit, is increased at the quadratures by tho

addition caused by the force LM, and diminished at the syzygies by the

subduction caused by the force KL, and, because the force KL is greater

than LM, it is more diminished than increased
; and, moreover, since that

centripetal force (by Cor. 2, Prop. IV) is in a ratio compounded of the sim

ple ratio of the radius TP directly, and the duplicate ratio of the periodi
cal time inversely ;

it is plain that this compounded ratio is diminished by
the action of the force KL

;
and therefore that the periodical time, supposing

the radius of the orbit PT to remain the same, will be increased, and that

in the subduplicate of that ratio in which the centripetal force is diminish

ed
; and, therefore, supposing this radius increased or diminished, the peri

odical time will be increased more or diminished less than in the sesquipli-

cate ratio of this radius, by Cor. 6, Prop. IV. If that force of the central

body should gradually decay, the body P being less and less attracted would

go farther and farther from the centre T
; and, on the contrary, if it were

increased, it would draw nearer to it. Therefore if the action of the distant

body S, by which that force is diminished, were to increase and decrease

by turns, the radius TP will be also increased and diminshed by turns
;

and the periodical time will be increased and diminished in a ratio com

pounded of the sesquiplicate ratio of the radius, and of the subduplicate oi

that ratio in which the centripetal force of the central body T is dimin

ished or increased, by the increase or decrease of the action of the distant

body S.

COR. 7. It also follows, from what was before laid down, that the axis

of the ellipsis described by the body P, or the line of the apsides, does as

to its angular motion go forwards and backwards by turns, but more for

wards than backwards, and by the excess of its direct motion is in the

whole carried forwards. For the force with which the body P is urged to

the body T at the quadratures, where the force MN vanishes, is compound
ed of the force LM and the centripetal force with which the body T at

tracts the body P. The first force LM, if the distance PT be increased, is

increased in nearly the same proportion with that distance, and the other

force decreases in the duplicate ratio of the distance
;
and therefore the

sum of these two forces decreases in a less than the duplicate ratio of the

distance PT
;
and therefore, by Cor. 1, Prop. XLV, will make the line of

the apsides, or, which is the same thing, the upper apsis, to go backward.

But at the conjunction and opposition the force with which the body P is

urged towards the body T is the difference of the force KL, and of the

force with which the body T attracts the body P ;
and that difference, be

cause the force KL is very nearly increased in the ratio of the distance

PT, decreases in more -than the duplicate ratio of the distance PT
;
and

therefore, by Cor. 1, Prop. XLV, causes the line of the apsides to go for

wards. In the places between the syzygies and the quadratures, the motion
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of the line of the apsides depends upon both &amp;lt; f these causes conjuncdy, so

that it either goes forwards or backwards in proportion to the excess ol

one of these causes above the other. Therefore since the force KL in the

syzygies is almost twice as great as the force LM in the quadratures, the

excess will be on the side of the force KL, and by consequence the line of

the apsides will be carried forwards. The truth of this arid the foregoing

IE

Corollary will be more easily understood by conceiving the system of the

two bodies T and P to be surrounded on every side by several bodies S,

S, S, dec., disposed about the orbit ESE. For by the actions of these bo

dies the action of the body T will be diminished on every side, and decrease

in more than a duplicate ratio of the distance.

COR. 8. IJut since the progress or regress of the apsides depends upon
the decrease of the centripetal force, that is, upon its being in a greater or

less ratio than the duplicate ratio of the distance TP, in the passage of

the body from the lower apsis to the upper ;
and upon a like increase in

its return to the lower apsis again ;
and therefore becomes greatest where

the proportion of the force at the upper apsis to the force at the lower ap
sis recedes farthest from the duplicate ratio of the distances inversely ;

it

is plain, that, when the apsides are in the syzygies, they will, by reason of

the subducting force KL or NM LM, go forward more swiftly ;
and in

the quadratures by the additional force LM go backward more slowly.

Because the velocity of the progress or slowness of the regress is continued

for a long time
;
this inequality becomes exceedingly great.

COR. 9. If a body is obliged, by a force reciprocally proportional to the

square of its distance from any centre, to revolve in an ellipsis round that

centre
;
and afterwards in its descent from the upper apsis to the lower

apsis, that force by a perpetual accession of new force is increased in more

than a duplicate ratio of the diminished distance
;

it is manifest that the

body, being impelled always towards the centre by the perpetual accession

of this new force, will incline more towards that centre than if it were

urged by that force alone which decreases in a duplicate ratio of the di

minished distance, and therefore will describe an orbit interior to that

elliptical orbit, and at the lower apsis approaching nearer to the centre

than before. Therefore the orbit by the accession of this new force will

become more eccentrical. If now, while the body is returning from the

lower to the upper apsis, it should decrease by the same degrees by which

it increases before the body would return to its first distance; and there-
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fore if the force decreases in a yet greater ratio, the body, being now less

attracted than before, will ascend to a still greater distance, and so the ec

centricity of the orbit will be increased still more. Therefore if the ratio

of the increase and decrease of the centripetal force be augmented each

revolution, the eccentricity will be augmented also
; and, on the contrary,

if that ratio decrease, it will be diminished.

Now, therefore, in the system of the bodies T, P, S, when the apsides of

the orbit FAB are in the quadratures, the ratio of that increase and de

crease is least of all, and becomes greatest when the apsides are in the

syzygies. If the apsides are placed in the quadratures, the ratio near the

apsides is less, and near the syzygies greater, than the duplicate ratio of the

distances : and from that Greater ratio arises a direct motion of the line of
7 o

the apsides, as was just now said. But if we consider the ratio of the

whole increase or decrease in the progress between the apsides, this is less

than the duplicate ratio of the distances. The force in the lower is to the

force in the upper apsis in less than a duplicate ratio of the distance of the

upper apsis from the focus of the ellipsis to the distance of the lower apsis

from the same focus
; and, contrariwise, when the apsides are placed in the

syzygies, the force in the lower apsis is to the force in the upper apsis in a

greater than a duplicate ratio of the distances. For the forces LM in the

quadratures added to the forces of the body T compose forces in a less ra

tio
;
and the forces KL in the syzygies subducted from the forces of the

body T, leave the forces in a greater ratio. Therefore the ratio of the

whole increase and decrease in the passage between the apsides is least at

the quadratures and greatest at the syzygies ;
and therefore in the passage

of the apsides from the quadratures to the syzygies it is continually aug

mented, and increases the eccentricity of the ellipsis ;
and in the passage

from the syzygies to the quadratures it is perpetually decreasing, and di

minishes the eccentricity.

COR. 10. That we may give an account of the errors as to latitude, let

us suppose the plane of the orbit EST to remain immovable; and from

the cause of the errors above explained, it is manifest, that, of the two

forces NM, ML, which are the only and entire cause of them, the force

ML acting always in the plane of the orbit PAB never disturbs the mo
tions as to latitude

;
and that the force NM, when the nodes are in the

gyzygies, acting also in the same plane of the orbit, does not at that time

affect those motions. But when the nodes are in the quadratures, it dis

turbs tliem very much, and, attracting the body P perpetually out of the

plane of its orbit, it diminishes the inclination of the plane in the passage

of the body from the quadratures to the syzygies, and again increases the

same in the passage from the syzygies to the quadratures. Hence it

comes to pass that when the body is in the syzygies, the inclination is

then least of all, and returns to the first magnitude nearly, when the body
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arrives at the next node. But if the nodes are situate at the octants after

the quadratures, that is, between C and A, D and B, it will appear, from

ii C L

E

wnat was just now shewn, that in the passage of the body P from either

node to the ninetieth degree from thence, the inclination of the plane is

perpetually diminished
; then, in the passage through the next 45 degrees

to the next quadrature, the inclination is increased
;
and afterwards, again,

in its passage through another 45 degrees to the next node, it is dimin

ished. Therefore the inclination is more diminished than increased, and

is therefore always less in the subsequent node than in the preceding one.

And, by a like reasoning, the inclination is more increased than diminish

ed when the nodes are in the other octants between A and D, B and C.

The inclination, therefore, is the greatest of all when the nodes are in the

syzygies In their passage from the syzygies to the quadratures the incli

nation is diminished at each appulse of the body to the nodes : and be

comes least of all when the nodes are in the quadratures, and the body in

the syzygies ;
then it increases by the same degrees by which it decreased

before
; and, when the nodes come to the next syzygies, returns to its

former magnitude.
COR. 11. Because when the nodes are in the quadratures the body P is

perpetually attracted from the plane of its orbit
;
and because this attrac

tion is made towards S in its passage from the node C through the con

junction A to the node D
;
and to the contrary part in its passage from the

node D through the opposition B to the node C; it is manifest that, in its

motion from the node C, the body recedes continually from the former

plane CD of its orbit till it comes to the next node; and therefore at that

node, being now at its greatest distance from the first plane CD, it will

pass through the plane of the orbit EST not in D, the other node of that

plane, but in a point that lies nearer to the body S, which therefore be

comes a new place of the node in, antecedentia to its former place. And,

by a like reasoning, the nodes will continue to recede in their passage

from this node to the next. The nodes, therefore, when situate in the

quadratures, recede perpetually ;
and at the syzygies, where no perturba

tion can be produced in the motion as to latitude, are quiescent : in the in

termediate places they partake of both conditions, and recede more slowly ;

and, therefore, being always either retrograde or stationary, they will be

carried backwards, or in atitecedentia, each revolution.

COR. 12. All the errors described in these corrollaries arc a little greater

14



210 THE MATHEMATICAL PRINCIPLES BOOK L

at the conjunction of the bodies P, S, than at their opposition ;
because

the generating forces NM and ML are greater.
COR. 13. And since the causes and proportions of the errors and varia

tions mentioned in these Corollaries do not depend upon the magnitude of

the body S, it follows that all things before demonstrated will happen, if

the magnitude of the body S be imagined so great as that the system of the

two bodies P and T may revolve about it. And from this increase of the

body S, and the consequent increase of its centripetal force, from which the

errors of the body P arise, it will follow that all these errors, at equal dis

tances, will be greater in this case, than in the other where the body S re

volves about the system of the bodies P and T.

COR. 14. But since the forces NM, ML, when the body S is exceedingly

distant, are very nearly as the force SK and the ratio PT to ST con-

junctly ;
that is, if both the distance PT, and the absolute force of the body

8 be given, as ST 3
reciprocally : and since those forces NM, ML are the

causes of all the errors and effects treated of in the foregoing Corollaries;

it is manifest that all those effects, if the system of bodies T and P con

tinue as before, and only the distance ST and the absolute force of the body
S be changed, will be very nearly in a ratio compounded of the direct ratio

of the absolute force of the body S, and the triplicate inverse ratio of the

distance ST. Hence if the system of bodies T and P revolve about a dis

tant body S, those forces NM, ML, and their eifl ts, will be (by Cor. 2 and

6, Prop IV) reciprocally in a duplicate ratio c/f the periodical time. And

thence, also, if the magnitude of the bodv S be proportional to its absolute

force, those forces NM, ML, and their effects, will be directly as the cube

of the apparent diameter of the distant body S viewed from T, and so vice

versa. For these ratios are the same as the compounded ratio above men

tioned.

COR. 15. And because if the orbits ESE and PAB, retaining their fig

ure, proportions, and inclination to each other, should alter their magni
tude

;
arid the forces of the bodies S and T should either remain, or be

changed in any given ratio
;
these forces (that is, the force of the body T,

which obliges the body P to deflect from a rectilinear course into the orbit

PAB, and the force of the body S, which causes the body P to deviate from

that orbit) would act always in the same manner, and in the same propor

tion : it follows, that all the effects will be similar and proportional, arid

the times of those effects proportional also
;
that is, that all the linear er

rors will be as tne diameters of the orbits, the angular errors the same as

before
;
and the times of similar linear errors, or equal angular errors

?
as

the periodical times of the orbits.

COR. 16. Therefore if the figures of the orbits and their inclination to

each other be given, and the magnitudes, forces, arid distances of the bodies

he any how changed, we may. from the errors and times of those errors in
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one case, collect very nearly the errors and times of the errors in any other

case. But this may be done more expeditiously by the following method.

The forces NM
; ML, other things remaining unaltered, are as the radius

TP
;
and their periodical effects (by Cor. 2, Lein. X) are as the forces and

the square of the periodical time of the body P conjunctly. These are the

linear errors of the body P
;
and hence the angular errors as they appear

from the centre T (that is, the motion of the apsides and of the nodes, and all

the apparent errors as to longitude and latitude) are in each revolution of

the body P as the square of the time of the revolution, very nearly. Let

these ratios be compounded with the ratios in Cor. 14, and in any system
of bodies T, P, S, where P revolves about T very near to it, and T re

volves about S at a great distance, the angular errors of the body P, ob

served from the centre T, will be in each revolution of the body P as the

square of the periodical time of the body P directly, and the square of the

periodical time of the body T inversely. And therefore the mean motion

of the line of the apsides will be in a given ratio to the mean motion of

the nodes
;
and both those motions will be as the periodical time of the

body P directly, and the square of the periodical time of the body T in

versely. The increase or diminution of the eccentricity and inclination of

the orbit PAB makes no sensible variation in the motions of the apsides*

and nodes, unless that inc/case or diminution be very great indeed.

COR. 17. Sines the line LM becomes sometimes greater and sometimes

less than the radius PT, let the mean quantity of the force LM be expressed

E C

sa -
-::-..::::::;

by that radius PT
;
and then that mean force will be to the mean force

SK or SN (which may be also expressed by ST) as the length PT to the

length ST. But the mean force SN or ST, by which the body T is re

tained in the orbit it describes about S, is to the force with which the body P
is retained in its orbit about T in a ratio compounded of the ratio of the

radius ST to the radius PT, and the duplicate ratio of the periodical time

of the body P about T to the periodical time of the body T about S. And,
ex cequo, the mean force LM is to the force by which the body P is retain

ed in its orbit about T (or by which the same body P might revolve at the

distance PT in the same periodical time about any immovable point T) in

the same duplicate ratio of the periodical times. The periodical times

therefore being given, together with the distance PT, the mean force LM
is also given ;

and that force being given, there is given also the force MN,

very nearly, by the analogy of the lines PT and MN.
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Con. IS. By tlie same laws by which the body P revolves about the

body T, let us suppose many fluid bodies to move round T at equal dis

tances from it
;
and to be so numerous, that they may all become contiguous

to each other, so as to form a fluid annulus, or ring, of a round figure, and

concentrical to the body T; and the several parts of this annulus, perform

ing their motions by the same law as the body P, will draw nearer to the

body T, and move swifter in the conjunction and opposition of themselves

and the body S, than in the quadratures. And the nodes of this annulus,
or its intersections with the plane of the orbit of the body S or T, will rest

at the syzygies ;
but out of the syzygies they will be carried backward, or

in. antecedentia ; with the greatest swiftness in the quadratures, and more

slowly in other places. The inclination of this annulus also will vary, and

its axis will oscillate each revolution, and when the revolution is completed
will return to its former situation, except only that it will be carried round

a little by the precession of the nodes.

COR. 19. Suppose now the spherical body T, consisting of some matter

not fluid, to be enlarged, and to extend its If on every side as far as that

annulus, and that a channel were cut all round its circumference contain

ing water
j
and that this sphere revolves uniformly about its own axis in

the same periodical time. This water being accelerated and retarded by
turns (as in the last Corollary), will be swifter at the syzygies, and slower

at the quadratures, than the surface of the globe, and so will ebb and flow in

its channel after the manner of the sea. If the attraction of the body S were

taken away, the water would acquire no motion of flux and reflux by revolv-

.ng round the quiescent centre of the globe. The case is the same of a globe

moving uniformly forwards in a right line, and in the mean time revolving

about its centre (by Cor. 5 of the Laws of Motion), and of a globe uni

formly attracted from its rectilinear course (by Cor. 6, of the same Laws).
But let the body S come to act upon it, and by its unequable attraction the

A\ater will receive this new motion
;
for there will be a stronger attraction

upon that part of the water that is nearest to the body, and a weaker upon
that part which is more remote. And the force LM will attract the water

downwards at the quadratures, and depress it as far as the syzygies ;
and the

force KL will attract it upwards in the syzygies, and withhold its descent,

and make it rise as far as the quadratures ; except only in so far as the

motion of flux and reflux may be directed by the channel of the water, and

be a little retarded by friction.

COR. 20. If, now, the annulus becomes hard, and the globe is diminished,

the motion of flux and reflux will cease
;
but the oscillating motion of the

inclination and the praecession of the nodes will remain. Let the globe

have the same axis with the annulus, and perform its revolutions in the

same times, and at its surface touch the annulus within, and adhere to it;

then the globe partaking of the motion of the annulus, this whole compares
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will oscillate, and the nodes will go backward, for the globe, as \ve shall

shew presently, is perfectly indifferent to the receiving of all impressions.

The greatest angle of the inclination of the annulus single is when the

nodes are in the syzygies. Thence in the progress of the nodes to the

quadratures, it endeavours to diminish its inclination, and by that endea

vour impresses a motion upon the whole globe. The globe retains this

motion impressed, till the annulus by a contrary endeavour destroys that

motion, and impresses a new motion in a contrary direction. And by this

means the greatest motion of the decreasing inclination happens when the

nodes are in the quadratures; and the least angle of inclination in the octants

B

after the quadratures ; and, again, the greatest motion of roclination happens
when the nodes are in the syzygies ;

and the greatest angle of reclination in

the octants following. And the case is the same of a globe without this an

nulus, if it be a little higher or a little denser in the equatorial than in the

polar regions : for the excess of that matter in the regions near the equator

supplies the place of the annulus. And though we should suppose the cen

tripetal force of this globe to be any how increased, so that all its parts

were to tend downwards, as the parts of our earth gravitate to the centre,

yet the phenomena of this and the preceding Corollary would scarce be al

tered
; except that the places of the greatest and least height of the water

will be different : for the water is now no longer sustained and kept in its

orbit by its centrifugal force, but by the channel in which it flows. And,

besides, the force LM attracts the water downwards most in the quadra

tures, and the force KL or NM LM attracts it upwards most in the

syzygies. And these forces conjoined cease to attract the water downwards,

and begin to attract it upwards in the octants before the syzygies ;
and

cease to attract the water upwards, and begin to attract the water down

wards in the octants after the syzygies. And thence the greatest height of

the water may happen about the octants after the syzygies ;
and the least

height about the octants after the quadratures ; excepting only so far as the

motion of ascent or descent impressed by these forces may by the vis insita

of the water continue a little longer, or be stopped a little sooner by impe
diments in its channel.

COR. 21. For the same reason that redundant matter in the equatorial

regions of a globe causes the nodes to go backwards, and therefore by the

increase of that matter that retrogradation is increased, by the diminution

is diminished, and by the removal quite ceases : it follows, that, if more than
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that redundant matter be taken away, that is, if the globe be either more

depressed, or of a more rare consistence near the equator than near the

poles, there will arise a motion of the nodes in consequentia.
COR. 22. And thence from the motion of the nodes is known the consti

tution of the globe. That is, if the globe retains unalterably the same poles,

and the motion (of the nodes) be in. antecedetitia, there is a redundance oi

the matter near the equator; but if in conseqnentia, a deficiency. Sup
pose a uniform and exactly spherical globe to be first at rest in a free space :

then by some impulse made obliquely upon its superficies to be driven from

its place, and to receive a motion partly circular and partly right forward.

Because this globe is perfectly indifferent to all the axes that pass through
its centre, nor has a greater propensity to one axis or to one situation oi

the axis than to any other, it is manifest that by its own force it will never

change its axis, or the inclination of it. Let now this globe be impelled

obliquely by a new impulse in the same part of its superficies as before .

and since the effect of an impulse is not at all changed by its coming sooner

or later, it is manifest that these two impulses, successively impressed, will

produce the same motion as if they were impressed at the same time : that

is, the same motion as if the globe had been impelled by a simple force

compounded of them both (by Cor. 2, of the Laws), that is, a simple motion

about an axis of a given inclination. And the case is the same if the sec

ond impulse were made upon any other place of the equator of the first

motion
;
and also if the first impulse were made upon any place in the

equator of the motion which would be generated by the second impulse

alone; and therefore, also, when both impulses are made in any places

whatsoever
;
for these impulses will generate the same circular motion as

if they were impressed together, and at once, in the place of the intersec

tions of the equators of those motions, which would be generated by each

of them separately. Therefore, a homogeneous and perfect globe will not

retain several distinct motions, but will unite all those that are impressed

on it, and reduce them into one; revolving, as far as in it lies, always with

a simple and uniform motion about one single given axis, with an inclina

tion perpetually invariable. And the inclination of the axis, or the velocity

of the rotation, will not be changed by centripetal force. For if the globe

be supposed to be divided into two hemispheres, by any plane whatsoever

passing through its own centre, and the centre to which the force is direct

ed, that force will always urge each hemisphere equally ;
and therefore will

not incline the globe any way as to its motion round its own axis. But

let there be added any where between the pole and the equator a heap oi

new matter like a mountain, and this, by its perpetual endeavour to recede

from the centre of its motion, will disturb the motion of the globe, and

cause its poles to wander about its superficies, describing circles about

themselves and their opposite points. Neither can this enormous evagatior
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of the poles be corrected, unless by placing that mountain ei . er in one ol

the poles; in which case, by Cor. 21, the nodes of the equator will go for

wards
;
or in the equatorial regions, in which case, by Cor. 20, the nodes

will go backwards: or, lastly, by adding on the other side of the axis anew

quantity of matter, by which the mountain may be balanced in its motion;

and then the nodes will either go forwards or backwards, as the mountain

and this newly added matter happen to be nearer to the pole or to the

equator.

PROPOSITION LXV1I. THEOREM XXVII.

The same laics of attraction being supposed, I say, that the exterior body

S does, by radii dra.cn to the point O, the common centre of gravity

of the interior bodies P and T, describe round that centre areas more

proportional to the times, and an orbit more approaching to the form

of an ellipsis having its focus in that cen &amp;gt;

.-. than, it can describe

round the innermost and greatest body T by ra Hi drawn to that

body.

For the attractions of the body S towards T and

P compose its absolute attraction, which is more

directed towards O, the common centre of gravity
S(i

of the bodies T and P, than it is to the . reatest

body T ;
and which is more in a reciprocal propor

tion to the square of the distance SO, than it is to the square of the distance

ST : as will easily appear by a little consideration.

PROPOSITION LXVIII. THEOREM XXVIII.

The same laws of attraction supposed, I say, that the exterior body S

will, by radii drawn to O, the common centre of gravity of the interior

bodies P and T, describe round that centre areas more propor
tional to the times, and an orbit more approaching to the form of an

ellipsis having its focus in that centre, if the innermost and greatest

body be agitated by these attractions as well as the rest, than it would

do if that body were either at rest as not attracted, or were much tnore

or much less attracted, or much more or much less agitated.
This may be demonstrated after the same manner as Prop. LXVI, but

by a more prolix reasoning, which I therefore pass over. It will be suf

ficient to consider it after this manner. From the demonstration of the

last Proposition it is plain, that the centre, towards which the body S is

urged by the two forces conjunctly, is very near to the common centre of

gravity of those two other bodies. If this centre were to coincide with that

common centre, and moreover the common centre of gravity of all the three

bodies were at rest, the body S on one side, and the common centre of

gravity of the other two bodies on the other side, would describe true ellip*
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ses about that quiescent common centre. This appears from Cor. 2, Pro])

LVIII, compared with what was demonstrated in Prop. LX1V, and LXY
Now this accurate elliptical motion will be disturbed a little by the dis

tance of the centre of the two bodies from the centre towards which tht

third body S is attracted. Let there be added, moreover, a motion to the

Bommon centre of the three, and the perturbation will be increased yet

more. Therefore the perturbation is least when the

common centre of the three bodies is at rest; that

I is, when the innermost and greatest body T is at

tracted according to the same law as the rest are
;

and is always greatest when the common centre of

the three, by the diminution of the motion of the body T, begins to be

moved, and is more and more agitated.

COR. And hence if more lesser bodies revolve about the great one, it

may easily be inferred that the orbits described will approach nearer to

ellipses ;
and the descriptions of areas will be more nearly equable, if all

the bodies mutually attract and agitate each other with accelerative forces

that are as their absolute forces directly, and the squares of the distances

inversely : and if the focus of each orbit be placed in the common centre

of gravity of all the interior bodies (that is. if the focus of the first and in

nermost orbit be placed in the centre of gravity of the greatest and inner

most body : the focus of the second orbit in the common centre of gravity

of the two innermost bodies; the focus of the third orbit in the common

centre of gravity of the three innermost
;
and so on), than if the innermost

body were at rest, and was made the common focus of all the orbits.

PROPOSITION LXIX. THEOREM XXIX.

fn a system of several bodies A, B, C, D, $*c., if any one of those bodies,

as A, attract all the rest, B, C, D, $*c.,with accelerativeforces that are

reciprocally as the squares of the distancesfrom the attracting body ;

and another body, as B, attracts also the rest. A, C, D, $-c., with forces

that are reciprocally as the squares of the distances from the attract

ing body ; the absolute forces of the attracting bodies A and B will

be to each other as those very bodies A and B to which those forces

belong.

For the accelerative attractions of all the bodies B, C, D, towards A,

are by the supposition equal to each other at equal distances
;
and in like

manner the accelerative attractions of all the bodies towards B are also

equal to each other at equal distances. But the absolute attractive force

of the body A is to the absolute attractive force of the body B as the ac-

eelerative attraction of all the bodies towards A to the accelerative attrac

tion of all the bodies towards B at equal distances
;
and so is also the ac

celerative attraction of the body B to*vards A to the accelerative attraction
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of the body A towards B. But the accelerative attraction of the body B
towards A is to the accelerative attraction of the body A towards B as the

mass of the body A to the mass of the body B
;
because the motive forces

which (by the 2d, 7th, and 8th Definition) are as the accelerative forces

and the bodies attracted conjunctly are here equal to one another by the

third Law. Therefore the absolute attractive force of the body A is to the

absolute attractive force of the body B aa the mass of the body A to the

mass of the body B. Q.E.D.

COR. 1. Therefore if each of the bodies of the system A, B, C, D, &c.

does singly attract all the rest with accelerative forces that are reciprocally

as the squares of the distances from the attracting body, the absolute forces

of all those bodies will be to each other as the bodies themselves.

COR. 2. By a like reasoning, if each of the bodies of the system A, B,

C, D, &c., do singly attract all the rest with accelerative forces, which are

either reciprocally or directly in the ratio of any power whatever of the

distances from the attracting body : or which are defined by the distances

from each of the attracting bodies according to any common law : it is plain

that the absolute forces of those bodies are as the bodies themselves.

COR. 3. In a system of bodies whose forces decrease in the duplicate ra

tio of the distances, if the lesser revolve about one very great one in ellip

ses, having their common focus in the centre of that great body, and of a

figure exceedingly accurate
;
and moreover by radii drawn to that great

ody describe areas proportional to the times exactly the absolute forces

)i those bodies to each other will be either accurately or very nearly in the

ratio of the bodies. And s &amp;gt; on the contrary. This appears from Cor. of

Prop. XLVII1, compared with the first Corollary of this Prop.

SCHOLIUM.
These Propositions naturally lead us to the analogy there is between

centripetal forces, and the central bodies to which those forces used to be

directed
;
for it is reasonable to suppose that forces which are directed to

bodies should depend upon the nature and quantity of those bodies, as we
see they do in magnetical experiments. And when such cases occur, we
are to compute the attractions of the bodies by assigning to each of their

particles its proper force, and then collecting the sum of them all. I here

ue*e the word attraction in general for any endeavour, of what kind soever,

made by bodies to approach to each other; whether that endeavour arise

from the action of the bodies themselves, as tending mutually to or agita

ting each other by spirits emitted; or whether it arises from the action

of the aether or of the air, or of any medium whatsoever* whether corporeal
or incorporeal, any how impelling bodies placed therein towards each other.

In the same general sense I use the word impulse, not defining in this trea

tise the species or physical qualities of forces, but investigating the quantities
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and mathematical proportions of them
;
as I observed before ir (lie Defi

nitions. In mathematics we are to investigate the quantities of forces

with their proportions consequent upon any conditions supposed ; then,
when we enter upon physics, we compare those proportions with the phe
nomena of Nature, that we may know what conditions of those forces an
swer to the several kinds of attractive bodies. And this preparation being
made, we argue more safely concerning the physical species, causes, and

proportions of the forces. Let us see, then, with what forces spherical
bodies consisting of particles endued with attractive powers in the manner
above spoken of must act mutually upon one another : and what kind of

motions will follow from thence.

SECTION XII.

Of the attractiveforces of sphcerical bodies.

PROPOSITION LXX. THEOREM XXX.
If to every point of a spherical surface there tend equal centripetalforces

decreasing in, the duplicate ratio of the distances from those points ;

I say, that a corpuscle placed within that superficies will not be attract

ed by those forces any way.
Let HIKL, be that sphaerical superficies, and P a

corpuscle placed within. Through P let there be

drawn to this superficies to two lines HK, IL, inter-

cepting very small arcs HI, KL ;
and because (by

Cor. 3, Lem. VII) the triangles HPI,LPK are alike,

those arcs will be proportional to the distances HP
LP

;
and any particles at HI and KL of the spheri

cal superficies, terminated by right lines passing through P, will be in the

duplicate ratio of those distances. Therefore the forces of these particles

exerted upon the body P are equal between themselves. For the forces are

as the particles directly, and the squares of the distances inversely. And
these two ratios compose the ratio of equality. The attractions therefore,

being made equally towards contrary parts, destroy each other. And by a

like reasoning all the attractions through the whole spherical superficies

are destroyed by contrary attractions. Therefore the body P will not be

any way impelled by those attractions. Q.E.D.

PROPOSITION LXXI. THEOREM XXXI.

The same things supposed as above, I say, that a corpu vie placed with

out the sph(ericl superficies is attracted towards the centre of tht

sphere wiih a force reciprocally proportional to the square of its dis

tancefrom that centre.

Let AHKB, ahkb, be two equal sphaerical superficies described about
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the centre S, s ; their diameters AB, ab ; and let P and p be two corpus

cles situate without the gpheres in those diameters produced. Let there

be drawn from the corpuscles the lines PHK, PIL, phk, pil, cutting off

from the great circles AHB, ahb, the equal arcs HK, hk, IL
;
il ; and to

those lines let fall the perpendiculars SD, sd, SE, SP, 1R, ir ; of which let

SD, sd, cut PL, pi, in F and f. Let fall also to the diameters the perpen

diculars IQ, iq. Let now the angles DPE, dpe, vanish; and because DS
and ds, ES and es are equal, the lines PE, PP, and pe, pf, and the lineolso

I )F, df may be taken for equal ;
because their last ratio, when the angles

DPE, dpe vanish together, is the ratio of equality. These things then

supposed, it will be, as PI to PF so is RI to DF, and as pf to pi so is df or

DF to ri ; and, ex cequo, as PI X pf to PF X pi so is R I to ri, that is

(by Cor. 3, Lem VII), so is the arc IH to the arc ih. Again, PI is to PS
as IQ. to SE, and ps to pi as se or SE to iq ; and, ex ceqno, PI X ps to

PS X pi as IQ. to iq. And compounding the ratios PI 2 X pf X ps is to

pi
2 X PF X PS, as IH X IQ to ih X iq ; that is, as the circular super

ficies which is described by the arc IH, as the semi-circle AKB revolves

about the diameter AB, is to the circular superficies described by the arc ih

as the semi-circle akb revolves about the diameter ab. And the forces

with which these superficies attract the corpuscles P and p in the direction

of lines tending to those superficies are by the hypothesis as the superficies

themselves directly, and the squares of the distances of the superficies from

those corpuscles inversely; that is, as pf X ps to PF XPS. And these

forces again are to the oblique parts of them which (by the resolution of

forces as in Cor. 2, of the Laws) tend to the centres in the directions of the

lines PS, JDS-,
as PI to PQ, and pi to pq ; that is (because of the like trian

gles PIQ and PSF, piq and psf\ as PS to PF and ps to pf. Thence ex

cequO) the attraction of the corpuscle P towards S is to the attraction of

PF XpfXps. pf X PF X PS .

the corpusclejo towards 5 as ~ = is to
,
that is,

as ps
2 to PS 2

. And, by a like reasoning, the forces with which the su

perficies described by the revolution of the arcs KL, kl attract those cor

puscles, will be as jDS
2 to PS 2

. And in the same ratio will be the foroes

of all the circular superficies into which each of the sphaerical superficies

may be divided by taking sd always equal to SD, and se equal to SE. And

therefore, by composition, the forces of the entire spherical superficies ex

erted upon those corpuscles will be in the same ratio. Q.E.D
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PROPOSITION LXXIL THEOREM XXXII.

If to the several points of a sphere there tend equal centripetalforces de

creasing in a duplicate ratio of the distancesfrom those points ; and
there be given both the density of the sphere and the ratio of the di

ameter of the sphere to the distance of the corpuscle from its centre ;

I say, that the force with which the corpuscle is attracted is propor
tional to the semi-diameter of the sphere.

For conceive two corpuscles to be severally attracted by two spheres, one

by one, the other by the other, and their distances from the centres of the

spheres to be proportional to the diameters of the spheres respectively ,
and

the spheres to be resolved into like particles, disposed in a like situation

to the corpuscles. Then the attractions of one corpuscle towards the sev

eral particles of one sphere will be to the attractions of the other towards

as many analogous particles of the other sphere in a ratio compounded of

the ratio of the particles directly, and the duplicate ratio of the distances

inversely. But the particles are as the spheres, that is, in a triplicate ra

tio of the diameters, and the distances are as the diameters
;
and the first

ratio directly with the last ratio taken twice inversely, becomes the ratio

of diameter to diameter. Q.E.D.
COR. 1. Hence if corpuscles revolve in circles about spheres composed

of matter equally attracting, and the distances from the centres of the

spheres be proportional to their diameters, the periodic times will be equal.

COR. 2. And, vice versa, if the periodic times are equal, the distances

will be proportional to the diameters. These two Corollaries appear from

Cor. 3, Prop. IV.

COR. 3. If to the several points of an^ two solids whatever, of like fig-

are and equal density, there tend equal centripetal forces decreasing in a

duplicate ratio of the distances from those points, the forces, with which

corpuscles placed in a like situation to those two solids will be attracted

by them, will be to each other as the diameters of the solids.

PROPOSITION LXXIII. THEOREM XXXIII.

If to the several points of a given sphere there tend equal centripetalforces

decreasing in a duplicate ratio of the distances from the points ; 1

say, that a corpuscle placed within the sphere is attracted by a force

proportional to its distancefrom the centre.

In the sphere ABCD, described about the centre S,

let there be placed the corpuscle P
;
and about the

same centre S, with the interval SP
?
conceive de-

|

B scribed an interior sphere PEQP. It is plain (by

Prop. LXX) that the concentric sphaerical superficies,

of which the difference AEBF of the spheres is com

posed, have no effect at all upon the body P, their at-
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tractions being destroyed by contrary attractions. There remains, there

fore; only the attraction of the interior sphere PEQ,F. And (by Prop.

LXXII) this is as the distance PS. Q.E.D.

SCHOLIUM.

By the superficies of which I here imagine the solids composed, I do not

mean superficies purely mathematical, but orbs so extremely thin, that

their thickness is as nothing; that is, the evanescent orbs of which the sphere

will at last consist when the number of the orbs is increased, and their

thickness diminished without end. In like manner, by the points of which

lines, surfaces, and solids are said to be composed, are to be understood

equal particles, whose magnitude is perfectly inconsiderable.

PROPOSITION LXXIV. THEOREM XXXIV.
The same things supposed, I say, that a corpuscle situate without the

sphere is attracted with a force reciprocally proportional to the square

of its distancefrom the centre.

For suppose the sphere to be divided into innumerable concentric sphe
rical superficies, and the attractions of the corpuscle arising from the sev

eral superficies will be reciprocally proportional to the square of the dis

tance of the corpuscle from the centre of the sphere (by Prop. LXXI).
And, by composition, the sum of those attractions, that is, the attraction

of the corpuscle towards the entire sphere, will be in the same ratio. Q.E.D.

COR. 1. Hence the attractions of homogeneous spheres at equal distances

from the centres will be as the spheres themselves. For (by Prop. LXXII)
if the distances be proportional to the diameters of the spheres, the forces

will be as the diameters. Let the greater distance be diminished in that

ratio
;
and the distances now being equal, the attraction will be increased

in the duplicate of that ratio
;
and therefore will be to the other attraction

in the triplicate of that ratio
;
that is, in the ratio of the spheres.

COR. 2. At any distances whatever the attractions are as the spheres

applied to the squares of the distances.

COR. 3. If a corpuscle placed without an homogeneous sphere is attract

ed by a force reciprocally proportional to the square of its distance from

the centre, and the sphere consists of attractive particles, the force of every

particle will decrease in a duplicate ratio of the distance from each particle.

PROPOSITION LXXV. THEOREM XXXV.
If to the several points of a given sphere there tend equal centripetal forces

decreasing in a duplicate ratio of the distancesfrom the points ; Isay,
that another similar sphere will be attracted by it with a force recip

rocally proportional to the square of the distance of the centres.

For the attraction of every particle is reciprocally as the square of its
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distance from the centre of the attracting sphere (by Prop. LXXIV). and

is therefore the same as if that whole attracting force issued from one sin

gle corpuscle placed in the centre of this sphere. But this attraction is as

great as on the other hand the attraction of the same corpuscle would be,

if that were itself attracted by the several particles of the attracted sphere

with the same force with which they are attracted by it. But that attrac

tion of the corpuscle would be (by Prop. LXXIV) reciprocally propor

tional to the square of its distance from the centre of the sphere : therefore

the attraction of the sphere, equal thereto, is also in the same ratio. Q,.E.D.

COR. 1. The attractions of spheres towards other homogeneous spheres

are as the attracting spheres applied to the squares of the distances of their

centres from the centres of those which they attract.

COR. 2. The case is the same when the attracted sphere does also at

tract. For the several points of the one attract the several points of the

other with the same force with which they themselves are attracted by the

others again; and therefore since in all attractions (by Law III) the at

tracted and attracting point are both equally acted on, the force will be

doubled by their mutual attractions, the proportions remaining.
COR. 3. Those several truths demonstrated above concerning the motion

of bodies about the focus of the conic sections will take place when an

attracting sphere is placed in the focus, and the bodies move without the

sphere.

COR. 4. Those things which were demonstrated before of the motion of

bodies about the centre of the conic sections take place when the motions

are performed within the sphere.

PROPOSITION LXXVI. THEOREM XXXVI.

ff spheres be however dissimilar (as to density of matter and attractive,

force] in the same ratio onwardfrom the centre to the circumference ;

but every where similar, at every given distance from the centre, on all

sides round about ; and the attractive force of every point decreases

in the duplicate ratio of the distance of the body attracted ; I say,
that the wholeforce with which one of these spheres attracts the oilier

will be reciprocally proportional to the square of the distance of the

centres.

Imagine several concentric similar

spheres, AB, CD, EF, &c.. the inner

most of which added to the outermost

may compose a matter more dense to

wards the centre, or subducted from

them may leave the same more lax and

rare. Then, by Prop. LXXV, these

sphere? will attract other similar con-
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eentric spheres GH
; IK, LM, &c., each the other, with forces reciprocally

proportional to the square of the distance SP. And, by composition or

division, the sum of all those forces, or the excess of any of them above

the others; that is, the entire force with which the whole sphere AB (com

posed of any concentric spheres or of their differences) will attract the

whole sphere GH (composed of any concentric spheres or their differences)

in the same ratio. Let the number of the concentric spheres be increased

in infinitum, so that the density of the matter together with the attractive

force may, in the progress from the circumference to the centre, increase or

decrease according to any given law
;
and by the addition of matter not at

tractive, let the deficient density be supplied, that so the spheres may acquire

any form desired
;
and the force with which one of these attracts the other

will be still, by the former reasoning, in the same ratio of the square of the

distance inversely. Q.E.I).

COR. I. Hence if many spheres of this kind, similar in all respects, at

tract each other mutually, the accelerative attractions of each to each, at

any equal distances of the centres, will be as the attracting spheres.

COR. 2. And at any unequal distances, as the attracting spheres applied

to the squares of the distances between the centres.

/ COR. 3. The motive attractions, or the weights of the spheres towards

one another, will be at equal distances of the centres as the attracting and

attracted spheres conjunctly ;
that is, as the products arising from multi

plying the spheres into each other.

COR. 4. And at unequal distances, as those products directly, and the

squares of the distances between the centres inversely.

COR. 5. These proportions take place also when the attraction arises

from the attractive virtue of both spheres mutually exerted upon each

other. For the attraction is only doubled by the conjunction of the forces,

the proportions remaining as before.

COR. 6. If spheres of this kind revolve about others at rest, each about

each
;
and the distances between the centres of the quiescent and revolving

bodies are proportional to the diameters of the quiescent bodies
;
the peri

odic times will be equal.

COR. 7. And, again, if the periodic times are equal, the distances will

be proportional to the diameters.

COR. 8. All those truths above demonstrated, relating to the motions

jf bodies about the foci of conic sections, will take place when an attract

ing sphere, of any form and condition like that above described, is placed

in the focus.

COR. 9. And also when the revolving bodies are also attracting spheres

Df any condition like that above described.
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PROPOSITION LXXVI1. THEOREM XXXVII.

Tf to 1he several points of spheres there tend centripetal forces propor
tional to the distances of the points from the attracted bodies ; I say,
that the compounded force with which two spheres attract each other

mutually is as the distance between the centres of the spheres.

CASE 1. Let AEBF be a sphere ;
S its

centre . P a corpuscle attracted : PASB
the axis of the sphere passing through the

centre of the corpuscle ; EF, ef two planes

cutting the sphere, and perpendicular to

the axis, and equi-distant, one on one side,

the other on the other, from the centre of

the sphere ;
G and g- the intersections of

the planes and the axis
;
and H any point in the plane EF. The centri

petal force of the point H upon the corpuscle P, exerted in the direction of

the line PH, is as the distance PH
;
and (by Cor. 2, of the Laws) the same

exerted in the direction of the line PG, or towards the . centre S, is as the

length PG. Therefore the force of all the points in the plane EF (that is,

of that whole plane) by which the corpuscle P is attracted towards the

centre S is as the distance PG multiplied by the number of those points,

that is, as the solid contained under that plane EF and the distance PG.
And in like manner the force of the plane ef, by which the corpuscle P is

attracted towards the centre S, is as that plane drawn into its distance Pg,
or as the equal plane EF drawn into that distance Pg* ; and the sum of the

forces of both planes as the plane EF drawn into the sum of the distances

PG + P^, that is, as that plane drawn into twice the distance PS of the

centre and the corpuscle ;
that is, as twice the plane EF drawn into the dis

tance PS, or as the sum of the equal planes EF + ef drawn into the same

distance. And, by a like reasoning, the forces of all the planes in the

whole sphere, equi-distant on each side from the centre of the sphere, are

as the sum of those planes drawn into the distance PS, that is, as the

whole sphere and the distance PS conjunctly. Q,.E.D.

CASE 2. Let now the corpuscle P attract the sphere AEBF. And, by
the same reasoning, it will appear that the force with which the sphere is

attracted is as the distance PS. Q,.E.D.

CASE 3. Imagine another sphere composed of innumerable corpuscles P :

and because the force with which every corpuscle is attracted is as the dis

tance of the corpuscle from the centre of the first sphere, and as the same

sphere conjunctly, and is therefore the same as if it all proceeded from a

single corpuscle situate in the centre of the sphere, the entire force with

which all the corpuscles in the second sphere are attracted, that is, with

which that whole sphere is attracted, will be the same as if that sphere
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were attracted by a force issuing from a single corpuscle in the centre of

the first sphere ;
and is therefore proportional to the distance between the

centres of the spheres. Q,.E.D.

CASE 4. Let the spheres attract each other mutually, and the force will

be doubled, but the proportion will remain. Q..E.D.

CASE 5. Let the corpuscle p be placed within ^- ^\E
the sphere AEBF ;

and because the force of the

plane ef upon the corpuscle is as the solid contain

ed under that plane and the distance jog ; and the

contrary force of the plane EF as the solid con

tained under that plane and the distance joG ;
the ^

force compounded of both will be as the difference **

of the solids, that is, as the sum of the equal planes drawn into half the

difference of the distances
;
that is, as that sum drawn into joS, the distance

of the corpuscle from the centre of the sphere. And, by a like reasoning,

the attraction of all the planes EF, ef, throughout the whole sphere, that

is, the attraction of the whole sphere, is conjunctly as the sum of all the

planes, or as the whole sphere, and as joS, the distance of the corpuscle from

the centre of the sphere. Q.E.D.

CASE 6. And if there be composed a new sphere out of innumerable cor

puscles such as jo, situate within the first sphere AEBF, it may be proved,

as before, that the attraction, whether single of one sphere towards the

other, or mutual of both towards each other, will be as the distance joS of

the centres. Q, E.D.

PROPOSITION LXXVIII. THEOREM XXXVIII.

If spheres it* the progress from the centre to the circumference be hoivMtv

dissimilar a-&amp;gt;id unequable, but similar on every side round about af all

given distances from the centre ; and the attractive force of evsrt/

point be as the distance of the attracted body ; I say, that the entire

force with which two spheres of this kind attract each other mutitallij

is proportional to the distance between the centres of the spheres.

This is demonstrated from the foregoing Proposition, in the same man
ner as Proposition LXXVI was demonstrated from Proposition LXXY.

COR. Those things that were above demonstrated in Prop. X and LXJV,
of the motion of bodies round the centres of conic sections, take place when

all the attractions are made by the force of sphaerical bodies of the condi

tion above described, and the attracted bodies are spheres of the same kind.

SCHOLIUM.
i have now explained the two principal cases of attractions; to wit,

when the centripetal forces decrease in a duplicate ratio of the distances

r increase in a simple ratio of the distances, causing the bodies in botli

15
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cases to revolve in conic sections, and composing sphaerical bodies whose

centripetal forces observe the same law of increase or decrease in the recess

from the centre as the forces of the particles themselves do
; which is verv

remarkable. It would be tedious to run over the other cases, whose con

clusions are less elegant and important, so particularly as I have done

these. I choose rather to comprehend and determine them all by one gen
eral method as follows.

LEMMA XXIX.

ff about the centre S there be described any circle as AEB, and about the

centre P there be. also described two circles EF, ef, cutting the Jirst in

E and e, and the line PS in F and f
;
and there be let fall to PS the

perpendiculars ED, ed
;
I say, that if the distance of the arcs EF

;
ef

be supposed to be infinitely diminished, the last ratio of the evanscent

linr Dd to the evanescent line Ff is the same as that of the line PE to

the live PS.

For if the line Pe cut the arc EF in q ; and the right line Ee, which

coincides with the evanescent arc Ee, be produced, and meet the right line

PS in T
;
and there be let fall from S to PE the perpendicular SG ;

then,

because of the like triangles DTE, &amp;lt;/

!&amp;gt;, DES, it will be as Dd to Ee so

))T to TE, or DE to ES : and because the triangles, Ee?, ESG (by Lem.

VIII, and Cor. 3, Lem. VII) are similar, it will be as Ee to eq or F/soES
to SG

; and, ex ceqno, as Dd to Ff so DE to SG
;
that is (because of the

similar triangles PDE ; PGS), so is PE to PS. Q.E.D.

PROPOSITION LXXIX. THEOREM XXXIX.

Suppose a superficies as EFfe to have its breadth infinitely diminished,

and to be just vanishing ; and that the same superficies by its revolu-

tion round the axis PS describes a spherical concavo-convex solid, to

the several equnJ particle* of which there tend equal centripetal forces ;

I soy, that the force with which thit solid attracts a corpuscle situate

in P is in a ratio compounded of the ratio of the solid DE 2 X Ff and

the ratio of the force with which the given particle in the place Ff

would attract the same corpuscle.

For if we consider, first, the force of the spherical superficies FE which
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is generated by the revolution of the arc FE,
and is cut any where, as in r, by the line&amp;lt;/6,

the annular part of the super J cies generated

by the revolution of the arc rE will be as the

lineola Dd, the radius of the sphere PE re-

mainiag the same; as Archimedes has de

monstrated in his Book of the Sphere and

Cylinder. And the force of this super

ficies exerted in the direction of the lines PE
or Pr situate all round in the conical superficies, will be as this annular

superficies itself; that is as the lineola DC/, or, which is the same, as the

rectangle under the given radius PE of the sphere and the lineola DC/ ; but

that force, exerted in the direction of the line PS tending to the centre S,

will be less in the ratio PI) to PE, and therefore will be as PD X DC/.

Suppose now the line DF to be divided into innumerable little equal par

ticles, each of which call DC/, and then the superficies FE will be divided

into so many equal annuli, whose forces will be as the sum of all the rec

tangles PD X DC/, that is, as |PF 2 - |PD 2
;
and therefore as DE-.

Let now the superficies FE be drawn into the altitude F/; and the force

of the solid EF/e exerted upon the corpuscle P will be as DE 2 X Ff;
that is, if the force be given which any given particle as Ff exerts upon
the corpuscle P at the distance PF. But if that force be not given, the

force of the solid EF/e will be as the solid DE 2 X Ff and that force not

given, conjunctly. Q.E.D.

PROPOSITION LXXX. THEOREM XL.

If to the several equal parts of a sphere ABE described about the centre

S there tend equal centripetal forces ; andfrom the several points I)

in the axis of the sphere AB in which a corpuscle, as F, is placed,

there be erected the perpendiculars DE meeting the sphere in E, and

if in those perpendiculars the lengths DN be taken as the quantity
DE 2 X PS

-, ,
and as th*force which a particle of the sphere situate in,

the axis exerts at the distance PE upon the corpuscle P conjunctly ; ]

say, that the inhole force with which the, corpuscle P is attracted to

wards the sphere is as the area ANB, comprehended under the axis of
the sphere AB, and the curve line ANB, the locus of the point N.

For supposing the construction in the last Lemma and Theorem to

stand, conceive the axis of the sphere AB to be divided into innumerable

equal particles DC/, and the whole sphere to be divided into so many sphe
rical concavo-convex laminae EF/e / and erect the perpendicular dn. By
the last Theorem, the force with which the laminas EF/e attracts the cor

puscle P is as DE 2 X Ff and the force of one particle exerted at the
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distance PE or PF, conjunctly.
But (by the last Lemma) Dd is to

F/ as PE to PS, and therefore F/
.

is equal to
PE

F/ is equal to Dd X

;
and DE 2 X

DE 2 X PS
PET~ ;

and therefore the force of the la-

DE 2 X PS
mina EF/e is as Do? X PT?~

and the force of a particle exerted at the distance PF conjunctly ;
that is,

by the supposition, as DN X D(/
7

or as the evanescent area DNwrf.

Therefore the forces of all the lamina) exerted upon the corpuscle P are as

all the areas DN//G?, that is, the whole force of the sphere will be as the

whole area ANB. Q.E.D.

COR. 1. Hence if the certripetal force tending to the several particles

p)F 2 vx po
remain always the same at all distances, and DN be made as ;

Jr Jli

the whole force with which the corpuscle is attracted by the sphere is as

the area ANB.
COR. 2. If the centripetal force of the particles be reciprocally as the

DE 2 X PS
distance of the corpuscle attracted by it, and DN be made as - ^^ ,

the force with which the corpuscle P is attracted by the whole sphere wil]

be as the area ANB.
Cor. 3. Jf the centripetal force of the particles be reciprocally as the

cube of the distance of the corpuscle attracted by it, and DN be made as

T)F 2 y PS
---

. the force with which the corpuscle is attracted by the whole

sphere will be as the area ANB.
COR. 4. And universally if the centripetal force tending to the several

particles of the sphere be supposed to be reciprocally as the quantity V ;

DE 2 X PS
and D5& be made as ^- ;

the force with which a corpuscle is at-
Jr Jtj X

tracted by the whole sphere will be as the area ANB.

PROPOSITION LXXXI. PROBLEM XLI.

T/Le things remaining as above, it is required lo measure the area

ANB.
From the point P let there be drawn the right line PH touching the

sphere in H
;
and to the axis PAB, letting fall the perpendicular HI,

bisect PI in L; and (by Prop. XII, Book II, Elem.) PE 2
is equal tf
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PS 3 + SE 2 + 2PSD. But because

the triangles SPH, SHI are alike,

SE 2 or SH 2
is equal to the rectan

gle PSI, Therefore PE 2
is equal

to the rectangle contained under PS
and PS -f SI + 2SD

;
that is, under

PS and 2LS + 2SD
;
that is, under

PS and 2LD. Moreover DE 2 is

equal to SE 2 SD% or SE 2

LS 2 + 2SLD LD 2
,
that is, 2SLD LD 2 ALB. For LS-

SE 2 or LS a SA a
(by Prop. VI, Book II, Elem.) is equal to the rectan

gle ALB. Therefore if instead ofDE 2 we write 2SLD LD 2 ALB,

the quantity
- -

^-, which (by Cor. 4 of the foregoing Prop.) is as
PE x

the length of the ordinate DN, will

2SLD x PS LD 2 X PS
now resolve itself into three parts

ALB xPS ...

-TE3rr~ -pfixT&quot; -pE^-v-;
whereifinsteadofVwewnt

the inverse ratio of the centripetal force, and instead of PE the mean pro

portional between PS and 2LD, those three parts will become ordinates to

so many curve lines, whose areas are discovered by the common methods.

Q.E.D.

EXAMPLE 1. If the centripetal force tending to the several particles of

the sphere be reciprocally as the distance
;
instead of V write PE the dis

tance, then 2PS X LD for PE 2
;
and DN will become as SL LD

ny |y Suppose DN equal to its double 2SL LD -

r^ 5
an &amp;lt;* 2SL

the given part of the ordinate drawn into the length AB will describe the

rectangular area 2SL X AB
;
and the indefinite part LD, drawn perpen

dicularly into the same length with a continued motion, in such sort as in

its motion one way or another it may either by increasing or decreasing re-

LB 2 -LA 2

main always equal to the length LD, will describe the area
^ ,

that is, the area SL X AB
;
which taken from the former area 2SL X

AB, leaves the area SL X AE. But the third part
-

---, drawn after the
i lit,

same manner with a continued motion perpendicularly into the same length,

will describe the area of an hyperbola, which subducted

from the area SL X AB will leave ANB the area sought.

Whence arises this construction of the Problem. At

the points, L, A, B, erect the perpendiculars L/, Act, B6;

making Aa equal to LB, and Bb equal to LA. Making
L/ and LB asymptotes, describe through the points a, 6,
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the hyperbolic crrve ab. And the chord ba being drawn, will inclose the

area aba equal to the area sought ANB.
EXAMPLE 2. If the centripetal force tending to the several particles of

the sphere be reciprocally as the cube of the distance, or (which is the same

PE 3

thing; as that cube applied to any given plane ;
write

2PS X LD for PE 2
;

and DN will become as

2AS 2

SL X AS 2

for V, and

AS 2

ALB X AS 2

2PS X LD 2

LSI

PS X LD 2PS

that is (because PS, AS, SI are continually proportional), as

ALB X SI

2LD :

LSI

If we draw then these three parts into th

length AB, the first r-pr will generate the area of an hyperbola ;
the sec-

L-t \J

,
ALB X SI . ALB X SI

ond iSI the area }
AB X SI

;
the third

2Ll^
area-

2LA

,
that is, !AB X SI. From the first subduct the sum of the

2LB
second and third, and there will remain ANB, the area sought. Whence

arises this construction of the problem. At the points L, A, S, B, erect

the perpendiculars L/ Aa Ss, Bb, of which suppose Ss

equal to SI
;
and through the point s, to the asymptotes

L/, LB, describe the hyperbola asb meeting the

perpendiculars Aa, Bb, in a and b
;
and the rectangle

2ASI, subducted from the hyberbolic area AasbB, will

B leave ANB the area sought... ,, .

EXAMPLE 3. If the centripetal force tending to the several particles of

the spheres decrease in a quadruplicate
ratio of the distance from the par-

pT^4 _
tides

;
write ~|f- for V, then V 2PS + LD for PE, and DN will become

___
V2SI

X
SI 2 X ALB

2v2SI
X

These three parts drawn into the length AB, produce so many areas, viz.

J-L

2SI 2 X SL . 1

x^ into T r
LA

~~~5ot
in* V LB V LA; and

BS1 2 X ALB . &quot;1 1&quot;

VLA 3 v/LB 3

And these after due reduction come

forth __
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2SI 3 4 SI 3

~oj-p
And these by subducting the last from the first, become -oT~r

Therefore the entire force with ,7hich the corpuscle P is attracted towards

the centre of the sphere is as-^,
that is, reciprocally as PS 3 X PJ

Q.E.I.

By the same method one may determine the attraction of a corpuscle

situate within the sphere, but more expeditiously by the following Theorem.

PROPOSITION LXXXIL THEOREM XLI.

In a sphere described about the centre S with the interval SA, if there be

taken SI, SA, SP continually proportional ; ! sat/, that the attraction,

of a corpuscle within the sphere in any place I is to its attraction without

the sphere in the place P in a ratio compounded of the subduplicate
ratio of IS, PS, the distances from the centre, and the subduplicate
ratio of tJie centripetalforces tending to the centre in those places P
and I.

As if the centripetal forces of the

particles of the sphere be reciprocally

;is the distances of the corpuscle at

tracted by them ;
the force with which

the corpuscle situate in I is attracted

by the entire sphere will be to the

force with which it is attracted in P
in a ratio compounded of the subdu

plicate ratio of the distance SI to the distance SP, and the subduplicate
ratio of the centripetal force in the place I arising from any particle in the

centre to the centripetal force in the place P arising from the same particle in

the centre
;
that is, in the subduplicate ratio of the distances SI, SP to each

other reciprocally. These two subduplicate ratios compose the ratio of

equality, and therefore the attractions in I and P produced by the whole

sphere are equal. By the like calculation, if the forces of the particles of

the sphere are reciprocally in a duplicate ratio of the distances, it will be

found that the attraction in I is to the attraction in P as the distance SP
to the semi -diameter SA of the sphere. If those forces are reciprocally in

a triplicate ratio of the distances, the attractions in I and P will be to each

other as SP 2 to SA 3
;

if in a quadruplicate ratio, as SP 3 to SA 3
. There

fore since the attraction in P was found in this last case to be reciprocally

as PS 3 X PI, the attraction in I will be reciprocally as SA 3 X PI, that is,

because SA 3
is given reciprocally as PI. And the progression is the same

in injinitnm. The demonstration of this Theorem is as follows :

The things remaining as above constructed, and a corpuscle being in anj
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place P. the ordinate DN was found to be as
T)F 2

\&quot; PS
00 ^~\r- Therefore if
I Cj X V

IE be drawn, that ordinate for any other place of the corpuscle, as I, will

DE 2 X IS
become (mutatis mutandis] as

~T~p~rry~- Suppose the centripetalsorces

flowing from any point of the sphere, as E, to be to each other at the dis

tances IE and PE as PE 1

to IE 11

(where the number u denotes the index

DE 2 X PS
of the powers of PE and IE), and those ordinates will become as ^p

-
-57^7,

2 \x IS
and

~&quot;

---
TT7,

whose ratio to each other is as PS X IE X IEn to IS X
IE X IE&quot;

PE X PE n
. Because SI, SE, SP are in continued proportion, the tri

angles SPE, SEI are alike
;
and thence IE is to PE as IS to SE or SA.

For the ratio of IE to PE write the ratio of IS to SA
;
and the ratio of

the ordinates becomes that of PS X IE&quot; to SA X PE n
. But the ratio of

PS to SA is snbduplicate of that of the distances PS, SI
;
and the ratio of

IE&quot; to PE 1

(because IE is to PE as IS to SA) is subduplicate of that of

the forces at the distances PS, IS. Therefore the ordinates, and conse

quently the areas whioifi the ordinates describe, and the attractions propor

tional to them, are in a ratio compounded of those subduplicate ratios.

Q.E.D.

PROPOSITION LXXXIII. PROBLEM XLII.

To find the force with which a corpuscle placed in the centre of a sphere

is attracted towards any segment of that sphere whatsoever.

Let P be a body in the centre of that sphere and

RBSD a segment thereof contained under the plane

RDS, and thesphrcrical superficies RBS. Let DB be cut

in F by a sphaerical superficies EFG described from the

centre P, and let the segment be divided into the parts

_B BREFGS, FEDG. Let us suppose that segment to

be not a purely mathematical but a physical superficies,

having some, but a perfectly inconsiderable thickness.
* Let that thickness be called O, and (by what Archi

medes has demonstrated) that superficies will be as

PF X DF X O. Let us suppose besides the attrac

tive forces of the particles of the sphere to be reciprocally as that power of

r.he distances, of which n is index
;
and the force with which the superficies

DE 2 X O
EFG attracts the body P will be (by Prop. LXXIX) as -- that,

2DF X O
is, as ---? -,-

DF 2 X O
~&quot;~ppn

*

pp n

the perpendicular FN drawn into
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O be proportional to this quantity ;
and the curvilinear area BDI, which

the ordinate FN, drawn through the length DB with a continued motion

will describe, will be as the whole force with which the whole segment

RBSD attracts the body P. Q.E.I.

PROPOSITION LXXXIV. PROBLEM XLIII.

To find the force with which a corpuscle, placed without the centre of a

sphere iti the axis of any segment, is attracted by that segment.

Let the body P placed in. the axis ADB of

the segment KBK be attracted by that seg

ment. About the centre P, with the interval

PE, let the spherical superficies EFK be de-

scribed; and let it divide the segment into

two parts EBKFE and EFKDE. Find the

force of the first of those parts by Prop.

LXXXI, and the force of the latter part by

Prop. LXXXIII, and the sum of the forces will be the force of the whole

segment EBKDE. Q.E.I.

SCHOLIUM.
The attractions of sphaerical bodies being now explained, it comes next

in order to treat of the laws of attraction in other bodies consisting in like

manner of attractive particles ;
but to treat of them particularly is not neces

sary to my design. It will be sufficient to subjoin some general proposi

tions relating to the forces of such bodies, and the motions thence arising,

because the knowledge of these will be of some little use in philosophical

inquiries.

SECTION XIII.

Of the attractive forces of bodies which are not of a sphcerical figure.

PROPOSITION LXXXV. THEOREM XLIL

If a body be attracted by another, and its attraction be vastly stronger
when it is contiguous to the attracting body than when they are sepa
rated from one another by a very small interval ; the forces of the

particles of the attracting body decrease, in the recess of the body at

tracted, in more than a duplicate ratio of the distance of the particles.

For if the forces decrease in a duplicate ratio of the distances from the

particles, the attraction towards a sphaerical body being (by Prop. LXXIV)
reciprocally as the square of the distance of the attracted body from the

centre of the sphere, will not be sensibly increased by the contact, and it
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\vill be still less increased by it, if the attraction, in the recess of the body

attracted, decreases in a still less proportion. The proposition, therefore,

is evident concerning attractive spheres. And the case is the same of con

cave sphaerical orbs attracting external bodies. And much more does it

appear in orbs that attract bodies placed within them, because there the

attractions diffused through the cavities of those orbs are (by Prop. LXX)
destroyed by contrary attractions, and therefore have no effect even in the

place of contact. Now if from these spheres and sphoerical orbs we take

away any parts remote from the place of contact, and add new parts any
where at pleasore, we may change the figures of the attractive bodies at

pleasure ;
but the parts added or taken away, being remote from the place

of contact, will cause no remarkable excess of the attraction arising from

the contact of the two bodies. 1 herefore the proposition holds good in

bodies of all figures. Q.E.I).

PROPOSITION LXXXV1. THEOREM XLIII.

If theforces of the particles of which an attractive body is composed de

crease, in. the recess of the attractive body, in a triplicate or more than

a triplicate ratio of the distancefrom the particles, the attraction will

be vastly stronger in the point of contact than when the attracting and

attracted bodies are separated from each other, though by never so

small an interval.

For that the attraction is infinitely increased when the attracted corpus

cle comes to touch an attracting sphere of this kind, appears, by the solu

tion of Problem XLI, exhibited in e second and third Examples. The

same will also appear (by comparing those Examples and Theorem XLI

together) of attractions of bodies made towards concavo-convex orbs, whether

the attracted bodies be placed without the orbs, or in the cavities within

them. And by aiding to or taking from those spheres and orbs any at

tractive matter any where without the place of contact, so that the attrac

tive bodies may receive any assigned figure, the Proposition will hold good

of all bodies universally. Q.E.D.

PROPOSITION LXXXVII. THEOREM XI. IV.

If two bodies similar to each other, and consisting of matter equally at

tractive attract separately two corpuscles proportional to those bodies,

and in a like situation to them, the accelerative attractions of the cor

puscles towards the entire bodies will be as the acccleratire attractions

of the corpuscles towards particles of the bodies proportional to the

wholes, and alike situated in them.

For if the bodies are divided into particles proportional to the wholes,

and alike situated in them, it will be, as the attraction towards any parti

cle of one of the bodies to the attraction towards the correspondent particle
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in the other body, so are the attractions towards the several particles of the

iirst body, to the attractions towards the several correspondent particles of

the other body ; and, by composition, so is the attraction towards the first

whole body to the attraction towards the second whole body. Q,.E.U.

COR. 1 . Therefore if, as the distances of the corpuscles attracted increase,

the attractive forces of the particles decrease in the ratio of any power
of the distances, the accelerative attractions towards the whole bodies will

be as the bodies directly, and those powers of the distances inversely. A*

if the forces of the particles decrease in a duplicate ratio of the distances

from the corpuscles attracted, and the bodies are as A 3 and B 3
,
and there

fore both the cubic sides of the bodies, and the distance of the attracted

corpuscles from the bodies, are as A and B
;
the accelerative attractions

A 3 B 3

towards the bodies will be as and
,
that is, as A and B the cubic

sjides of those bodies. If the forces of the particles decrease in a triplicate

ratio of the distances from the attracted corpuscles, the accelerative attrac-

A 3 B 3

tions towards the whole bodies will be as and 5--, that is, equal. If the
A. tj

forces decrease in a quadruplicate ratio, the attractions towards the bodies

A 3 B 3

will be as- an^ 04 *^at is, reciprocally as the cubic sides A and B.

And so in other cases.

COR. 2. Hence, on the other hand, from the forces with which like bodies

attract corpuscles similarly situated, may be collected the ratio of the de

crease of the attractive forces of the particles as the attracted corpuscle

recedes from them
;

if so be that decrease is directly or inversely in any
ratio of the distances.

PROPOSITION LXXXVIII. THEOREM XLV.

If the attractive forces of the equal particles of any body be as the dis

tance of the placesfrom the particles, the force of the whole body will

tend to its centre of gravity ; and will be the same with the force of

a globe, consisting of similar and equal matter, and having its centre

in the centre of gravity.
Let the particles A, B, of the body RSTV at

tract any corpuscle Z with forces which, suppos-|
ing the particles to be equal between themselves,
are as the distances AZ, BZ ; but, if they are

supposed unequal, are as those particles and

their distances AZ, BZ, conjunctly, or (if I may
go speak) as those particles drawn into their dis

tances AZ, BZ respectively. And let those forces be expressed by the
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contents u.ider A X AZ, and B X BZ. Join AB, and let it be cut in G,
so that AG may be to BG as the particle B to the particle A : and G
will be the common centre of gravity of the particles A and B. The force

A X AZ will (by Cor. 2, of the Laws) be resolved into the forces A X GZ
and A X AG

;
and the force B X BZ into the forces B X GZ and B X

BG. Now the forces A X AG and B X BG, because A is proportional to

B, and BG to AG, are equal, and therefore having contrary directions de

stroy one another. There remain then the forces A X GZ and B X GZ.

These tend from Z towards the centre G, and compose the force A + B
X GZ

;
that is, the same force as if the attractive particles A and B were

placed in their common centre of gravity G, composing there a little globe.

By the same reasoning, if there be added a third particle G, and the

force of it be compounded with the force A -f B X GZ tending to the cen

tre G, the force thence arising will tend to the common centre of gravity
of that globe in G and of the particle C ;

that is, to the common centre oi

gravity of the three particles A, B, C ;
and will be the same as if that

globe and the particle C were placed in that common centre composing a

greater globe there
;

and so we may go on in injinitum. Therefore

the whole force of all the particles of any body whatever RSTV is the

same as if that body, without removing its centre of gravity, were to put

on the form of a globe. Q,.E.D.

COR. Hence the motion of the attracted body Z will be the same as if

the attracting body RSTV were sphaerical ;
and therefore if that attract

ing body be either at rest, or proceed uniformly in a right line, the body
attracted will move in an ellipsis having its centre in the centre of gravity

of the attracting body.

PROPOSITION LXXXIX. THEOREM XLVI.

If there be several bodies consisting of equal particles whose jorces are

as the distances of the places from each, the force compounded of all

the forces by which any corpuscle is attracted will tend to the common

centre of gravity of the attracting bodies ; and will be the same as if

those attracting bodies, preserving their common centre of gravity,

should unite there, and beformed into a globe.

This is demonstrated after the same manner as the foregoing Proposi

tion.

COR. Therefore the motion of the attracted body will be the same as if

the attracting bodies, preserving their common centre of gravity, should

unite there, and be formed into a globe. And, therefore, if the common

centre of gravity of the attracting bodies be either at rest, or proceed uni

formly in a right line, the attracted body will move in an ellipsis having

Us centre in the common centre of gravity of the attracting bodies.
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PROPOSITION XC. PROBLEM XLIV.

If to the several points of any circle there tend equal centripeta forces,

increasing or decreasing in any ratio of the distances ; it is required

to Jind the force with which a corpuscle is attracted, that is, situate

any where in a right line which stands at right angles to the plant

of the circle at its centre.

Suppose a circle to be described about the cen

tre A with any interval AD in a plane to which
;

the right line AP is perpendicular ;
and let it be

required to find the force with which a corpuscle

P is attracted towards the same. From any point

E of the circle, to the attracted corpuscle P, let

there be drawn the right line PE. In the right

line PA take PF equal to PE, and make a per-

pendicular FK, erected at F, to be as the force

with which the point E attracts the corpuscle P.

And let the curve line IKL be the locus of the point K. Let that cu/, fe

meet the plane of the circle in L. In PA take PH equal to PD, and p/^ct

the perpendicular HI meeting that curve in I
;
and the attraction of the

corpuscle P towards the circle will be as the area AHIL drawn into the

altitude AP Q.E.I.

For let there be taken in AE a very small line Ee. Join Pe, and in PE,
PA take PC, Pf equal to Pe. And because the force, with which any

point E of the annulus described about the centre A with the interval AS
in the aforesaid plane attracts to itself the body P, is supposed to be as

FK
; and, therefore, the force with which that point attracts the body P

AP X FK
towards A is as -

^p ;
and the force with which the whole annulus

AP X FK
attracts tne body P towards A is as the annulus and p^ conjunct-

ly ;
and that annulus also is as the rectangle under the radius AE aad the

breadth Ee, and this rectangle (because PE and AE, Ee and CE are pro

portional) is equal to the rectangle PE X CE or PE X F/; the force

*-ith which that annulus attracts the body P towards A will be as PE X
AP X FK

Ff and pp~~~ conjunctly ;
that is, as the content under F/ X FK X

AP, or as the area FKkf drawn into AP. And therefore the sum of the

forces with which all the annuli, in the circle described about the centre A
with the interval AD, attract the body P towards A, is as the whole area

AHIKL drawn into AP. Q.E.D.

COR. 1. Hence if the forces of the points decrease in the duplicate ratio
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of the distances, that is, if FK be as rfFK, and therefore the area AHIKL

as
p-7 p- ;

the attraction of the corpuscle P towards the circle will

PA AH
be as 1

;
that is, as

COR. 2. And universally if the forces of the points at the distances D b(

reciprocally as any power D n of the distances; that is, if FK be as .

and therefore the area AHIKL as
1 1

&quot; l
PH&quot;

1 PA

, ;
the attraction

of the corpuscle P towards the circle will be as
PA&quot;

2
PH&quot;

l

COR. 3. And if the diameter of the circle be increased in itifinitum, and
the number n be greater than unity ;

the attraction of the corpuscle P to

wards the whole infinite plane will be reciprocally as PA&quot;
2

,
because the

PA
other term vanishes.

PROPOSITION XCI. PROBLEM XLV.
To find the attraction of a corpuscle situate in the axis of a round solid,

to whose several points there tend equal centripetal forces decreasing
in any ratio of the distances whatsoever.

Let the corpuscle P, situate in the axis AB
of the solid DECG, be attracted towards that

solid. Let the solid be cut by any circle as

RFS, perpendicular to the axis
;
and in its

semi-diameter FS, in any plane PALKB pass

ing through the axis, let there be taken (by

Prop. XC) the length FK proportional to the

force with which the corpuscle P is attracted

towards that circle. Let the locus of the point

K be the curve line LKI, meeting the planes of the outermost circles AL
and BI in L and I

;
and the attraction of the corpuscle P towards the

solid will be as the area LABI. Q..E.I.

COR. 1. Hence if the solid be a cylinder described by the parallelogram
ADEB revolved about the axis AB, and the centripetal forces tending to

the several points be reciprocally as the squares of the distances from the

points ;
the attraction of the corpuscle P towards this cylinder will be as

AB PE + PD. For the ordinate FK (by Cor. 1, Prop. XC) will be

PF
as 1 --. The part 1 of this quantity, drawn into the length AB, de-
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scribes the area 1 X AB
;
and the other part

PF
,
drawn into the length PB describes the

ix

area 1 into PE AD (as may be easily

shewn from the quadrature of the curve

LKI); and, in like manner, the same part

drawn into the length PA describes the area

L into PD AD. and drawn into AB, the

&quot;At

G
Iv

S

13 M
7J&quot;

1

difference of PB and PA, describes 1 into PE PD, the difference of the

areas. From the first content 1 X AB take away the last content 1 into

PE PD, and there will remain the area LABI equal to 1 into

AB PE -h PD. Therefore the force, being proportional to this area,

is as AB PE + PD.
COR. 2. Hence also is known the force

by which a spheroid AGBC attracts any

body P situate externally in its axis AB.

Let NKRM be a conic section whose or-

dinate KR perpendicular to PE may be \

always equal to the length of the line PD,

continually drawn to tlie point D in

which that ordinate cuts the spheroid.

From the vertices A, B, of the spheriod,

let there be erected to its axis AB the perpendiculars AK, BM, respectively

equal to AP. BP, and therefore meeting the conic section in K and M; and

join KM cutting offfrom it the segment KMRK. Let S be the centre of the

spheroid, and SC its greatest semi-diameter : and the force with which the

spheroid attracts the body P will be to the force with which a sphere describ-

, ....,,. ASxCS 2-PSxKMRK
ed with the diameter AhJ attracts thesame body as prrr ^ r-=

1 o -f- Go 2 Ao
AS 3

is to fkT^,. And by a calculation founded on the same principles may be

found the forces of the segments of the spheroid.

COR. 3. If the corpuscle be placed within the spheroid and in its axis,

the attraction will be as its distance from the centre. This may be easily

collected from the following reasoning, whether

the particle be in the axis or in any other given
diameter. Let AGOF be an attracting sphe

roid, S its centre, and P the body attracted.

Through the body P let there be drawn the

semi-diameter SPA, and two right lines DE,
FC meeting the spheroid in 1) and E, F and

G
;
and let PCM, HLN be the superficies of
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two interior spheroids similar and concentrical to the exterior, the first of

which passes through the body P. and cuts the right lines DE, FG in B
and C

;
arid the latter cuts the same right lines in H and I, K and L.

I ,et the spheroids have all one common axis, and the parts of the right
lines intercepted on both sides DP and BE, FP and CG, DH and IE, FK
and LG, will be mutually equal; because the right lines DE. PB, and HI.

are bisected in the same point, as are also the right lines FG, PC, and KL.
Conceive now DPF. EPG to represent opposite cones described with the

infmitely small vertical angles DPF, EPG, and the lines DH, El to be

infinitely small also. Then the particles of the cones DHKF, GLIE, cut

off by the spheroidical superficies, by reason of the equality of the lines DH
and ET

;
will be to one another as the squares of the distances from the body

P, and will therefore attract that corpuscle equally. And by a like rea

soning if the spaces DPF, EGCB be divided into particles by the superfi

cies of innumerable similar spheroids concentric to the former and havingJ. O
one common axis, all these particles will equally attract on both sides the

body P towards contrary parts. Therefore the forces of the cone DPF.
and of the conic segment EGCB, are equal, and by their contrariety de

stroy each other. And the case is the same of the forces of all the matter

that lies without the interior spheroid PCBM. Therefore the body P is

attracted by the interior spheroid PCBM alone, and therefore (by Cor. 3,

Prop. 1 ,XXII) its attraction is to the force with which the body A is at

tracted by the whole spheroid AGOD as the distance PS to the distance

AS. Q.E.D.

PROPOSITION XCII. PROBLEM XLVI.

An attracting body being given, it is required tofind the ratio of the de

crease of the centripetalforces tending to its several points.

The body given must be formed into a sphere, a cylinder, or some regu
lar figure, whose law of attraction answering to any ratio of decrease may
be found by Prop. LXXX, LXXXI, and XCI. Then, by experiments,

the force of the attractions must be found at several distances, and the law

of attraction towards the whole, made known by that means, will give

the ratio of the decrease of the forces of the several parts ;
which was to

be found.

PROPOSITION XCIII. THEOREM XLVII.

If a solid be plane on one side, and infinitely extended on all otljer sides,

and consist of equal particles equally attractive, ivhose forces decrease,

in the recessfrom the solid, in the ratio of any power greater than the

square of the distances ; and a corpuscle placed towards eitfar part of

the plane is attracted by theforce of the whole solid ; I say that tfie

attractiveforce of the whole solid, in the recessfrom its platw superfi-
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n

H

m

G

ties, will decrease in the ratio of a power whose side is the distance oj

the corpuscle from the plane, and its index less by 3 than the index oj

the power of the distances.

CASE 1. Let LG/be the plane by which

the solid is terminated. Let the solid

lie on that hand of the plane that is to

wards I, and let it be resolved into in- _.

numerable planes mHM, //IN, oKO,

(fee., parallel to GL. And first let the

attracted body C be placed without the

solid. Let there be drawn CGHI per

pendicular to those innumerable planes,

and let the attractive forces of the points of the solid decrease in the ratio

of a power of the distances whose index is the number n not less than 3.

Therefore (by Cor. 3, Prop. XC) the force with which any plane mHM
attracts the point C is reciprocally as CHn 2

. In the planemHM take the

length HM reciprocally proportional to CH 1 2
,
and that force will be as

HM. In like manner in the several planes /GL, //,TN, oKO, (fee., take the

lengths GL, IN, KO, (fee., reciprocally proportional to CG n 2
,
CI 1 2

,

CK n 2
, (fee., and the forces of those planes will bs as the lengths so taken,

and therefore the sum of the forces as the sum of the lengths, that is, the

force of the Avhole solid as the area GLOK produced infinitely towards

OK. But that area (by the known methods of quadratures) is reciprocally

as CG n 3
,
and therefore the force of the whole solid is reciprocally as

CG&quot;-
3

. Q.E.D.

CASE 2. Let ttecorpuscleC be now placed on that

hand of the plane /GL that is within the solid,

and take the distance CK equal to the distance

CG. And the part of the solid LG/oKO termi

nated by the parallel planes /GL, oKO, will at

tract the corpuscle C, situate in the middle, neither

one way nor another, the contrary actions of the

opposite points destroying one another by reason of

their equality. Therefore the corpuscle C is attracted by the force only

of the solid situate beyond the plane OK. But this force (by Case 1) is

reciprocally as CKn 3
,
that is, (because CG, CK are equal) reciprocally as

CG&quot;
3

. Q,.E.D.

COR. 1. Hence if the solid LGIN be terminated on each sitfe by two in

finite parallel places LG, IN, its attractive force is known, subducting
from the attractive force of the whole infinite solid LGKO the attractive

force of the more distant part NIKO infinitely produced towards KO.
COR. 2. If the more distant part of this solid be rejected, because its at

traction compared with the attraction of the nearer part is inconsiderable,

16
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the attraction of that nearer part will, as the distance increases, decrease

nearly in the ratio of the power CG n 3
.

Con. 3. And hence if any finite body, plane on one side, attract a cor

puscle situate over against the middle of that plane, and the distance between

the corpuscle and the plane compared with the dimensions of the attracting

body be extremely small
;
and the attracting body consist of homogeneous

particles, whose attractive forces decrease in the ratio of any power of the

distances greater than the quadruplicate ;
the attractive force of the whole

body will decrease very nearly in the ratio of a power whose side is that

very small distance, and the index less by 3 than the index of the former

power. This assertion does not hold good, however, of a body consisting
of particles whose attractive forces decrease in the ratio of the triplicate

power of the distances
; because, in that case, the attraction of the remoter

part of the infinite body in the second Corollary is always infinitely greater
than the attraction of the nearer part.

SCHOLIUM.

If a body is attracted perpendicularly towards a given plane, and from

the law of attraction given, the motion of the body be required ;
the Pro

blem will be solved by seeking (by Prop. XXXIX) the motion of the body

descending in a right line towards that plane, and (by Cor. 2, of the Laws)

compounding that motion with an uniform motion performed in the direc

tion of lines parallel to that plane. And, on the contrary, if there be re

quired the law of the attraction tending towards the plane in perpendicu

lar directions, by which the body may be caused to move in any given

curve line, the Problem will be solved by working after the manner of the

third Problem.

But the operations may be contracted by resolving the ordinates into

converging series. As if to a base A the length B be ordinately ap

plied in any given angle, and that length be as any power of the base

A^ ;
and there be sought the force with which a body, either attracted to

wards the base or driven from it in the direction of that ordinate, may be

caused to move in the curre line which that ordinate always describes with

its superior extremity ;
I suppose the base to be increased by a very small

,m m

part O, and I resolve the ordinate A -f Ol^ into an infinite series A- -f

!!L OA^ + ^-^--- OOA ;- &c., and I suppose the force proper-
11 1111

tional to the term of this series in which O is of two dimensions, that is,

to the term - - OOA ^YT, Therefore the force sought is aa
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mm mn m 2n .... mm mn m 2n

A 7, , or, which is the same thinor, as L&amp;gt; m .

nn nn
As if the ordinate describe a parabola, m being 2, and n = 1, the force

will be as the given quantity 2B, and therefore is given. Therefore with

a given force the body will move in a parabola, as Galileo has demon

strated. If the ordinate describe an hyperbola, m being = 1, and n

1, the force will be as 2A 3 or 2B 3
;
and therefore a force which is as the

cube of the ordinate will cause the body to move in an hyperbola. But

leaving this kind of propositions, I shall go on to some others relating to

motion which I have fiot yet touched upon.

SECTION XIV.

Of the motion of very small bodies when agitated by centripetal forces

tending to the several parts of any very great body.

PROPOSITION XCIV. THEOREM XLVIII.

If two similar mediums be separatedfrom each other by a space termi

nated on both sides by parallel planes, and a body in its passage

through that space be attracted or impelled perpendicularly towards

either of those mediums, and not agitated or hindered by any other

force ; and the attraction be every where the same at equal distances

from either plane, taken towards the same hand of the plane ; I say,

that the sine of incidence upon either plane will be to the sine of emcr

gencefrom the other plane in a given ratio.

CASE 1. Let Aa and B6 be two parallel planes,

and let the body light upon the first plane Aa in

the direction of the line GH, and in its whole

passage through the intermediate space let it be

attracted or impelled towards the medium of in

cidence, and by that action let it be made to de

scribe a curve line HI, and let it emerge in the di

rection of the line IK. Let there be erected IM

perpendicular to Eb the plane of emergence, and

meeting the line of incidence GH prolonged in M, and the plane of inci

dence Aa in R
;
and let the line of emergence KI be produced and meet

HM in L. About the centre L, with the interval LI, let a circle be de

scribed cutting both HM in P and Q, and MI produced in N
; and, first,

if the attraction or impulse be supposed uniform, the curve HI (by what

Galileo has demonstrated) be a parabola, whose property is that of a roc-
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tangle under its given latiis rectum and the line IM is equal to the squarrf

cf HM
;
and moreover the line HM will be bisected in L. Whence if to

MI there be let fall the perpendicular LO, MO, OR will be equal; and

adding the equal lines ON, OI, the wholes MN, IR will be equal also.

Therefore since IR is given, MN is also given, and the rectangle NMI is

to the rectangle under the latus rectum and IM, that is, to HM a in a given
ratio. But the rectangle NMI is equal to the rectangle PMQ,, that is, to

the difference of the squares ML 2
,
and PL 2 or LI 2

;
and HM 2 hath a given

ratio to its fourth part ML2
;
therefore the ratio ofML2 LI2 to ML2

is given,

and by conversion the ratio of LI 2 to ML
,
and its subduplicate, theratrio

of LI to ML. But in every triangle, as LMI, the sines jf the angles are

proportional to the opposite sides. Therefore the ratio of the sine of the

angle of incidence LMR to the sine of the angle of emergence LIR is

given. QJE.lr).

CASE 2. Let now the body pass successively through several spaces ter

minated with parallel planes Aa/&amp;gt;B, B6cC, &c., and let it be acted on by a

\
.

force which is uniform in each of them separ-

\ a ately, but different in the different spaces ;
and

B \
fr by what was just demonstrated, the sine of the

c ^^ c angle of incidence on the first plane Aa is to

the sine of emergence from the second plane Bb
in a given ratio

;
and this sine of incidence upon the second plane Bb will

be to the sine of emergence from the third plane Cc in a given ratio
;
and

this sine to the sine of emergence from the fourth plane Dd in a given ra

tio
;
and so on in infinitum ; and, by equality, the sine of incidence on

the first plane to the sine of emergence from the last plane in a given ratio.

I ,et now the intervals of the planes be diminished, and their number be in

finitely increased, so that the action of attraction or impulse, exerted accord

ing to any assigned law, may become continual, and the ratio of the sine of

incidence on the first plane to the sine of emergence from the last plane

being all along given, will be given then also. QJE.D.

PROPOSITION XCV. THEOREM XLIX.

The same things being supposed, I say, that the velocity of the body be

fore its incidence is to its velocity after emergence as the sine of emer

gence to the sine of incid nee.

Make AH and Id equal, and erect the perpen-

diculars AG, dK meeting the lines of incidence

and emergence GH, IK, in G and K. In GH
-- take TH equal to IK, and to the plane Aa let

^ fall a perpendicular TV. And (by Cor. 2 of the

|x^ I

Laws of Motion) let the motion of the body be

jv
-

resolved into two, one perpendicular to the planes
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Aa, Bb, Cc, &c, and another parallel to them. The force of attraction or

impulse, acting in directions perpendicular to those planes, does not at all

alter the motion in parallel directions
;
and therefore the body proceeding

with this motion will in equal times go through those equal parallel inter

vals that lie between the line AG and the point H, and between the point

I and the line dK
;
that is, they will describe the lines GH, IK in equal

times. Therefore the velocity before incidence is to the velocity after

emergence as GH to IK or TH, that is, as AH or Id to vH, that is (sup

posing TH or IK radius), as the sine of emergence to the sine of inci

dence. Q.E.D.

PROPOSITION XCVL THEOREM L.

The same things being supposed, and that the motion before incidence is

swifter than afterwards ; 1 sat/, lhat if the line of incidence be in

clined continually, the body will be at last reflected, and the angle of

reflexion will be equal to the angle of incidence.

For conceive the body passing between the parallel planes Aa, Bb, Cc,

&c., to describe parabolic arcs as above;

and let those arcs be HP, PQ, QR, &c.

And let the obliquity of the line of inci-
g

dence GH to the first plane Aa be such rc~

that the sine of incidence may be to the radius of the circle whose sine it is,

in the same ratio which the same sine of incidence hath to the sine of emer

gence from the plane Dd into the space DefeE
;
and because the sine of

emergence is now become equal to radius, the angle of emergence will be a

right one, and therefore the line of emergence will coincide with the plane

Dd. Let the body come to this plane in the point R ;
and because the

line of emergence coincides with that plane, it is manifest that the body can

proceed no farther towards the plane Ee. But neither can it proceed in the

line of emergence Rd; because it is perpetually attracted or impelled towards

the medium of incidence. It will return, therefore, between the planes Cc,

Dd, describing an arc of a parabola Q,R&amp;lt;/,
whose principal vertex (by what

Galileo has demonstrated) is in R, cutting the plane Or in the same angle

at q, that it did before at Q,
;
then going on in the parabolic arcs qp, ph,

&c., similar and equal to the former arcs QP, PH, &c., it will cut the rest

of the planes in the same angles at p, h, (fee., as it did before in P, H, (fee.,

and will emerge at last with the same obliquity at h with which it first

impinged on that plane at H. Conceive now the intervals of the planes

Aa, Bb, Cc, Dd, Ee, (fee., to be infinitely diminished, and the number in

finitely increased, so that the action of attraction or impulse, exerted ac

cording to any assigned law, may become continual; and, the angle of

emergence remaining all alor g equal to the angle of incidence, will be

equal to the same also at last. Q.E.D.
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SCHOLIUM.

These attractions bear a great resemblance to the reflexions and refrac

tions of light made in a given ratio of the secants, as was discovered h}

Siiellius ; and consequently in a given ratio of the sines, as was exhibited

by Hes Cortes. For it is now certain from the phenomena of Jupiter s

^satellites, confirmed by the observations of different astronomers, that light

is propagated in succession, and requires about seven or eight minutes to

travel from the sun to the earth. Moreover, the rays of light that are in

our air (as lately was discovered by Grimaldus, by the admission of light

into a dark room through a small hole, which 1 have also tried) in their

passage near the angles of bodies, whether transparent or opaque (such aa

the circular and rectangular edges of gold, silver and brass coins, or of

knives, or broken pieces of stone or glass), are bent or inflected round those

bodies as if they were attracted to them
;
and those rays which in their

passage come nearest to the bodies are the most inflected, as if they were

most attracted : which tiling I myself have also carefully observed. And
those which pass at greater distances are less inflected

;
and those at still

greater distances are a little inflected the contrary way, and form three

fringes of colours. In the figure 5 represents the edge of a knife, or any

-f::
:r;^c :.-/N &amp;gt;V

JV U
W~&quot;~a~&quot; &quot;~a C: O la

kind of wedge AsB : and gowog,fmnif,emtme, dlsld, are rays inflected to

wards the knife in the arcs owo, nvn, mtm, Isl ; which inflection is greater

or less according; to their distance from the knife. Now since this inflec

tion of the rays is performed in the air without the knife, it follows that the

rays which fall upon the knife are first inflected in the air before they touch

the knife. And the case is the same of the rays falling upon glass. The

refraction, therefore, is made not in the point of incidence, but gradually, by
a continual inflection of the rays ;

which is done partly in the air before they

touch the glass, partly (if [ mistake not) within the glass, after they have

entered it
;
as is represented in the rays ckzc, bujb^ ahxa, falling upon r,

q, p, and inflected between k and z, i and y, h and x. Therefore because

of the analogy there is between the propagation of the rays f light and the

motion of bodies, I thought it not amiss to add the followi g Propositions

far optical uses
;
not at all. considering the nature of the rays of .light, or

inquiring whether they are bodies or not
;
but only determining the tra

jectories of bodies which are extremely like the trajectories of the rays.
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PROPOSITION XCVII. PROBT.-EM XLVII.

Supposing t/w sine of incidence upon any superficies to be in a given ra

tio to the sine of emergence ; and that tha inflection of t/ts paths of

those bodies near that superficies is performed in a very short space,

which may be considered as a point ; it is required to determine suck

a superficies as may cause all the corpuscles issuing from any one

given place to converge to another given place.

Let A be the place from whence the cor- E

puscles diverge ;
B the place to which they

should converge ;
CDE the curve line which

by its revolution round the axis AB describes
.

/C

the superficies sought ; D, E, any two points of that curve
;
and EF, EG,

perpendiculars let fall on the paths of the bodies AD, DB. Let the point

D approach to and coalesce with the point E
;
and the ultimate ratio of

the line DF by which AD is increased, to the line DG by which DB is

diminished, will be the same as that of the sine of incidence to the sine of

emergence Therefore the ratio of the increment of the line AD to the

decrement of the line DB is given: and therefore if in the axis AB there

be taken any where the point C through which the curve CDE must

pass, and CM the increment of AC be taken in that given ratio to CN
the decrement of BC, and from the centres A, B, with the intervals AM,
BN, there be described two circles cutting each other in D

;
that point D

will touch the curve sought CDE, and, by touching it any where at pleasure,

will determine that curve. Q.E.I.

COR. 1. By causing the point A or B to go off sometimes in infinitum,

and sometimes to move towards other parts of the point C, will bo obtain

ed all those figures which Cartesins has exhibited in his Optics and Geom

etry relating to refractions. The invention of which Cartcsius having

thought fit to conceal, is here laid open in this Proposition.

COR. 2. If a body lighting on any superfi

cies CD in the direction of a ri^ht line AD, Qj-O \

drawn according to any law, should emerge
in the direction of another right line DK ;

and from the point C there be drawn curve

lines CP, CQ, always perpendicular to AD, DK ;
the increments of the

lines PD, QD, and therefore the lines themselves PD, Q.D, generated by
those increments, will be as the sines of incidence and emergence to each

other, and e contra.

PROPOSITION XCVIII. PROBLEM XLVIII.
The same things supposed ; if round the axis AB any attractive super

ficies be described as CD, regular or irregular, through which the bo

dies issuingfrom the given place A must pass ; it is required to find
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a second attractive superficies EF, which may make those bodies con

verge to a given place B.

Let a line joining AB cut

the first superficies in C and

the second in E, the point D
being taken any how at plea

sure. And supposing the

f sine of incidence on the first

superficies to the sine of

emergence from the same, and the sine of emergence from the second super
ficies to the sine of incidence on the same, to be as any given quantity M
to another given quantity N; then produce AB to G, so that BG may be

to CE as M N to N
;
and AD to H, so that AH may be equal to AG

;

arid DF to K, so that DK may be to DH as N to M. Join KB, and about

the centre D with the interval DH describe a circle meeting KB produced
in L, and draw BF parallel to DL; and the point F will touch the line

EF, which, being turned round the axis AB, will describe the superficies

sought. Q.E.F.

For conceive the lines CP, CQ to be every where perpendicular to AD,
DF, and the lines ER, ES to FB, FD respectively, and therefore QS to

be always equal to CK; and (by Cor. 2, Prop. XCVII) PD will be to QD
as M to N, and therefore as DL to DK, or FB to FK

;
and by division as

DL FB or PH PD FB to FD or FQ QD
;
arid by composition

as PH FB to FQ, that is (because PH and CG, QS and CE, are equal),

as CE + BG FR to CE FS. But (because BG is to CE as M
N to N) it. comes to pass also that CE + BG is to CE as M to N; and

therefore, by division, FR is to FS as M to N
;
and therefore (by Cor. 2,

Prop XCVI1) the superficies EF compels a body, falling upon it in the

direction DF, to go on in the line FR to the place B. Q.E.D.

SCHOLIUM.
,In the same manner one may go on to three or more superficies. But

of all figures the sphserical is the most proper for optical uses. If the ob

ject glasses of telescopes were made of two glasses of a sphaerical figure,

containing water between them, it is not unlikely that the errors of the

refractions made in the extreme parts of the superficies of the glasses may
be accurately enough corrected by the refractions of the water. Such ob

ject glasses are to be preferred before elliptic and hyperbolic glasses, not only

because they may be formed with more ease and accuracy, but because the

pencils of rays situate without the axis of the glass would be more accu

rately refracted by them. But the different refrangibility of different raya

is the real obstacle that hinders optics from being made perfect by sphaeri

cal or any other figures. Unless the errors thence arising can be corrected,

all the labour spent in correcting the others is quite thrown away.
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BOOK II.

OF THE MOTION OF BODIES.

SECTION I.

Of the motion of bodies that are resisted in the ratio of the velocity.

PROPOSITION I. THEOREM I.

Tf a body is resisted in the ratio of its velocity, the motion lost by re

sistance is as the space gone over in its motion.

For since the motion lost in each equal particle of time is as the velocity,

that is, as the particle of space gone over, then, by composition, the motion

lost in the whole time will he as the whole space gone over. Q.E.D.

COR. Therefore if the body, destitute of all gravity, move by its innate

force only in free spaces, and there be given both its whole motion at the

beginning, and also the motion remaining after some part of the way is

gone over, there will be given also the whole space which the body can de

scribe in an infinite time. For that space will be to the space now de

scribed as the whole motion at the beginning is to the part lost of that

motion.

LEMMA I.

Quantities proportional to their differences are continually proportional.

Let A be to A B as B to B C and C to C D, (fee., and, by con

version, A will be to B as B to C and C to D, &c. Q.E.D.

PROPOSITION II. THEOREM II.

If a body is resisted in the ratio of its velocity, and moves, by its vis in-

sita only, through a similar medium, and the times be taken equal,

the velocities in the beginning of each of the times are in a geometri
cal progression, and the spaces described in each of the times are as

the velocities.

CASE 1. Let the time be divided into equal particles ;
and if at the very

beginning of each particle we suppose the resistance to act with one single

impulse which is as the velocity, the decrement of the velocity in each of
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the particles of time will be as the same velocity. Therefore the veloci

ties are proportional to their differences, and therefore (by Lem. 1, Book

II) continually proportional. Therefore if out of an equal number of par
ticles there be compounded any equal portions of time, the velocities at the

beginning of those times will be as terms in a continued progression, which

are taken by intervals, omitting every where an equal number of interme

diate terms. But the ratios of these terms are compounded of the equa
j

ratios of the intermediate terms equally repeated, and therefore are equal
Therefore the velocities, being proportional to those terms, are in geomet
rical progression. Let those equal particles of time be diminished, and

their number increased in infinitum, so that the impulse of resistance may
become continual

;
and the velocities at the beginnings of equal times, al

ways continually proportional, will be also in this case continually pro

portional. Q.E.D.

CASE 2. And, by division, the differences of the velocities, that is, the

parts of the velocities lost in each of the times, are as the wholes
;
but the

spaces described in each of the times are as the lost parts of the velocities

(by Prop. 1, Book I), and therefore are also as the wholes. Q.E.D.

TT COROL. Hence if to the rectangular asymptotes AC, CH,
the hyperbola BG is described, and AB, DG be drawn per

pendicular to the asymptote AC, and both the velocity of

. the body, and the resistance of the medium, at the very be

ginning of the motion, be expressed by any given line AC,

and, after some time is elapsed, by the indefinite line DC
;
the time may

be expressed by the area ABGD, and the space described in that time by
the line AD. For if that area, by the motion of the point D, be uniform

ly increased in the same manner as the time, the right line DC will de

crease in a geometrical ratio in the same manner as the velocity ;
and the

parts of the right line AC, described in equal times, will decrease in the

same ratio.

PROPOSITION III. PROBLEM I.

To define the motion of a body which, in a similar medium, ascends or

descends in a right line, and is resisted in the ratio of its velocity, and

acted upon by an uniformforce of gravity.

The body ascending, let the gravity be expound
ed by any given rectangle BACH ;

and the resist

ance of the medium, at the beginning of the ascent,

by the rectangle BADE, taken on the contrary side

Jfl e B^l | L- of the right line AB. Through the point B, with

the rectangular asymptotes AC, CH, describe an

hyperbola, cutting the perpendiculars DE, de, ID
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G, g ; and the body ascending will in the time DGgd describe the space

EG-e; in the time DGBA, the space of the whole ascent EGB
;
in the

time ABK1, the space of descent BFK
;
and in the time IKki the space of

descent KFfk; and the velocities of the bodies (proportional to the re

sistance of the medium) in these periods of time will be ABED, ABed, O,

ABFI, AB/z respectively ;
and the greatest velocity which the body can

acquire by descending will be BACH.
For let the rectangle BACH be resolved into in

numerable rectangles AA
, K/, Lm, M//, *fea, which

shall be as the increments of the velocities produced

in so many equal times; then will 0, AAr, AL Am, An,

ifec., be as the whole velocities, and therefore (by suppo

sition) as the resistances of the medium in the be-

ginning of each of the equal times. Make AC to
AJLLB

AK, or ABHC to AB/vK, as the force of gravity to the resistance in the

beginning of the second time
;
then from the force of gravity subduct the

resistances, and ABHC, K/vHC, L/HC, MwHC, (fee., will be as the abso

lute forces with which the body is acted upon in the beginning of each of

the times, and therefore (by Law I) as the increments of the velocities, that

is, as the rectangles AA-, K/, Lm, M//, (fee., and therefore (by Lem. 1, Book

II) in a geometrical progression. Therefore, if the right lines K, LI

M/TO, N//, &c., are produced so as to meet the hyperbola in q, r, s, t,
(fee..

the areas AB^K, K&amp;lt;/rL, LrsM, MsJN, (fee., will be equal, and there

fore analogous to the equal times and equal gravitating forces. But the

area AB^K (by Corol. 3, Lem. VII and VIII, Book I) is to the area Bkq
as K^ to \kq, or AC to |AK, that is, as the force of gravity to the resist

ance in the middle of the first time. And by the like reasoning, the areas

&amp;lt;?KLr, rLMs, sMN/, (fee., are to the areas qklr, rims, smnt, (fee., as the

gravitating forces to the resistances in the middle of the second, third, fourth

time, and so on. Therefore since the equal areas BAKq, &amp;lt;/KLr, rLMs,

sMN/, (fee., are analogous to the gravitating forces, the areas Bkq, qklr,

rims, smut, (fee., will be analogous to the resistances in the middle of

each of the times, that is (by supposition), to the velocities, and so to the

spaces described. Take the sums of the analogous quantities, and the areas

Bkq, Elr, Ems, But, (fee., will be analogous to the whole spaces described
;

and also the areas
AB&amp;lt;?K, ABrL, ABsM, AB^N, (fee., to the times. There

fore the body, in descending, will in any time ABrL describe the space Blr,

and in the time Lr^N the space rlnt. Q,.E.D. And the like demonstra

tion holds in ascending motion.

COROL. 1. Therefore the greatest velocity that the body can acquire by

falling is to the velocity acquired in any given time as the iven force ol

gravity which perpetually acts upon it to the resisting force which opposes

it at the end of that time.
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COROL. 2. But the time being augmented in an arithmetical progression,
the sum of that greatest velocity and the velocity in the ascent, and also

their difference in the descent, decreases in a geometrical progression.
COROL. 3. Also the differences of the spaces, which are described in equal

differences of the times, decrease in the same geometrical progression.
COROL. 4. The space described by the body is the difference of two

spaces, whereof one is as the time taken from the beginning of the descent,
and the other as the velocity; which [spaces] also at the beginning of the
descent are equal among themselves.

PROPOSITION IV. PROBLEM II.

Supposing theforce of gravity in any similar medium to be uniform,
and to tend perpendicularly to the plane of the horizon ; to define the
motion of a projectile therein, which suffers resistance proportional to

its velocity.

Let the projectile go from any place D in

the direction of any right line DP, and let

its velocity at the beginning of the motion
be expounded by the length DP. From the

point P let fall the perpendicular PC on the

horizontal line DC, and cut DC in A, so

that DA may be to AC as the resistance

of the medium arising from the motion up
wards at the beginning to the force of grav

ity; or (which comes to the same) so that

t ie rectangle under DA and DP may be to

that under AC and CP as the whole resist

ance at the beginning of the motion to the

force of gravity. With the asymptotes

DC, CP describe any hyperbola GTBS cut

ting the perpendiculars DG, AB in G and

B
; complete the parallelogram DGKC, and

let its side GK cut AB in Q,. Take

N in the same ratio to QB as DC is in to CP
;
and from any point R of the

right line DC erect RT perpendicular to it, meeting the hy] erbola in T,
and the right lines EH, GK, DP in I, t, and V ;

in that perpendicular

take Vr equal to ~-
,

or which is the same thing, take Rr equal to

(&quot;&quot;&quot;&quot;PIT?

^
T ;

and the projectile in the time DRTG will arrive at the point r

describing the curve line DraF, the locus of the point r ; thence it will

come to its greatest height a in the perpendicular AB
j
and afterwards
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ever approach to the asymptote PC. And its velocity in any pjint r will

be as the tangent rL to the curve. Q.E.I.

For N is to Q,B as DC to CP or DR to RV, and therefore RV is equal to

PR X QB
, -..&quot;.

&quot;v v DRXQB-/GT
^r
-

,
and R/ (that is, RV Vr, or - --

^
---

)
is equal to

DR X Ap RDGT--~--- . JNow let the time be expounded by the area

RDGT and (by Laws, Cor. 2), distinguish the motion of the body into

two others, one of ascent, the other lateral. And since the resistance is as

the motion, let that also be distinguished into two parts proportional and

contrary to the parts of the motion : and therefore the length described by
the lateral motion will be (by Prop. II, Book II) as the line DR, and the

height (by Prop. Ill, Book II) as the area DR X AB RDGT, that is,

as the line Rr. But in the very beginning of the motion the area RDGT
is equal to the rectangle DR X AQ, and therefore that line Rr (or

DRx AB

that is, as CP to DC
;
and therefore as the motion upwards to the motion

lengthwise at the beginning. Since, therefore, Rr is always as the height,

and DR always as the length, and Rr is to DR at the beginning as the

height to the length, it follows, that Rr is always to DR as the height to

the length ;
and therefore that the body will move in the line DraF. which

is the locus of the point r. QJE.D.

DR X AB RDGT
COR. 1. Therefore Rr is equal to --^------^- . and therefore

if RT be produced to X so that RX may be equal to --^--;
that is,

if the parallelogram ACPY be completed, and DY cutting CP in Z be

drawn, and RT be produced till it meets DY in X
;
Xr will be equal to

RDGT
^ ,

and therefore proportional to the time.

COR. 2. Whence if innumerable lines CR, or, which is the same, innu

merable lines ZX, be taken in a geometrical progression, there will be as

many lines Xr in an arithmetical progression. And hence the curve DraF
is easily delineated by the table of logarithms.

COR. 3. If a parabola be constructed to the vertex D, and the diameter

DG produced downwards, and its latus rectum is to 2 DP as the whole

resistance at the beginning of the notion to the gravitating force, the ve

locity with which the body ought *o go from the place D, in the direction

of the right line DP, so as in an uniform resisting medium to describe the

curve DraF, will be the same as that with which it ought to go from the

same place D in the direction of the same right line DP, so as to describe
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I

a parabola in a non-resisting medium. For

the latus rectum of this parabola, at the very
DV 2

beginning of the motion, is -y- ,
andVris

tGT DR x T*

-~JT-
or

^T
. But a right line, which,

if drawn, would touch the hyperbola GTS in

K G, is parallel to DK, and therefore T* is

CKX DR
c

QBx DC
^ ,

and N is ~pp Ahd there-DC
DR 2 X CK x CP

fore Vr is equal to
2DC 2 X QlT~;

*^at *S (Because D^ an&amp;lt;* ^)C, DV

DV 2 x CK ~x OP
and DP are proportionals), to ^T5 Fcrr J

an &amp;lt;* tne ^atus reeturn

DV 2

- comes out -
2DP 2 X QB

are proportional),

CK X CP
2DP 2 X DA
AC X CP

CP X AC
;
that is, as the resistance to the gravity.

(
because

and therefore is to 2DP as DP X DA to

Q.E.D.
COR. 4. Hence if a body be projected from

any place D with a given velocity, in the

direction of a right line DP given by posi

tion, and the resistance of the medium, at

the beginning of the motion, be given, the

curve DraF, which that body will describe,

may be found. For the velocity being

given, the latus rectum of the parabola is

given, as is well known. And taking 2DP
to that latus rectum, as the force of gravity
to the resisting force, DP is also given.

Then cutting DC in A, so that GP X AC
may be to DP X DA in the same ratio of

the gravity to the resistance, the point A
will be given. And hence the curve DraF
is also given.

COR. 5. And, on the contrary, if the

curve DraF be given, there will be given

x&amp;gt;th the velocity of the body and the resistance of the medium in each of

the places r. For the ratio of CP X AC to DP X DA being given, there

is given both the resistance of the medium at the beginning of the motion

and the latus rectum of the parabola ;
and thence the velocity at the be

ginning of the motion is given also. Then from the length of the tangent
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L there is given both the velocity proportional to it, and the resistance

proportional to the velocity in any place r.

COR. 6. But since the length 2DP is to the latus rectum of the para

bola as the gravity to the resistance in D
; and, from the velocity aug

mented, the resistance is ti gmented in the same ratio, but the latus rectum

of the parabola is augmented in the duplicate of that ratio, it is plain thot

the length 2DP is augmented in that simple ratio only ;
and is therefore

always proportional to the velocity ;
nor will it be augmented or dimin

ished by the change of the angle CDP, unless the velocity be also changed.

COR. 7. Hence appears the method of deter

mining the curve DraF nearly from the phe-

nomena, and thence collecting the resistance and

velocity with which the body is projected. Let

two similar and equal bodies be projected with

the same velocity, from the place D, in differ

ent angles CDP, CDp ; and let the places F,

f. where they fall upon the horizontal plane

DC, be known. Then taking any length for D */ F

DP or Dp suppose the resistance in D to be to

the suavity in any ratio whatsoever, and let that

ratio be expounded by any length SM. Then, ,
_

by computation, from that assumed length DP, ^x
find the lengths DF, D/; and from the ratio

F/
-p^,

found by calculation, subduct the same ratio as found by experiment ;

and let the cKfference be expounded by the perpendicular MN. Repeat the

same a second and a third time, by assuming always a new ratio SM of the

resistance to the gravity, and collecting a new difference MN. Draw the

affirmative differences on one side of the right line SM, and the negative
on the other side

;
and through the points N, N, N, draw a regular curve

NNN. cutting the right line SMMM in X, and SX will be the true ratio

of the resistance to the gravity, which was to be found. From this ratio

the length DF is to be collected by calculation
;
and a length, which is to

the assumed length DP as the length DF known by experiment to the

length DF just now found, will be the true length DP. This being known,

you will have both the curve line DraF which the body describes, and also

the velocity and resistance of the body in each place.

SCHOLIUM.

But, yet, that the resistance of bodies is in the ratio of the velocity, is more

a mathematical hypothesis than a physical one. In mediums void of all te

nacity, the resistances made to bodies are in the duplicate ratio of the ve

locities. For by the action of a swifter body, a greater motion in propor-

17
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tion to a greater velocity is communicated to the same quantity of the
medium in a less time

;
and in an equal time, by reason of a greater quan

tity of the disturbed medium, a motion is communicated in the duplicate
ratio greater ;

and the resistance (by Law II and III) is as the motion
communicated. Let us, therefore, see what motions arise from this law of

resistance.

SECTION II.

If the motion of bodies that are resisted in tfie duplicate ratio of their

velocities.

PROPOSITION V. THEOREM III.

Ff a body is resisted in the duplicate ratio of its velocity, and moves by
its innate force only through a similar medium; and the times be

taken in a geometrical progression, proceeding from less to greater
terms : I say, that the velocities at the beginning of each of the times

are in the same geometrical progression inversely ; and that the spaces
are equal, which are described in each of the times.

For since the resistance of the medium is proportional to the square of

the velocity, and the decrement of the velocity is proportional to the resist

ance : if the time be divided into innumerable equal particles, the squares of

the velocities at the beginning of each of the times will be proportional to

the differences of the same velocities. Let those particles of time be AK,
KL, LM, &c., taken in the right line CD; and

erect the perpendiculars AB, Kk, L/, Mm, &c.,

meeting the hyperbola BklmG, described with the

centre C, and the rectangular asymptotes CD, CH.
in B, kj I, m, (fee.

;
then AB will be to Kk as CK

to CA, and, by division, AB Kk to Kk as AK
C ARIMT to ^

A&amp;gt;
an(1 alternate^ AB Ĉ to AK as Kk

to CA
;
and therefore as AB X Kk to AB X CA.

Therefore since AK and AB X CA are given,* AB Kk will be as AB
X Kk ; and, lastly, when AB and KA* coincide, as AB 2

. And, by the like

reasoning, KAr-U, J J-M/??, (fee., will be as Kk 2
. LI 2

, (fee. Therefore the

squares of the lines AB, KA&quot;, L/, Mm, (fee., are as their differences
; and,

therefore, since the squares of the velocities were shewn above to be as their

differences, the progression of both will be alike. This being demonstrated

it follows also that the areas described by these lines are in a like progres

sion with the spaces described by these velocities. Therefore if the velo

city at the beginning of the first time AK be expounded by the line AB,
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and the velocity at the beginning of the second time KL by the line K&
and the length described in the hrst time by the area AKA*B, all the fol

lowing velocities will be expounded by the following lines \J. Mm, .fee.

and the lengths described, by the areas K/, I mi. &c. And, by compo

sition, if the whole time be expounded by AM, the sum of its parts, the

whole length described will be expounded by AM/ftB the sum of its parts.

Now conceive the time AM to be divided into the parts AK, KL, LM, (fee

so that CA, CK, CL, CM, (fee. may be in a geometrical progression ;
and

those parts will be in the same progression, and the velocities AB, K/r,

L/, Mm, (fee., will be in the same progression inversely, and the spaces de

scribed Ak, K/, Lw, (fee., will be equal. Q,.E.D.

COR. 1. Hence it appears, that if the time be expounded by any part

AD of the asymptote, and the velocity in the beginning of the time by the

ordinate AB, the velocity at the end of the time will be expounded by the

ordinate DG
;
and the whole space described by the adjacent hyperbolic

area ABGD
;
and the space which any body can describe in the same time

AD, with the first velocity AB, in a non-resisting medium, by the rectan

gle AB X AD.
COR 2. Hence the space described in a resisting medium is given, by

taking it to the space described with the uniform velocity AB in a non-

resisting medium, as the hyperbolic area ABGD to the rectangle AB X AD.
COR. 3. The resistance of the medium is also given, by making it equal,

in the very beginning of the motion, to an uniform centripetal force, which

could generate, in a body falling through a non-resisting medium, the ve

locity AB in the time AC. For if BT be drawn touching the hyperbola
in B. and meeting the asymptote in T, the right line AT will be equal to

AC, and will express the time in which the first resistance, uniformly con

tinned, may take away the whole velocity AB
COR. 4. And thence is also given the proportion of this resistance to the

force of gravity, or ay other given centripetal force.

COR. 5. And, vice versa, if there is given the proportion of the resist-

; nee to any given centripetal force, the time AC is also given, in which c

centripetal force equal to the resistance may generate any velocity as AB
;

and thence is given the point B. through which the hyperbola, having CH
CD for its asymptotes, is to be described : as also the space ABGD, which a

body, by beginning its motion with that velocity AB, can describe in any

time AD. in a similar resisting medium.

PROPOSITION VI. THEOREM lV
r

c

Homogeneous and equal spherical bodies, opposed hy resistances that are

in the duplicate ratio of the velocities, and moving on by their innate

force only, will, in times which are reciprocally as the velocities at thr.
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beg-in fiing, describe equal spaces, and lose parts of their velocities pro

portional to the wholes.

To the rectangular asymptotes CD, CH de

scribe any hyperbola B6Ee, cutting the perpen
diculars AB, rib, DE, de in B, b, E, e; let the

initial velocities be expounded by the perpendicu
lars AB, DE, and the times by the lines Aa, Drf.

Therefore as Aa is to l)d, so (by the hypothesis)

. is DE to AB, and so (from the nature of the hy-
C &quot;^

perbola) is CA to CD
; and, by composition, so is

Crt to Cd. Therefore the areas ABba, DEerf, that is, the spaces described,

are equal among themselves, and the first velocities AB, DE are propor

tional to the last ab, de ; and therefore, by division, proportional to the

parts of the velocities lost, AB ab, DE de. Q.E.D.

PROPOSITION VII. THEOREM V.

If spherical bodies are resisted in the duplicate ratio of their velocities,

in times which are as the first motions directly, and the first resist

ances inversely, they will lose parts of their motions proportional to the

wholes, and will describe spaces proportional to those times and the

first
velocities conjunctIt/.

For the parts of the motions lost are as the resistances and times con

junctly. Therefore, that those parts may be proportional to the wholes,

the resistance and time conjunctly ought to be as the motion. Therefore the

time will be as the motion directly and the resistance inversely. Where

fore the particles of the times being taken in that ratio, the bodies will

always loso parts of their motions proportional to the wholes, and there

fore will retain velocities always proportional to their first velocities.

And because of the given ratio of the velocities, they will always describe

spaces which are as the first velocities and the times conjunctly. Q.E.D.

COR. 1. Therefore if bodies equally swift are resisted in a duplicate ra

tio of their diameters, homogeneous globes moving with any velocities

whatsoever, by describing spaces proportional to their diameters, will lose

parts of their motions proportional to the wholes. For the motion of each

o-lobe will be as its velocity and mass conjunctly, that is, as the velocity

and the cube of its diameter
;
the resistance (by supposition) will be as the

square of the diameter and the square of the velocity conjunctly ;
and the

time (by this proposition) is in the former ratio directly, and in the latter

inversely, that is, as the diameter directly and the velocity inversely ;
and

therefore the space, which is proportional to the time and velocity is as

the diameter.

COR. 2. If bodies equally swift are resisted in a sesquiplicate ratio of

their diameters, homogeneous globes, moving with any velocities whatso-
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ever, by describing spaces that are in a sesquiplicate ratio of the diameters,

will lose parts of their motions proportional to the wholes.

COR. 3. And universally, if equally swift bodies are resisted in the ratio

of any power of the diameters, the spaces, in which homogeneous globes,

moving with any velocity whatsoever, will lose parts of their motions pro

portional to the wholes, will be as the cubes of the diameters applied to

that power. Let those diameters be D and E : and if the resistances, where

the velocities are supposed equal, are as T)
n and E&quot;

;
the spaces in which

the globes, moving with any velocities whatsoever, will lose parts of their

motions proportional to the wholes, will be as D 3 n and E 3 n
. And

therefore homogeneous globes, in describing spaces proportional to D 3 n

and E 3 n
,
will retain their velocities in the same ratio to one another as

at the beginning.

COR. 4. Now if the globes are not homogeneous, the space described by
the denser globe must be augmented in the ratio of the density. For the

motion, with an equal velocity, is greater in the ratio of the density, and

the time (by this Prop.) is augmented in the ratio of motion directly, and

the space described in the ratio of the time.

COR. 5. And if the globes move in different mediums, the space, in a

medium which, cccteris paribus, resists the most, must be diminished in the

ratio of the greater resistance. For the time (by this Prop.) will be di

minished in the ratio of the augmented resistance, and the space in the ra

tio of the time.

LEMMA II.

The moment of any genitum is equal to the moments of each of the gen-

eratinrr sides drawn into the indices of the powers of those sides, and

into their co-efficients continually.

I call any quantity a genitum which is not made by addition or sub-

duction of divers parts, but is generated or produced in arithmetic by the

multiplication, division, or extraction of the root of any terms whatsoever :

in geometry by the invention of contents and sides, or of the extremes and

means of proportionals. Quantities of this kind are products, quotients,

roots, rectangles, squares, cubes, square and cubic sides, and the like.

These quantities I here consider as variable and indetermined, and increas

ing or decreasing, as it were, by a perpetual motion or flux ; and I under

stand their momentaneous increments or decrements by the name of mo
ments

;
so that the increments may be esteemed as added or affirmative

moments
;
and the decrements as subducted or negative ones. But take

care not to look upon finite particles as such. Finite particles are not

moments, but the very quantities generated by the moments. We are to

conceive them as the just nascent principles of finite magnitudes. Nor do

we in this Lemma regard the magnitude of the moments, but their firsf
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proportion, as nascent. It will be the same thing, if, instead of moments,
we use either the velocities of the increments and decrements (which may
also be called the motions, mutations, and fluxions of quantities), or any
finite quantities proportional to those velocities. The co-efficient of any

generating side is the quantity which arises by applying the genitum to

ihat side.

Wherefore the sense of the Lemma is, that if the moments of any quan
tities A, B, C, &c., increasing or decreasing by a perpetual flux, or the

velocities of the mutations which are proportional to them, be called a, 6,

r, (fee., the moment or mutation of the generated rectangle AB will be B
-h bA

;
the moment of the generated content ABC will be aBC -f bAC 4

-1 -2. .1

cAB; and the moments of the generated powers A 2
. A 3

,
A 4

,
A 2

,
A 2

. A 3
,

A*, A ,
A 2

,
A * will be 2aA, 3aA 2

,
4aA 3

, |A *, fA*11 3

i A s
, |/iA

3
,

aA 2
,

2aA 3
,

aA 2

respectively; and

in general, that the moment of any power A^, will be ^ aA
n

-^. Also,

that the moment of the generated quantity A 2B will be 2aAB 4- bA~
;
the

moment of the generated quantity A 3B 4 C 2 will be 3A 2 B 4 C 2 + 4/&amp;gt;A
3

A 3

B 3C 2 4-2cA 3B C; and the moment of the generated quantity or

A B 2 will be 3aA 2 B 2 2bA 3B 3
;
and so on. The Lemma is

thus demonstrated.

CASE 1. Any rectangle, as AB, augmented by a perpetual flux, when, as

yet, there wanted of the sides A and B half their moments \a and \b, was

A \a into B \b, or AB a B \b A + \ab ; but as soon as the

sides A and B are augmented by the other half moments, the rectangle be

comes A 4- 4-a into B 4- \b, or AB -f ^a B 4- \b A -f \ab. From this

rectangle subduct the former rectangle, and there will remain the exces.?

aE -f bA. Therefore with the whole increments a and b of the sides, tin

increment aB + f&amp;gt;A of the rectangle is generated. Q.K.D.

CASE 2. Suppose AB always equal to G, and then the moment of the

content ABC or GC (by Case 1) will be^C + cG, that is (putting AB and

aB + bA for G and
*),
aBC -h bAC 4- cAB. And the reasoning is the

same for contents under ever so many sides. Q.E.D.

CASE 3. Suppose the sides A, B, and C, to be always equal among them

selves; and the moment B + /&amp;gt;A,
of A 2

,
that is, of the rectangle AB,

will be 2aA
;
and the moment aBC + bAC + cAB of A 3

,
that is, of the

content ABC, will be 3aA 2
. And by the same reasoning the moment of

any power A
n

is naAn
. Q.E.D

CASE 4. Therefore since -7 into A is 1, the moment of -r- drawn intoA A
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A, together with drawn into a. will be the moment of 1, that is, nothing.A

Therefore the moment of -r, or of A
,
is -r . And generally sinceA .A

T- into An
is I, the moment of drawn into An

together with into
A n A. A n

naA&quot;
! will be nothing. And, therefore, the moment of -r- or A n

A

will be T^~7- Q-E.D.

V
.

t
. i

CASE 5. And since A 2 into A 2
is A, the moment of A1 drawn into 2A 2

will be a (by Case 3) ; and, therefore, the moment of A7 will be n~r~r or

^A-j

#A . And, generally, putting A~^ equal to B, then Am will be equal

to B n
,
and therefore maAm !

equal to nbB n
,
and maA equal to

?tbB
,
or tibA ^ 5

an&amp;lt;i therefore
ri
aA ^~ is equal to &, that is, equal

to the moment of A^. Q.E.D.

CASE 6. Therefore the moment of any generated quantity AmB n
is the

moment of Am drawn into Bn
, together with the moment of B n drawn into

A&quot;,
that is, maA m

B&quot; -f- nbB n ! Am
;
and that whether the indices

in arid n of the powers be whole numbers or fractions, affirmative or neg
ative. And the reasoning is the same for contents under more powers.

Q.E.D.

COR. 1. Henoe in quantities continually proportional, if one term is

given, the moments of the rest of the terms will be as the same terms mul

tiplied by the number of intervals between them and the given term. Let

A, B, C, D ; E, F, be continually proportional ;
then if the term C is given,

the moments of the rest of the terms will be among themselves as 2A,
B

? D, 2E, 3F.

COR. 2. And if in four proportionals the two means are given, the mo
ments of the extremes will be as those extremes. The same is to be un

derstood of the sides of any given rectangle.

COR. 3. And if the sum or difference of two squares is given, the mo
ments of the sides will be reciprocally as the sides.

SCHOLIUM.

In a letter of mine to Mr. /. Collins, dated December 10, 1672, having
described a method of tangents, which I suspected to be the same with

Slusius*s method, which at that time wag not made public, I subjoined these

words This is one particular, or rather a Corollary, of a general nte
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thod, which extends itself, without any troublesome calculation, not ojdy
to the drawing of tangents to any curve lines, whether geometrical or

mechanical, or any how respecting right lines or other cnrves, but also

to the resolving other abstrnser kinds ofproblems about the crookedness,

areas, lengths, centres of gravity of curves, &c.
;
nor is it (as Hudd^ri s

method de Maximis & Minimia) limited to equations which are freefrom
surd quantities. This method I have interwoven with that other oj

working in equations, by reducing them to infinite serie?. So far that

letter. And these last words relate to a treatise I composed on that sub

ject in the year 1671. The foundation of that general method is contain

ed in the preceding Lemma.

PROPOSITION VIII. THEOREM VI.

If a body in an uniform medium, being uniformly acted upon by theforce

of gravity, ascends or descends in a right line ; and the whole space
described be distinguished into equal parts, and in the beginning of

each of the parts (by adding or subducting the resisting force of the

medium to or from the force of gravity, when the body ascends or de

scends] yon collect the absolute forces ; Isay, that those absolute forces
ire in a geometrical progression.

For let the force of gravity be expounded by the

given line AC
;
the force of resistance by the indefi

nite line AK
;
the absolute force in the descent of the

body by the difference KC : the velocity of the I tody

&amp;lt;^LKJL&i&amp;gt;F/ by a line AP, which shall be a mean proportional be

tween AK and AC, and therefore in a subduplicate ratio of the resistance;

the increment of the resistance made in a given particle of time by the li-

neola KL, and the contemporaneous increment of the velocity by the li-

neola PQ
;
and with the centre C, and rectangular asymptotes CA, CH,

describe any hyperbola BNS meeting the erected perpendiculars AB, KN,
LO in B, N and O. Because AK is as AP 2

,
the moment KL of the one will

be as the moment 2APQ of the other, that is, as AP X KC
;
for the in

crement PQ of the velocity is (by Law II) proportional to the generating

force KC. Let the ratio of KL be compounded with the ratio KN, and

the rectangle KL X KN will become as AP X KC X KN
;
that is (because

the rectangle KC X KN is given), as AP. But the ultimate ratio of the

hyperbolic area KNOL to the rectangle KL X KN becomes, when the

points K and L coincide, the ratio of equality. Therefore that hyperbolic

evanescent area is as AP. Therefore the whole hyperbolic area ABOL
is composed of particles KNOL which are always proportional to the

velocity AP; and therefore is itself proportional to the space described

with that velocity. Let ,that area be now divided into equal parts
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as ABMI, IMNK, KNOL, (fee., and the absolute forces AC, 1C, KC, LC,

(fee., will be in a geometrical progression. Q,.E.D. And by a like rea

soning, in the ascent of the body, taking, on the contrary side of the point

A, the equal areas AB?m, i/nnk, knol, (fee., it will appear that the absolute

forces AC. iG, kC, 1C, (fee., are continually proportional. Therefore if all

the spaces in the ascent and descent are taken equal, all the absolute forces

1C, kC, iC, AC, 1C, KC, LC, (fee., will be continually proportional. Q,.E.D.

COR. 1. Hence if the space described be expounded by the hyperbolic

area ABNK, the force of gravity, the velocity of the body, and the resist

ance of the medium, may be expounded by the lines AC, AP, and AK re

spectively and vice versa.

COR. 2. And the greatest velocity which the body can ever acquire in

an infinite descent will be expounded by the line AC.

COR. 3. Therefore if the resistance of the medium answering to any

given velocity be known, the greatest velocity will be found, by taking it

to that given velocity in a ratio subduplicate of the ratio which the force

of gravity bears to that known resistance of the medium.

PROPOSITION IX. THEOREM VII.

Supposing ivhat is above demonstrated, I say, that if the tangents of t-he

angles of the sector of a circle, and of an hyperbola, be taken propor
tional to the velocities, the radius being of a fit magnitude, all the time

of the ascent to the highest place icill be as the sector of the circle, and

all the time of descendingfrom the highest place as the sector of t/ie

hyperbola.

To the right line AC, which ex

presses the force of gravity, let AD
drawn perpendicular and equal. From
the centre D with the semi-diameter

AD describe as well the cmadrant A^E
-t

of a circle, as the rectangular hyper
bola AVZ, whose axis is AK, principal
vertex A, and asymptote DC. Let Dp,
DP be drawn

;
and the circular sector

AtD will be as all the time of the as

cent to the highest place ;
and the hy

perbolic sector ATD as all the time of descent from the highest place; ii

BO be that the tangents Ap, AP of those sectors be as the velocities.

CASE 1. Draw Dvq cutting off the moments or least particles tDv and
^

?, described in the same time, of the sector ADt and of the triangle

AD/?. Since those particles (because of the common angle D) are in a du

plicate ratio of the sides, the particle tDv will be as -^-^-
,

that is
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(because tD is given), as ^f. But joD
8 is AD 3 + Ap 2

,
that is, AD 2

-h

AD X AA-, or AD X Gk ; and (/Dp is 1 AD X pq. Therefore tDv, the

BO

particle of the sector, is as ^ ,
;
that is, as the least decrement pq of the

velocity directly, and the force Gk which diminishes the velocity, inversely ;

and therefore as the particle of time answering to the decrement of the ve

locity. And, by composition, the sum of all the particles tDv in the sector

AD/ will be as the sum of the particles of time answering to each of the

lost particles pq of the decreasing velocity Ap, till that velocity, being di

minished into nothing, vanishes; that is, the whole sector AD/ is as the

whole time of ascent to the highest place. Q.E.D.

CASE 2. Draw DQV cutting off the least particles TDV and PDQ of

the sector DAV, and of the triangle DAQ ;
and these particles will be to

each other as DT 2 to DP 2
,
that is (if TX and AP are parallel), as DX 2

to DA 2 or TX 2 to AP 2
; and, by division, as DX 2 TX 2 to DA 2 -

AP 2
. But. from the nature of the hyperbola, DX 2 TX 2

is AD 2
; and, by

the supposition, AP
2

is AD X AK. Therefore the particles are to each

other as AD 2 to AD 2 AD X AK
;
that is, as AD to AD AK or AC

;
andto CK : and therefore the particle TDV of the sector is -

PQ
therefore (because AC and AD are given) as

CK

that is, as the increment

of the velocity directly, and as the force generating the increment inverse

ly ;
and therefore as the particle of the time answering to the increment.

And, by composition, the sum of the particles of time, in which all the par

ticles PQ of the velocity A I
3 are generated, will be as the sum of the par

ticles of the sector ATI)
;
that is, the whole time will be as the whole

sector. Q.E.D.

COR. 1. Hence if AB be equal to a

fourth part of AC, the space which a body
will describe by falling in any time will

be to the space which the body could de

scribe, by moving uniform]} on in the

same time with its greatest velocity

AC, as the area ABNK, which ex

presses the space described in falling to

the area ATD, which expresses the

time. For since AC is to AP as AP

_ to AK, then (by Cor. 1, Lem. II, of this

Book) LK is to PQ as 2AK to AP, that is, as 2AP to AC, and thence

LK is to ^PQ as AP to JAC or AB
;
and KN is to AC or AD as AB tc
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UK
;
and therefore, ex cequo, LKNO to DPQ, as AP to CK. But DPQ

was to DTV as CK to AC. Therefore, ex aquo, LKNO is to DTV r,?

AP to AC
;
that is, as the velocity of the falling body to the greatest

velocity which the body by falling can acquire. Since, therefore, the

moments LKNO and DTV of the areas ABNK and ATD are as the ve

locities, all the parts of those areas generated in the same time will be as

the spaces described in the same time
;
and therefore the whole areas ABNK

and ADT, generated from the beginning, will be as the whole spaces de

scribed from the beginning of the descent. Q.E.D.
COR. 2. The same is true also of the space described in the ascent.

That is to say, that all that space is to the space described in the same

time, with the uniform velocity AC, as the area ABttk is to the sector ADt.
COR. 3. The velocity of the body, falling in the time ATD, is to the

velocity which it would acquire in the same time in a non-resisting space,

as the triangle APD to the hyperbolic sector ATD. For the velocity in

a non-resisting medium Avould be as the time ATD, and in a resisting me
dium is as AP, that is, as the triangle APD. And those velocities, at the

beginning of the descent, are equal among themselves, as well as those

areas ATD, APD.
COR. 4. By the same argument, the velocity in the ascent is to the ve

locity with which the body in the same time, in a non-resisting space, would

lose all its motion of ascent, as the triangle ApD to the circular sector

AtD
;
or as the right line Ap to the arc At.

COR. 5. Therefore the time in which a body, by falling in a resisting

medium, would acquire the velocity AP, is to the time in which it would

acquire its greatest velocity AC, by falling in a non-resisting space, as the

sector ADT to the triangle ADC : and the time in which it would lose its

velocity Ap, by ascending in a resisting medium, is to the time in which

it would lose the same velocity by ascending in a non-resisting space, as

the arc At to its tangent Ap.
COR. 6. Hence from the given time there is given the space described in

the ascent or descent. For the greatest velocity of a body descending in

wfinitum is given (by Corol. 2 and 3, Theor. VI, of this Book) ;
and thence

the time is given in which a body would acquire that velocity by falling

in a non-resisting space. And taking the sector ADT or ADt to the tri

angle ADC in the ratio of the given time to the time just now found,

there will be given both the velocity AP or Ap, and the area ABNK or

AB//&, which is to the sector ADT, or AD/, as the space sought to the

space which would, in the given time, be uniformly described with that

greatest velocity found just before.

COR. 7. And by going backward, from the given space of ascent or de

scent AB?A: or ABNK, there will be given the time AD* or ADT.



268 THE MATHEMATICAL PRINCIPLES [BOOK ii

PROPOSITION X. PROBLEM III.

Suppose the uniform force of gravity to tend directly to the plane of the

horizon, and the resistance to be as the density of the medium and the

square of the velocity coiijunctly : it is proposed to find the density of
the medium in each place, which shall make the body move in any

given carve line ; the velocity of the body and the resistance of the

medium in each place.

Let PQ be a plane perpendicular to

the plane of the scheme itself; PFHQ
a curve line meeting that plane in the

points P and Q
; G, H, I, K four

places of the body going on in this

\ curve from F to Q ; and GB, HC, ID,

KE four parallel ordinates let fall

p A. 33 c^D E Q from these points to the horizon, and

standing on the horizontal line PQ at the points B, C, D, E ;
and let the

distances BC, CD, DE, of the ordinates be equal among themselves. From
the points G and H let the right lines GL, HN, be drawn touching the

curve in G and H, and meeting the ordinates CH, DI, produced upwards,
in L and N : and complete the parallelogram HCDM. And the times in

which the body describes the- arcs GH, HI, will be in a subduplicate ratio

of the altitudes LH, NI
;
which the bodies would describe in those times,

by falling from the tangents; and the velocities will be as the lengths de

scribed GH, HI directly, and the times inversely. Let the times be ex-

C*TT TTT

pounded by T and t, and the velocities by =- and ---; and the decrement
J_ L

/-^TT TTT

of the velocity produced in the time t will be expounded by -7^
.

This decrement arises from the resistance which retards the body, and from

the gravity which accelerates it. Gravity, in a falling body, which in its

fall describes the space NI, produces a velocity with which it would be able

to describe twice that space in the same time, as Galileo has demonstrated
;

2NI
that is, the velocity : but if the body describes the arc HI, it augments

MIxNl
HI ;

and therefore generatesthat arc only by the length HI HN or

only the velocity iff- Let this velocity be added to the before-
t X H.JL

mentioned decrement, and we shall have the decrement of the velocity

GH HI SMI X Nl
arising from the resistance alone, that is, -^ : hT
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2NI.

Therefore since, in the same time, the action of gravity generates, in a fall

ing body, the velocity ,
the resistance will be to the gravity as 7^

HI 2MI X NI 2NI t X GH 2MI X NI
+ TTT- to or as ^ HI -f

Now for the abscissas CB, CD,
CE, put o, o, 2o. For the ordinate

CH put P ;
and for MI put any series

Qo + Ro 2 + So 3
+, &c. And all

the terms of the series after the first,

that is, Ro 2 + So 3
+, (fee., will be

NI
;
and the ordinates DI, EK, and

BGwill be P QoRo 2 So 3 p A B c T&amp;gt; E
(fee., P 2Qo 4Ro 2 SSo 3

, (fee., and P -\- Qo Ro 2 + So 3
,

(fee., respectively. And by squaring the differences of the ordinates BG
CH and CH DI, and to the squares thence produced adding the squares
of BC and CD themselves, you will have oo -f- QQoo 2QRo 3

+, (fee.,

and oo -f QQoo -f 2QRo 3
+, (fee., the squares of the arcs GH, HI

;
whose

QRoo QRoo
roots o y -

,
and o

&amp;lt;/! 4- QQ 4- are the
1 + QQ v/1 + QQ s/1 -f QQ

arcs GH and HI. Moreover, if from the ordinate CH there be subducted

half the sum of the ordinates BG and DI, and from the ordinate DI there

be subducted half the sum of the ordinates CH and EK, there will remain

Roo and Roo + 3So 3
,
the versed sines of the arcs GI and HK. And these

are proportional to the lineolae LH and NI, and therefore in the duplicate

ratio of the infinitely small times T and t : and thence the ratio ~, is ^
R + SSo R -f

^ or
So ,

t X GH TTT 2MI X NI
,

: and ^ HI H TTT , by substitutingR T HI

the values of
, GH, HI, MI and NI just found, becomes -^-

J- /w-Lt/

I + QQ. Arid since 2NI is 2Roo, the resistance will be now to the
OO

gravity as -- TT Q to 2Roo
&amp;gt;

that is
&amp;gt;

as 3S r to 4RR.

And the velocity will be such, that a body going off therewith from any
place H, in the direction of the tangent HN, would describe, in vacuo, a

parabola, whose diameter is HC, and its latus rectum NT or --^---- .

And the resistance is as the density of the medium and the square of

the velocity conjunctly ;
and therefore the density of the medium is as the

resistance directly, and the square of the velocity inversely ;
that is, as
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QQ __
4RR

Q.E.I.

COR. 1. If the tangent HN be produced both ways, so as to meet any
HT

ordinatc AF in T - will be equal to
V/T+ QQ; and therefore in what

has gone before may be put for ^ \ -\- QQ. By this means the resistance

will be to the gravity as 3S X HT to 4RR X AC
;
the velocity will be a*

r-pj --^, and the density of the medium will be as -
TT-n.AO -v/ i Jti X H 1

COR. 2. And hence, if the curve line PFHQ be denned by the relation

between the base or abscissa AC and the ordinate CH, as is usual, and the

value of the ordinate be resolved into a converging series, the Problem
will be expeditiously solved by the first terms of the series

;
as in the fol

lowing examples.

EXAMPLE 1. Let the line PFHQ, be a semi-circle described upon the

diameter PQ, to find the density of the medium that shall make a projec
tile move in that line.

Bisect the diameter PQ in A
;
and call AQ, n ; AC, a ; CH, e ; and

CD, o ; then DI 2 or AQ, 2 AD 2 = nn aa 2ao oo, or ec. 2ao

oo ; and the root being extracted by our method, will give DI= e

ao oo aaoo ao 3 a 3 o 3

~e~~~2e 2e?
~~~W ~2?

&C* Here put nn f r ee + aa
&amp;gt;

and

ao nnoo anno 3

DI will become = e
,
&c.

e 2e 3 2e 5

Such series I distinguish into successive terms after this manner : I call

that the first term in which the infinitely small quantity o is not found
;

the second, in which that quantity is of one dimension only ;
the third, in

which it arises to two dimensions
;
the fourth, in which it is of three

;
and

so ad infinitum. And the first term, which here is e, will always denote

the length of the ordinate CH, standing at the beginning of the indefinite

quantity o. The second term, which here is
,
will denote the difference

between CH and DN
;
that is, the lineola MN which is cut off by com

pleting the parallelogram HCDM; and therefore always determines the

CM?

position of the tangent HN ; as, in this case, by taking MN to HM as
G

to o, or a to e. The third term, which here is -, will represent the li

neola IN, which lies between the tangent and the curve
;
and therefore

determines the angle of contact IHN, or the curvature which the curve line
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has in H. If that lineola IN is of a finite magnitude, it will be expressed

by the third term, together with those that follow in wfinitu:.:i. But if

that lineola be diminished in. infini-

tnm, the terms following become in

finitely less than the third term, and

therefore may be neglected. The

fourth term determines the variation

of the curvature
;
the fifth, the varia

tion of the variation
;

and so on.

Whence, by the way, appears no con-p~&quot; ~K B~C~D~E~

temptible use of these series in the solution of problems that depend upon

tangents, and the curvature of curves.

ao 77/700 anno 3

Now compare the series e ^ ^~ &c., with the
e Ze 3 Ze*

series P Qo - Roo So 3
&c., and for P, Q, II and S

? put e, -, ^-^

and ~
,
and for ^ 1 + QQ put 1 H or -

;
and the density oi

2e 5 ee e

the medium will come out as
;
that is (because n is given), as - or

lie e

~Yj, that is, as that length of the tangent HT, which is terminated at the
OH.

semi-diameter AF standing perpendicularly on PQ : and the resistance

will be to the gravity as 3a to
2&amp;gt;/,

that is, as SAC to the diameter PQ of

the circle; and the velocity will be as i/ CH. Therefore if the body goes

from the place F, with a due velocity, in the direction of a line parallel to

PQ, and the density of the medium in each of the places H is as the length

of the tangent HT, and the resistance also in any place H is to the force

of gravity as SAC to PQ, that body will describe the quadrant FHQ of a

circle. Q.E.I.

But if the same body should go-frorn the place P, in the direction of a

line perpendicular to PQ, and should begin to move in an arc of the semi

circle PFQ, we must take AC or a on the contrary side of the centre A
;

and therefore its sign must be changed, and we must put a for + a.

Then the density of the medium would come out as . But nature

does not admit of a negative density, that is, a density which accelerates

the motion of bodies; and therefore it cannot naturally come to pass that

a body by ascending from P should describe the quadrant PF of a circle.

To produce such an effect, a body ought to be accelerated by an impelling

medium, and not impeded by a resisting one.

EXAMPLE 2. Let the line PFQ be a parabola, having its axis AF per-



272 THE MATHEMATICAL PRINCIPLES [BOOK IL

pendicular to the horizon PQ, to find the density of the medium, which

will make a projectile move in that line.

From the nature of the parabola, the rectangle PDQ,
is equal to the rectangle under the ordinate DI and some

given right line
;
that is, if that right line be called b ;

PC, a; PQ, c; CH, e; and CD, o; the rectangle a

A. CD ~Q + o into c a o or ac aa 2ao -{-co oo, ia

ac aa
equal to the rectangle b into DI, and therefore DI is equal to --7--h

c 2a oo c 2a
-. o r. Now the second term -, o of this series is to be put
b b b

oo
for Q,o, and the third term -r for Roo. But since there are no more

terms, the co-efficient S of the fourth term will vanish
;
and therefore the

S
ouantitv - ,

to which the density of the medium is proper-
R v i

tional, will be nothing. Therefore, where the medium is of no density,

the projectile will move in a parabola ;
as Galileo hath heretofore demon

strated. Q.E.I.

EXAMPLE 3. Let the line AGK be an hyperbola, having its asymptote
NX perpendicular to the horizontal plane AK, to find the density of the

medium that will make a projectile move in that line.

Let MX be the other asymptote, meeting
the ordinate DG produced in V

;
and from

the nature of the hyperbola, the rectangle of

XV into VG will be given. There is also

given the ratio of DN to VX, and therefore

the rectangle of DN into VG is given. Let

that be bb : and, completing the parallelo

gram DNXZ, let BN be called a; BD, o;

NX, c; and let the given ratio of VZ to

ZX or DN be -. Then DN will be equalMA. BD K N
bb

to a o
}
VG equal to , VZ equal to X a o. and GD or NX

a o n

m m
-VZ VG equal to c a + o . Let the term - be

n n a o a o

bb bb bb bb ,

resolved into the converging series
~^&quot;

+ ^ +
^l

00 +
^4 &amp;gt;

&c and

m bb m bb bb bb

GD will become equal to c - a - + -o ~ o ^ o 2

51
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&c. The second term o o of this series is to be u?ed for Qo; the
n aa

third o 2
,
with its sign changed for Ro 2

;
and the fourth o 3

,
with its

m bb bb bb

sign changed also for So 3
,
and their coefficients

,
and are to

n aa a a

be pat for Q, R, and S in the former rule. Which being done, the den-

bb

a*

sity of the medium will come out as , ,

bb

a

mm
nn

2mbb

naa
I

mm
-

,
that is, if in VZ you take VY equal to

aa aa

1 m 2

VG, as YT7- For aa and ^ a 2

2mbb b

nn n aa

2mbb b 4

H are the squares of XZ
n aa

and ZY. But the ratio of the resistance to gravity is found to be that of

3XY to 2YG
;
and the velocity is that with which the body would de-

XY 2

scribe a parabola, whose vertex is G, diameter DG, latus rectum
^

v . Sup

pose, therefore, that the densities of the medium in each of the places G
are reciprocally as the distances XY, and that the resistance in any place

G is to the gravity as 3XY to 2YG
;
and a body let go from the place A,

with a due velocity, will describe that hyperbola AGK. Q.E.I.

EXAMPLE 4. Suppose, mdeMtely, the line AGK to be an hyperbola
described with the centre X, and the asymptotes MX, NX, so that, having
constructed the rectangle XZDN, whose side ZD cuts the hyperbola in G
and its asymptote in V, VG may be reciprocally as any power DNn of the

line ZX or DN, whose index is the number n : to find the density of the

medium in which a projected body will describe this curve.

For BN, BD, NX, put A, O, C, respec- ^
tively, and let VZ be to XZ or DN as d to

bb

e, and VG be equal to

be equal to A O, VG ==^=
then DN will

VZ =

O, and GD orNX VZ VG equal
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nbb

nn -f- n

bb
U ! J x

*
=rr be resolved into an infinite series -r- +

A Of A&quot; A.
n

3 -- 3nn + 2/i

X O +

n
&quot; ~ x bb O 3

,&c,,andGD will be equalg^TT-T
X 00 O 2 +

c bb d nbb + ?m -

toC -A--T-+-O- -r O - ~
e A&quot; e A&quot; + l 2A n

-f

+ H
i^T t &quot;\

bb 3
&amp;gt;

&c - The second tcrm - O -
-T

6An + e An
4-

l

series is to be used for 0,0, the third
^

66O 2 for Roo, the fourth

-\~r~3 bbO 5 for So 3
. And thence the density of the medium

Oof this

-,
in any place G 7

will be
2dnbb nub*

and therefore if in VZ you take VY equal to n X VG, that density is re-

n w IT- j
^

*
2rf//66 /mfi 4

ciprocally as XY. For A 2 and A 2 -- A + r are the
tc/ o^x ./\_

&quot;

squares of XZ and ZY. Hut the resistance in the same place G is to the

force of gravity as 3S X - to 4RR, that is, as XY to

And the velocity there is the same wherewith the projected body would

move in a parabola, whose vertex is G, diameter GD, and latus rectum
2XY 2

or --------- --
. Q.E.I.R nn VG

AC
HT

SCHOLIUM.

In the same manner that the den

sity of the medium comes out to be as

S X AC .

Tjr m ^ r- 1) if the resistance
lx X HI
is put as any power V&quot; of the velocity

V, the density of the medium will

come out to be as

B C D E Q
. x

S
And therefore if a curve can be found, such that the ratio of to

4 o

R i-
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n 1

,
or ofgr^

to may be given ;
the body, in an uni-

z

HT
AC
form medium, whose resistance is as the power V&quot; of the velocity V, will

move in this curve. But let us return to more simple curves.

Because there can be no motion in a para

bola except in a non-resisting medium, but

in the hyperbolas here described it is produced

by a perpetual resistance
;

it is evident that

the line which a projectile describes in an

uniformly resisting medium approaches nearer

to these hyperbolas than to a parabola. That

line is certainly of the hyperbolic kind, but

about the vertex it is more distant from the

asymptotes, and in the parts remote from the

vertex draws nearer to them than these hy- M JL BD K
perbolas here described. The difference, however, is not so great between

the one and the other but that these latter may be commod^ously enough
used in practice instead of the former. And perhaps these may prove more

useful than an hyperbola that is more accurate, and at the same time more

compounded. They may be made use of, then, in this manner.

Complete the parallelogram XYGT, and the right line GT will touch

the hyperbola in G, and therefore the density of the medium in G is re-

GT 2

ciprocally as the tangent GT, and the velocity there as ^ -^=- ;
and the

resistance is to the force of gravity as GT to

Therefore if a body projected from the

place A, in the direction of the right line

AH, describes the hyperbola AGK and

AH produced meets the asymptote NX in

H, arid AI drawr
ri parallel to it meets the

other asymptote MX in I
;
the density of

the mediu.n in A will be reciprocally as

AH. and the velocity of the body as -J

AH 1

. . . and the resis an^e there to the force
Al

2nn

n +2^- X GV.

. TT 2nn + 2n
of gravity rs AH to

ZiTo
~ X AI. Her,ce the following rules a e

deduced.

RULE 1. If the density of the medium at A, and the velocity with which

the body is projected remain the same, and the angle NAH be changed ,

the lengths AH, AI, HX will remain. Therefore if those lengths, in any
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one case, are found, the hyperbola may afterwards be easily determined

from any given angle NAH.
RULE 2. If the angle NAH, and the density of the medium at A, re

main the same, and the velocity with which the body is projected be

changed, the length AH will continue the same
;
and AI will be changed

in a duplicate ratio of the velocity reciprocally.

RULE 3. If the angle NAH, the velocity of the body at A, and the ac-

celerative gravity remain the same, and the proportion of the resistance at

A to the motive gravity be augmented in any ratio
;
the proportion of AH

to A I will be augmented in the same ratio, the latus rectum of the above-

AH 2

mentioned parabola remaining the same, and also the length propor-AI
tional to it

;
and therefore AH will be diminished in the same ratio, and

AI will be diminished in the duplicate of that ratio. But the proportion

of the resistance to the weight is augmented, when either the specific grav

ity is made less, the magnitude remaining equal, or when the density of

the medium is made greater, or when, by diminishing the magnitude, the

resistance becomes diminished in a less ratio than the weight.

RULE 4. Because the density of the medium is greater near the vertex

of the hyperbola than it is in the place A, that a mean density may be

preserved, the ratio of the least of the tangents GT to the tangent AH
ought to be found, and the density in A augmented in a ratio a little

greater than that of half the sum of those tangents to the least of the

tangents GT.
RULE 5. If the lengths AH, AI are given, and the figure AGK is to be

described, produce HN to X, so that HX may be to AI as n -\- 1 to 1
;
and

with the centre X, and the asymptotes MX, NX, describe an hyperbola

through the point A, such that AI may be to any of the lines VG as XV&quot;

to xr.
RULE 6. By how much the greater the number n is, so much the more

accurate are these hyperbolas in the ascent of the body from A, and less

accurate in its descent to K
;
and the contrary. The conic hyperbola

keeps a mean ratio between these, and is more simple than the rest. There

fore if the hyperbola be of this kind, and you are to find the point K,
where the projected body falls upon any right line AN passing through
the point A, let AN produced meet the asymptotes MX, NX in M and N,

and take NK equal to AM.
RULE 7. And hence appears an expeditious method of determining this

hyperbola from the phenomena. Let two similar and equal bodies be pro

jected with the same velocity, in different angles HAK, hAk, and let them

fall upon the plane of the horizon in K and k ; and note the proportion

of AK to A A&quot;. Let it be as d to e. Then erecting a perpendicular A I of

uny length, assume any how the length AH or Ah, and thence graphically,
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or by scale and compass, collect the lengths AK, A/&amp;gt;* (by Rule 6). If the

ratio of AK to A/.* bo the same with that of d to e, the length of AH was

rightly assumed. If not, take on the indefinite right line SM, the length

SM equal to the assumed AH
;
and erect a perpendicular MN equal to the

AK d
difference -r-r of the ratios drawn into any given right line. By the

like method, from several assumed lengths AH, you may find several points

N
;
and draw througli them all a regular curve NNXN, cutting tr.e right

line SMMM in X. Lastly, assume AH equal to the abscissa SX, and

thence find again the length AK ;
and the lengths, which are to the as

sumed length AI, and this last AH, as the length AK known by experi

ment, to the length AK last found, will be the true lengths AI and AH,
which were to be found. But these being given, there will be given also

the resisting force of the medium in the place A, it being to the force of

gravity as AH to JAI. Let the density of the medium be increased by

Rule 4, and if the resisting force just found be increased in the same ratio,

it will become still more accurate.

RULE 8. The lengths AH, HX being found
;

let there be now re

quired the position of the line AH, according to which a projectile thrown

with that given velocity shall fall upon any point K. At the joints A
and K, erect the lines AC, KF perpendicular to the horizon : whereof let

AC be drawn downwards, and be equal to AI or ^HX. With the asymp
totes AK, KF, describe an hyperbola, whose conjugate shall pass through
the point C ;

and from the centre A, with the interval AH. describe a cir

cle cutting that hyperbola in the point H ;
then the projectile thrown in

the direction of the right line AH will fall upon the point K. Q.E.I. For

the point H, because of the given length AH, must be somewhere in the

circumference of the described circle. Draw CH meeting AK and KF in

E and F: and because CH, MX are parallel, and AC, AI equal, AE will

be equal to AM, and therefore also equal to KN. But CE is to AE as

FH to KN. and therefore CE and FH are equal. Therefore the point H
falls upon the hyperbolic curve described with the asymptotes AK,.KF
whose conjugate passes through the point C ;

and is therefore found in the
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common intersection of this hyperbolic
curve and the circumference of the de

scribed circle. Q.E.D. It is to be ob

served that this operation is the same,

whether the right line AKN be parallel to

the horizon, or inclined thereto in any an

gle : and that from two intersections H,

//.,
there arise two angles NAH, NAA ;

and that in mechanical practice it is suf

ficient once to describe a circle, then to

apply a ruler CH, of an indeterminate length, HO to the point C, that its

part PH, intercepted between the circle and the right line FK, may bo

equal to its part CE placed between the point C and the right line AK
What has been said of hyperbolas may be easily

applied to pir i &amp;gt;;&amp;gt;l.i3. For if a parabola be re

presented by XAGK, touched by a right line XV
in the vertex X, and the ordinates IA, YG be as

any powers XI&quot;,
XV&quot;

;
of the abscissas XI, XV ;

draw XT, GT, AH, whereof let XT be parallel

to VG, and let GT, AH touch the parabola in

G and A : and a body projected from any place

A, in the direction of the right line AH, with a

due velocity, will describe this parabola, if the density of the medium in

each of the places G be reciprocally as the tangent GT. In that case the

velocity in G will be the same as would cause a body, moving in a non-

resisting space, to describe a conic parabola, having G for its vertex, VG
2GT 2

produced downwards for its diameter, and -. for its latus

nn n X VG
rectum. And the resisting force in G will be to the force of gravity as GT to

2nti 2tt

~2~ VG. Therefore if NAK represent an horizontal line, and botli

the density of the medium at A, and the velocity with which the body is

projected, remaining the same, the angle NAH be any how altered, the

lengths AH, AI, HX will remain; and thence will be given the vertex X
of the parabola, and the position of the right line XI

;
and by taking VG

to IA as XVn
to

XI&quot;,
there will be given all the points G of the parabola,

through which the projectile will pass.
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SECTION III.

Of the motions of bodies which are resisted partly in the ratio of the ve

locities, and partly in the duplicate of the same ratio.

PROPOSITION XI. THEOREM VIII.

If a body be resisted partly in the ratio and partly in the duplicate ratio

of its velocity, and moves in a similar medium by its innate force

only; and the times be taken in arithmetical progression; then

quantities reciprocally proportional to the velocities, increased by a cer

tain given quantity, will be in geometrical progression.

With the centre C, and the rectangular asymptotes ^
OADd and CH, describe an hyperbola BEe, and let

|
\p

AB, DE, de. be parallel to the asymptote CH. In
|

the asymptote CD let A, G be given points ; and if

the time be expounded by the hyperbolic area ABED
uniformly increasing, I say, that the velocity may ~r

be expressed by the length DF, whose reciprocal

GD, together with the given line CG, compose the

length CD increasing in a geometrical progression.

For let the areola DEec/ be the least given increment of the time, and

Dd will be reciprocally as DE, and therefore directly as CD. Therefore

the decrement of ^TR, which (by Lem. II, Book II) is ^ no ,
will be also as

D

tf

CD CG + GD 1 CG
GO*

r GD 2

~
fc

1S&amp;gt;aS GD +
GJD 2

* * nerefore tne timc

uniformly increasing by the addition of the given particles EDcfe, it fol

lows that r decreases in the same ratio with the velocity. For the de

crement of the velocity is as the resistance, that is (by the supposition), as

the sum of two quantities, whereof one is as the velocity, and the other as

the square of the velocity ;
and the decrement of ~~ is as the sum of the

1 C^(^ 1

quantities ~-^=r
and

pfp,&amp;gt;
whereof the first is ^^r itself, and the last

i i

is a* /-TFT; therefore T^-R is as tne velocity, the decrements of both
- CilJ

being analogous. And if the quantity GD reciprocally proportional to

T,
be augmented by the given quantity CG ;

the sum CD, the time

ABED uniformly increasing, will increase !n a geometrical progression.

Q.E.D.
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COR. 1. Therefore, if, having the points A and G given, the time bo

expounded by the hyperbolic area ABED, the velocity may be expounded

by -r the reciprocal of GD.

COR. 2. And by taking GA to GD as the reciprocal of the velocity at

the beginning to the reciprocal of the velocity at the end of any time

ABED, the point G will be found. And that point being found the ve

locity may be found from any other time given.

PROPOSITION XII. THEOREM IX.

The same things being supposed, I say, that if the spaces described are

taken in arithmetical progression, the velocities augmented by a cer

tain given quantity will be in geometrical progression.
In the asymptote CD let there be given the

point R, and, erecting the perpendicular RS
meeting the hyperbola in S, let the space de

scribed be expounded by the hyperbolic area

I

RSED
;
and the velocity will be as the length

J GD, which, together with the given line CG,
**

composes a length CD decreasing in a geo
metrical progression, while the space RSED increases in an arithmetical

[(regression.

For, because the incre nent EDde of the space is given, the lineola DC?,

which is the decrement of GD, will be reciprocally as ED, and therefore

directly as CD
;
that is, as the sum of the same GD and the given length

CG. But the decrement of the velocity, in a time reciprocally propor
tional thereto, in which the given particle of space D^/eE is described, is

as the resistance and the time conjunctly, that is. directly as the sum of

two quantities, whereof one is as the velocity, the other as the square of

the velocity, and inversely as the veh city ;
and therefore directly as the

sum of two quantities, one of which is given, the other is- as the velocity.

Therefore the decrement both of the velocity and the line GD is as a given

quantity and a decreasing quantity conjunctly; and, because the decre

ments are analogous, the decreasing quantities will always be analogous ;

viz., the velocity, and the line GD. U.E.D.

COR. 1. If the velocity be expounded by the length GD, the space de

scribed will be as the hyperbolic area DESR.
COR. 2. And if the point be assumed any how, the point G will be

found, by taking GR to GD as the velocity at the beginning to the velo

city after any space RSED is described. The point G being given, the

space is given from the given velocity : and the contrary.

Cotw 3. Whence since (by Prop. XI) the velocity is given from the given
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time, and (by this Prop.) the space is given from the given velocity ;
the

space will be given from the given time : and the contrary.

PROPOSITION XKI. THEOREM X.

Supposing that a body attracted downwards by an uniform gravity as

cends or descends in a right line; and that the same is resisted

partly in the ratio of its velocity, and partly in the duplicate ratio

thereof: I say, that, if right lines parallel to the diameters of a circle

and an hyperbola, be drawn through the ends of the, conjugate diame

ters, and the velocities be as some segments of those parallels drawn
from a given point, the times will be as the sectors of the, areas cut

off by right lines drawnfrom the centre to the ends of the segments ;

and the contrary.

CASE 1. Suppose first that the body is ascending,

and from the centre D, with any semi-diameter DB,
describe a quadrant BETF of a circle, and through
the end B of the semi-diameter DB draw the indefi

nite line BAP, parallel to the semi-diameter DF. In

chat line let there be given the point A, and take the

segment AP proportional to the velocity. And since

one part of the resistance is as the velocity, and

another part as the square of the velocity, let the

whole resistance be as AP 2
-f 2BAP. Join DA, DP, cutting the circle

in E and T, and let the gravity be expounded by DA 2
,
so that the gravity

shall be to the resistance in P as DA2 to AP2+2BAP ;
and the time of the

whole ascent will be as the sector EDT of the circle.

For draw DVQ,, cutting off the moment PQ, of the velocity AP, and the

moment DTV of the sector DET answering to a given moment of time
;

and that decrement PQ, of the velocity will be as the sum of the forces of

gravity DA 2 and of resistance AP 2 + 2BAP, that is (by Prop. XII

BookII,Elem.),asDP*. Then the arsa DPQ, which is proportional to PQ
:

is as DP 2
,
and the area DTV, which is to the area DPQ, as DT 2 to DP 2

,
it

as the given quantity DT 2
. Therefore the area EDT decreases uniformly

according to the rate of the future time, by subduction of given particlesDT V,

and is therefore proportional to the time of the whole ascent. Q..E.D.

CASE 2. If the velocity in the ascent

of the body be expounded by the length

AP as before, and the resistance be made

as AP 2
-f- 2BAP,and if the force of grav

ity be less than can be expressed by DA 2
;

take BD of such a length, that AB 2

BD 2
maybe proportional to the gravity,

and let DF be perpendicular and equal
F O
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to DB, and through the vertex F describe the hyperbola FTVE, whose con

jugate semi -diameters are DB and DF
;
and which cuts DA in E, and DP,

DQ in T and V
;
and the time of the whole ascent will be as the hyper

bolic sector TDE.
For the decrement PQ of the velocity, produced in a given particle of

time, is as the sum of the resistance AP 2
-f 2BAP and of the gravity

AB 2 BD 2
,
that is, as BP 2 BD 2

. But the area DTV is to the area

DPQ as DT 2 to DP 2

; and, therefore, if GT be drawn perpendicular to

DF. as GT 2 or GD 2 DF 2 to BD 2
,
and as GD 2 to BP 2

, and, by di

vision, as DF 2 to BP 2 BD 2
. Therefore since the area DPQ is as PQ,

that is, as BP 2 BD 2
,
the area DTV will be as the given quantity DF 2

.

Therefore the area EDT decreases uniformly in each of the equal particles

of time, by the subduction of so many given particles DTV, and therefore

is proportional to the time. Q.E.D.

CASE 3. Let AP be the velocity in the descent of
&quot;&quot;&quot;

the body, and AP 2 + 2BAP the force of resistance,

and BD 2 AB 2 the force of gravity, the angle DBA
being a right one. And if with the centre D, and the

principal vertex B, there be described a rectangular

hyperbola BETV cutting DA, DP, and DQ produced

in E, T, and V : the sector DET of this hyperbola will

D be as the whole time of descent.

For the increment PQ of the velocity, and the area DPQ proportional

to it, is as the excess of the gravity above the resistance, that is, as

m)2
?_ AB 2 _2BAP AP 2 or BD 2 BP 2

. And the area DTV
is to the area DPQ as DT 3 to DP 2

;
and therefore as GT 2 or GD&quot; -

BD 2 to BP 2

,
and as GD 2 to BD 2

, and, by division, as BD 2 to BD 2 -

BP 2
. Therefore since the ami DPQ is as BD 2 BP 2

,
the area DTV

will be as the given quantity BD
2

. Therefore the area EDT increases

uniformly in the several equal particles of time by the addition of as

many given particles DTV, and therefore is proportional to the time of

the descent. Q.E.D.

Con. If with the centre D and the semi-diameter DA there be drawn

through the vertex A an arc A/ similar to the arc ET, and similarly sub-

tendino^the angle A DT, the velocity AP will be to the velocity which the

body in the time EDT, in a non-resisting space, can lose in its ascent, or

acquire in its descent, as the area of the triangle DAP to the area of the

Bector DA/ ; and therefore is given from the time given. For the velocity

ir a non-resistin^ medium is proportional to the time, and therefore to this

sector : in a resisting medium, it is as the triangle ;
and in both mediums,

where it is least, it approaches to the ratio of equality, as the sector and

triangle do
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SCHOLIUM.

One may demonstrate also that case in the ascent of the body, where the

force of gravity is less than can be expressed by DA 2 or AB 2 + BD 2
,
and

greater than can be expressed by AB 2 DB 2
,
and must be expressed by

AB 2
. But I hasten to other things

PROPOSITION XIV. THEOREM XL
The same things being supposed, 1 say, that the space described in the

ascent or descent is as the difference of the area by which the time is

expressed, and of some other area which is augmented or diminished

in an arithmetical progression ; if the forces compounded of the re

sistance and the gravity be taken, in a geometrical progression.

Take AC (in these three figures) proportional to the gravity, and AK
to the resistance

;
but take them on the same side of the point A, if the

\*

&quot;1

\

B A K QP

body is descending, otherwise on the contrary. Erect A b, which make to

DB as DB 2 to 4BAC : and to the rectangular asymptotes CK, CH, de

scribe the hyperbola 6N ; and, erecting KN perpendicular to CK, the area

A/AK will be augmented or diminished in an arithmetical progression,
while the forces CK are taken in a geometrical progression. I say, there

fore, that the distance of the body from its greatest altitude is as the excess

of the area A6NK above the area DET.
For since AK is as the resistance, that is, as AP 2 X 2BAP

;
assume

any given quantity Z, and put AK equal to then (by Lem,



284 THE MATHEMATICAL PRINCIPLES [BOOK II

2APQ, + 2BA X PU
II of this Book) the moment KL ofAK will be equal to

2BPQ
or Z -,

and the moment KLON of the area ANK will be equal to

2BPQ X LO BPQ, X BD 3

~~Z~~
&amp;gt;r

2Z X OK x~AB&quot;

CASE 1. Now if the body ascends, and the gravity be as AB 2 + BD 9

BET being a circle, the line AC, which is proportional to the gravity
AW2 i RF)2

will be - ~--
,
and DP 2 or AP 2 + 2BAP + AB 2 + BD 2 will be

AK XZ + AC X Z or CK X Z : and therefore the area DTV will be to

the area DPQ, as DT 2 or I)B 2 to CK X Z.

CASE 2. If the body ascends, and the gravity be as AB 2 BD 2
,
the

A r&amp;gt;2 _ HI) 2

line AC will be
&quot;--^---,

and DT 2 will be to DP 2 as DF 2 or DB 2

Z
to BP 2 BD 2 or AP 2 + 2BAP + AB 2 BD 2

,
that is, to AK X Z +

H

AC X Z or CK X Z. And therefore the area DTV will be to the area

DPQ as DB 2 to CK X Z.

CASE 3. And by the same reasoning, if the body descends, and therefore

the gravity is as BD 2 AB 2
,
and the line AC becomes equal to

or) 2 AB 2

5T r ;
the area DTV will be to the area DPQ as DB 2 to CK XZ

Z : as above.

Since, therefore, these areas are always in this ratio, if for the area
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DTY, by which the moment of the time, always equal to itself, is express

ed, there be put any determinate rectangle, as BD X m, the area DPQ,,
that is, |BD X PQ, will be to BD X mas CK X Z to BD 2

. And thence

PQ X BD 3 becomes equal to 2BD XmX CK X Z, and the moment KLON
BP X BD X tn

of the area A6NK, found before, becomes- .-^
--

. From the area

DET subduct its moment DTV or BD X m, and there will remain

---
-Pp

. Therefore the difference of the moments, that is, the

AP X BD X m
mo.nent of the difference of tne areas, is equal to--7-5

---
;

and

therefore (because of the given quantity
---T-~

)
as the velocity AP

;

that is, as the moment of the space which the body describes in its ascent

or descent. And therefore the difference of the areas, and that space, in

creasing or decreasing by proportional moments, and beginning together or

vanishing together, are proportional. Q.E.D.

COR. If the length, which arises by applying the area DET to the line

BD, be called M
;
and another length V be taken in that ratio to the length

M, which the line DA has to the line DE; the space which a body, in a

resisting medium, describes in its whole ascent or descent, will be to the

space which a body, in a non-resisting medium, falling from rest, can de

scribe in the same time, as the difference of the aforesaid areas to

BD X V 2

-
-TO&quot;&quot;&quot;&quot; j

an(^ therefore is given from the time given. For the space in a
A.LJ

non-resisting medium is in a duplicate ratio of the time, or as V 2
;
and.

BD X V 2

because BD and AB are given, as ----TTT- . This area is equal to the

DA 2 X BD x M 2

area --
fvGr*~~~T~R

&quot;~ anc* ^ne moment Of M is m ; and therefore the

DA 2 X BD X 2M X m
moment of this area is ---=----^5 -. But this moment is to

&quot;&quot; X .AD
the moment of the difference of the aforesaid areas DET and A6NK, viz., to

AP X BD X m DA 2 X BD X M
x

DA 2
. ^^- --

,
as - -r- - to |BD X AP, or as into DET

to DAP
; and, therefore, when the areas DKT and DAP are least, in the

BD X V 2

ratio of equality. Therefore the area
r^
-- and the difference of the

areas DET and A&NK, when all these areas are least, have equal moments ;

and { re therefore equal. Therefore since the velocities, and therefore also

the
s] aces in both mediums described together, in the beginning of the de

scent or the end of the ascent, approach to equality, and therefore are then
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BD X V 2

one to another as the area r-^ ,
and the difference of the areas DETAD

and A6NK
;
and moreover since the space, in a non-resisting medium, is

BD X V 2

perpetually as
Tu~~&amp;gt;

an(^ tne sP ace &amp;gt;

in a resisting medium, is perpetu

ally as the difference of the areas DET and A&NK
;

it necessarily follows,

that the spaces, in both mediums, described in any equal times, are one to

BD X V 2

another as that area 7-5 an(^ ^he difference of the areas DET and

A6NK. Q.E.D.

SCHOLIUM.

The resistance of spherical bodies in fluids arises partly from the tena

city, partly from the attrition, and partly from the density of the medium.

And that part of the resistance which arises from the density of the fluid

is, as I said, in a duplicate ratio of the velocity ;
the other part, which

arises from the tenacity of the fluid, is uniform, or as the moment of the

time
; and, therefore, we might now proceed to the motion of bodies, whicli

are resisted partly by an uniform force, or in the ratio of the moments of

the time, and partly in the duplicate ratio of the velocity. But it is suf

ficient to have cleared the way to this speculation in Prop. VIII and IX

foregoing, and their Corollaries. For in those Propositions, instead of the

uniform resistance made to an ascending body arising from its gravity,

one may substitute the uniform resistance which arises from the tenacity

of the medium, when the body moves by its vis insita alone
;
and when the

body ascends in a right line, add this uniform resistance to the force of

gravity, and subduct it when the body descends in a right line. One

might also go on to the motion of bodies which are resisted in part uni

formly, in part in the ratio of the velocity, and in part in the duplicate

ratio of the same velocity. And I have opened a way to this in Prop.

XIII and XIV foregoing, in which the uniform resistance arising from the

tenacity of the medium may be substituted for the force of gravity, or be

compounded with it as before. But I hasten to other things.
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SECTION IV.

Of the circular motion of bodies in resisting mediums.

LEMMA III.

Let PQR be a spiral rutting all the radii SP, SO, SR, &amp;lt;J*c.,

in equal

angles. Draw tfie right line PT touching the spiral in any point P,

and cutting the radius SQ in T
;

cfo er?0 PO, QO perpendicular to

the spiral, and meeting- in, O, andjoin SO. .1 say, that if Hie points

P a/*(/ Q approach and coincide, the angle PSO vri/Z become a right

angle, and the ultimate ratio of the rectangle TQ, X 2PS to P^ 3
//&amp;gt;i//

/&amp;gt;e /ie ya/io
o/&quot; equality.

For from the right angles OPQ, OQR, sub

duct the equal angles SPQ, SQR, and there

will remain the equal angles OPS, OQS.
Therefore a circle which passes through the

points OSP will pass also through the point

Q. Let the points P and Q, coincide, and

this circle will touch the spiral in the place
of coincidence PQ, and will therefore cut the

right line OP perpendicularly. Therefore OP will become a diameter of

this circle, and the angle OSP, being in a semi-circle, becomes a right
one. Q.E.1).

Draw Q,D, SE perpendicular to OP, and the ultimate ratios of the lines

will be as follows : TO to PD as TS or PS to PE, or 2PO to 2PS and

PD to PO as PO to 2PO
; and, ex cequo pertorbatt, to TO to PO as PO

to 2PS. Whence PO 2 becomes equal to TO X 2PS. O.E.D.

PROPOSITION XV. THEOREM XII.

Tf the density of a medium in each place thereof be reciproniJly as the

distance of the placesfrom an immovable centre, aud the centripetal

force be in the duplicate ratio of the density ; I say, that a body mny
revolve in a spiral which cuts all the radii drawn from that centre

in a given angle.

Suppose every thing to be as in the forego

ing Lemma, and produce SO to V so that SV
may be equal to SP. In any time let a body,
in a resisting medium, describe the least arc

PO, and in double the time the least arc PR :

and the decrements of those arcs arising from

the resistance, or their differences from the

arcs which would be described in a non-resist

ing medium in the same times, will be to each

other as the squares of the times in which they
are generated ;

therefore the decrement of the
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arc PQ is the fourth part of the decrement of the arc PR. Whence also

if the area QSr be taken equal to the area PSQ, the decrement of the arc

PQ will be equal to half the lineola Rr ; and therefore the force of resist

ance and the centripetal force are to each other as the lineola jRrandTQ
which they generate in the same time. Because the centripetal force with

which the body is urged in P is reciprocally as SP 2
,
and (by Lem. X,

Book I) the lineola TQ, which is generated by that force, is in a ratio

compounded of the ratio of this force and the duplicate ratio of the time

in which the arc PQ, is described (for in this case I neglect the resistance,

as being infinitely less than the centripetal force), it follows that TQ X
SP 2

,
that is (by the last Lemma), fPQ 2 X SP, will be in a duplicate ra

tio of the time, and therefore the time is as PQ, X v/SP ;
and the velo

city of the body, with which the arc PQ is described in that time, as

PQ 1

-p or
,
that is, in the subduplicate ratio of SP reciprocally.

And, by a like reasoning, the velocity with which the arc QR is described,

is in the subduplicate ratio of SQ reciprocally. Now those arcs PQ and

QR are as the describing velocities to each other
;
that is, in the subdu

plicate ratio of SQ to SP, or as SQ to x/SP X SQ; and, because of the

equal angles SPQ, SQ? ,
and the equal areas PSQ, QSr, the arc PQ is to

the arc Qr as SQ to SP. Take the differences of the proportional conse

quents, and the arc PQ will be to the arc Rr as SQ to SP VSP X ~SQ~,

or ^VQ. For the points P and Q coinciding, the ultimate ratio of SP

X SQ to |VQ is the ratio of equality. Because the decrement of

the arc PQ arising from the resistance, or its double Rr, is as the resistance

and the square of the time conjunctly, the resistance will be &Sp-^r op.*1 X

But PQ was to Rr as SQ to |VQ, and thence SSaTXToD becomes as
Jr vst X oJr

-VQ -OS

pWxsvxSQ,
or ns

ETp^TsP-
For the poillts p and a coincidin&

SP and SQ coincide also, and the angle PVQ becomes a right one; and,

because of the similar triangles PVQ, PSO, PQ. becomes to -VQ as OP
OS

to |OS. Therefore :
y

-- is as the resistance, that is, in the ratio of
\J i X ol

the density of the medium in P and the duplicate ratio of the velocity

conjunc-tly. Subduct the duplicate ratio of the velocity, namely, the ratio

1 OS
^5, and there will remain the density of the medium in P. as 7^5

-=
OA Ur X fei

Let the spiral be given, and
;
because of the given ratio of OS to OP, the

density of the medium in P will be as
~-p.

Therefore in a medium whose
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density is reciprocally as SP the distance from the centre, a body will re

volve in this spiral. Q.E.D.

COR. 1. The velocity in any place P, is always the same wherewith a

body in a non-resisting medium with the same centripetal force would re

volve in a circle, at the same distance SP from the centre.

COR. 2. The density of the medium, if the distance SP be given, is as

OS OS
TTp,

but if that distance is not given, as^ ^5.
And thence a spiral

may be fitted to any density of the medium.

COR. 3. The force of the resistance in any place P is to the centripetal

force in the same place as |OS to OP. For those forces are to each other

^VQ x PQ iPQ 2

as iRr and TQ, or as 1 ^-^~- and ^-, that is, as iVQ and PQ,
ol%, ol

or |OS and OP. The spiral therefore being given, there is given the pro

portion of the resistance to the centripetal force
; and, vice versa, from that

proportion given the spiral is given.

COR. 4. Therefore the body cannot revolve in this spiral, except where

the force of resistance is less than half the centripetal force. Let the re

sistance be made equal to half the centripetal force, and the spiral will co

incide with the right line PS, and in that right line the body will descend

to the centre with a velocity that is to the velocity, with which it was

proved before, in the case of the parabola (Theor. X, Book I),
the descent

would be made in a non-resisting medium, in the subduplicate ratio of

unity to the number two. And the times of the descent will be here recip

rocally as the velocities, and therefore given.

COR. 5. And because at equal distances

from the centre the velocity is the same in the

spiral PQ,R as it is in the right line SP, and

the length of the spiral is to the length of the

right line PS in a given ratio, namely, in the

ratio of OP to OS
;
the time of the descent in

the spiral will be to the time of the descent in

the right line SP in the same given ratio, and

therefore given.

COR. 6. If from the centre S, with any two

given intervals, two circles are described
;
and

these circles remaining, the angle which the spiral makes with the radius&quot;

PS be any how changed ;
the number of revolutions which the body can

complete in the space between the circumferences of those circles, going
PS

round in the spiral from one circumference to another, will be as 7^, or as
Ok5

ths tangent of the angle which the spiral makes with the radius PS
;
and

19
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OP
the time of the same revolutions will be as -^, that is, as the secant of theUo
same angle, or reciprocally as the density of the medium.

COR. 7. If a body, in a medium whose density is reciprocally as the dis

tances of places from the centre, revolves in any curve AEB about that

centre, and cuts the first radius AS in the same

angle in B as it did before in A, and that with a

velocity that shall be to its first velocity in A re

ciprocally in a subduplicate ratio of the distances

from the centre (that is, as AS to a mean propor
tional between AS and BS) that body will con

tinue to describe innumerable similar revolution?

BFC, CGD, &c., and by its intersections will

distinguish the radius AS into parts AS, BS, CS, DS, &c., that are con

tinually proportional. But the times of the revolutions will be as the

perimeters of the orbits AEB, BFC, CGD, &c., directly, and the velocities

3 3

at the beginnings A, B, C of those orbits inversely ;
that is as AS % BS %

CS&quot;
2

&quot;. And the whole time in which the body will arrive at the centre,

will be to the time of the first revolution as the sum of all the continued142
proportionals AS 2

,
BS 2

,
CS 2

, going on ad itifinitum, to the first term
* i 3

AS 2

;
that is, as the first term AS 2 to the difference of the two first AS 2

BS% or as f AS to AB very nearly. Whence the whole time may be

easily found.

COR. 8. From hence also may be deduced, near enough, the motions of

bodies in mediums whose density is either uniform, or observes any other

assigned law. From the centre S, with intervals SA, SB, SC, &c., con

tinually proportional, describe as many circles
;
and suppose the time of

the revolutions between the perimeters of any two of those circles, in the

medium whereof we treated, to be to the time of the revolutions between

the same in the medium proposed as the mean density of the proposed me

dium between those circles to the mean density of the medium whereof we

treated, between the same circles, nearly : and that the secant of the angle

in which the spiral above determined, in the medium whereof we treated,

cuts the radius AS, is in the same ratio to the secant of the angle in which

the new spiral, in the proposed medium, cuts the same radius : and also

that the number of all the revolutions between the same two circles is nearly

as the tangents of those angles. If this be done every where between every

two circles, the motion will be continued through all the circles. And by

this means one may without difficulty conceive at what rate and in what

time bodies ought to revolve in any regular medium.
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COR. 9. And although these motions becoming eccentrical should be

performed in spirals approaching to an oval figure, yet, conceiving the

several revolutions of those spirals to be at the same distances from each

other, and to approach to the centre by the same degrees as the spiral above

described, we may also understand how the motions of bodies may be per
formed in spirals of that kind.

PROPOSITION XVI. THEOREM XIII.

If the density of the medium in each of the places be reciprocally as the

distance of the &amp;gt;, placesfrom the immoveable centre, and the centripetal

force be reciprocally as any power of the same distance, I say, that the

body may revolve in a spiral intersecting all the radii drawn from
that centre in a given, angle.

This is demonstrated in the same manner as

the foregoing Proposition. For if the centri

petal force in P be reciprocally as any power
SPn+ 1 of the distance SP whose index is n

+ 1
;

it will be collected, as above, that the

time in which the body describes any arc PQ,
i

will be as PQ, X PS 2U
;
and the resistance in

i!!
x _

n; raS
&quot;~X SP n;

PQ, X SP&quot;XSQ,

, , 1 in X OS . 1 \n X OS .

therefore as
Qp&quot;^~gpirqTT

tliat 1S
&amp;gt; (
because -

~~Qp~~
1S a lven

quantity), reciprocally as SP n+ !
. And therefore, since the velocity is recip

rocally as SP3
&quot;,

the density in P will be reciprocally as SP.

COR. 1. The resistance is to the centripetal force as 1 ^//. X OS
to OP.

COR. 2. If the centripetal force be reciprocally as SP 3
. 1 w will be

===
;
and therefore the resistance and density of the medium will be

nothing, as in Prop. IX, Book I.

COR. 3. If the centripetal force be reciprocally as any power of the ra

dius SP, whose index is greater than the number 3, the affirmative resist

ance will be changed into a negative.

SCHOLIUM.

This Proposition and the former, which relate to mediums of unequal

density, are to be understood of the motion of bodies that are so small, that

the greater density of the medium on one side of the body above that on

the other is not to be considered. I suppose also the resistance, cateris

paribus, to be proportional to its density. Whence, in mediums whose
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force of resistance is not as the density, the density must be so much aug
mented or diminished, that either the excess of the resistance may be taken

away, or the defect supplied.

PROPOSITION XVII. PROBLEM IV

Tofind the centripetalforce and the resisting force of the medium, by
which a body, the law of the velocity being given, shall revolve in a

given spiral.

Let that spiral be PQR. From the velocity,

with which the body goes over the very small arc

PQ,, the time will be given : and from the altitude

TQ,, which is as the centripetal force, and the

square of the time, that force will be given. Then

from the difference RSr of the areas PSQ, and

Q,SR described in equal particles of time, the re

tardation of the body will be given ;
and from

the retardation will be found the resisting force

and density of the medium.

PROPOSITION XVIII. PROBLEM V.

The law of centripptalforce being given, to find the density of the me
dium in each of the places thereof, by which a body may describe a

given spiral.

From the centripetal force the velocity in each place must be found
;

then from the retardation of the velocity the density of the medium is

found, as in the foregoing Proposition.

But I have explained the method of managing these Problems in the

tenth Proposition and second Lemma of this Book; and will no longer

detain the reader in these perplexed disquisitions. I shall now add some

things relating to the forces of progressive bodies, and to the density and

resistance of those mediums in which the motions hitherto treated of, and

those akin to them, are performed.
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SECTION V.

Of the density and compression offluids ; and of hydrostatics.

THE DEFINITION OF A FLUID.

A fluid is any body whose parts yield to any force impressed on it,

by yielding, are easily moved among themselves.

PROPOSITION XIX. THEOREM XIv

All the parts of a homogeneous and unmovedfluid included in any un
moved vessel, and compressed on every side (setting aside the consider

ation of condensation, gravity, and all centripetal forces], will be

equally pressed on every side, and remain in their places without any
motion arisingfrom that pressure.

CASE 1. Let a fluid be included in the spherical

vessel ABC, and uniformly compressed on every
side : 1 say, that no part of it will be moved by
that pressure. For if any part, as L), be moved,
all such parts at the same distance from the centre

on every side must necessarily be moved at the

same time by a like motion
;
because the pressure

of them all is similar and equal ;
and all other

motion is excluded that does not arise from that

pressure. But if these parts come all of them nearer to the centre, the

fluid must be condensed towards the centre, contrary to the supposition.

If they recede from it, the fluid must be condensed towards the circumfer

ence
;
which is also contrary to the supposition. Neither can they move

in any one direction retaining their distance from the centre, because for

the same reason, they may move in a contrary direction : but the sami

part cannot be moved contrary ways at the same time. Therefore no

part of the fluid will be moved from its place. Q,.E.T).

CASE 2. I say now, that all the spherical parts of this fluid are equally

pressed on every side. For let EF be a spherical part of the fluid
;

if this

be not pressed equally on every side, augment the lesser pressure till it be

pressed equally on every side; and its parts (by Case I) will remain in

their places. But before the increase of the pressure, they would remain

in their places (by Case 1) ;
and by the addition of a new pressure they

will be moved, by the definition of a fluid, from those places. Now these

two conclusions contradict each other. Therefore it was false to say that

the sphere EF was not pressed equally on every side. Q,.E.D.

CASE 3. I say besides, that different spherical parts have equal pressures.

For the contiguous spherical parts press each other mutually and equally

in the point of contact (by Law III). But (by Case 2) they are pressed on

every side with the same force. Therefore any two spherical parts lot
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contiguous, since an intermediate spherical part can touch both, will be

pressed with the same force. Q.E.D.

CASE 4. I say now, that all the parts of the fluid are every where press
ed equally. For any two parts may be touched by spherical parts in any

points whatever
;
and there they will equally .press those spherical parts

(by Case 3). and are reciprocally equally pressed by them (by Law III).

Q.E.D.

CASE 5. Since, therefore, any part GHI of the fluid is inclosed by the

rest of the fluid as in a vessel, and is equally pressed on every side
;
and

also its parts equally press one another, and are at rest among themselves
;

it is manifest that all the parts of any fluid as GHI, which is pressed

equally on every side, do press each other mutually and equally, and are at

rest among themselves. Q.E.D.

CASE 6. Therefore if that fluid be included in a vessel of a yielding

substance, or that is not rigid, and be not equally pressed on every side,

the same will give way to a stronger pressure, by the Definition of fluidity.

CASE 7. And therefore, in an inflexible or rigid vessel, a fluid will not

Sustain a stronger pressure on one side than on the other, but will give

way to it, and that in a moment of time
;
because the rigid side of the

vessel does not follow the yielding liquor. But the fluid, by thus yielding,

will press against the opposite side, and so the pressure will tend on every

side to equality. And because the fluid, as soon as it endeavours to recede

from the part that is most pressed, is withstood by the resistance of the

vessel on the opposite side, the pressure will on every side be reduced to

equality, in a moment of time, without any local motion : and from thence

the parts of the fluid (by Case 5) will press each other mutually and equal

ly, and be at rest among themselves. Q..E.D.

COR. Whence neither will a motion of the parts of the fluid among
themselves be changed by a pressure communicated to the external super

ficies, except so far as either the figure of the superficies may be somewhere

altered, or that all the parts of the fluid, by pressing one another more in

tensely or remissly, may slide with more or less difficulty among them

selves.

PROPOSITION XX. THEOREM XV.

Jf all the parts of a sphericalfluid, homogeneous at equal distancesfrom
the centre, lying on. a spherical concentric bottom, gravitate towards

the centre of the whole, the bottom will sustain the weight of a cylin

der, whose base is equal to the superficies of the bottom, and whose al

titude is the same with that of the incumbent fluid.
Let OHM be the superficies of the bottom, and AEI the upper super

ficies of the fluid. Let the fluid be distinguished into concentric orbs of

3qual thickness, by the innumerable spherical superficies *3PK, CGL : and
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conceive the force of gravity to act only in the

upper superficies of every orb, and the actions

to be equal on the equal parts of all the su

perficies. Therefore the upper superficies AE
is pressed by the single force of its own grav

ity, by which all the parts of the upper orb,

and the second superficies BFK, will (by

Prop. XIX), according to its measure, be

equally pressed. The second superficies BFK
is pressed likewise by the force of its own

gravity, which, added to the former force,

makes the pressure double. The third superficies CGL is, according to its

measure, acted on by this pressure and the force of its own gravity besides,

which makes its pressure triple. And in like manner the fourth superfi

cies receives a quadruple pressure, the fifth superficies a quintuple, and so

on. Therefore the pressure acting on every superficies is not as the solid

quantity of the incumbent fluid, but as the number of the orbs reaching

to the upper surface of the fluid
;
and is equal to the gravity of the lowest

orb multiplied by the number of orbs : that is, to the gravity of a solid

whose ultimate ratio to the cylinder above-mentioned (when the number of

the orbs is increased and their thickness diminished, ad infiititum, so that

the action of gravity from the lowest superficies to the uppermost may be-

some continued) is the ratio of equality. Therefore the lowest superficies

sustains the weight of the cylinder above determined. Q..E.D. And by a

like reasoning the Proposition will be evident, where the gravity of the

fluid decreases in any assigned ratio of the distance from the centre, and

also where the fluid is more rare above and denser below. Q.E.D.

COR. 1. Therefore the bottom is not pressed by the whole weight of the

incumbent fluid, but only sustains that part of it which is described in the

Proposition ;
the rest of the weight being sustained archwise by the spheri

cal figure of the fluid.

COR. 2. The quantity of the pressure is the same always at equal dis

tances from the centre, whether the superficies pressed be parallel to the

horizon, or perpendicular, or oblique ;
or whether the fluid, continued up

wards from the compressed superficies, rises perpendicularly in a rectilinear

direction, or creeps obliquely through crooked cavities and canals, whether

those passages be regular or irregular, wide or narrow. That the pressure

is not altered by any of these circumstances, may be collected by applying
the demonstration of this Theorem to the several cases of fluids.

COR. 3. From the same demonstration it may also be collected (by Prop.

XIX), that the parts of a heavy fluid acquire no motion among themselvei

by the pressure of the incumbent veight, except that motion which arises

from condensation.
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Con. 4. And therefore if another body of the same specific gravity, in

capable of condensation, be immersed in this fluid, it will acquire no mo
tion by the pressure of the incumbent weight: it will neither descend nor .

ascend, nor change its figure. If it be spherical, it will remain so, notwith

standing the pressure ;
if it be square, it will remain square; and that,

whether it be soft or fluid : whether it swims freely in the fluid, or lies at

the bottom. For any internal part of a fluid is in the same state with the

submersed body ;
and the case of all submersed bodies that have the same

magnitude, figure, and specific gravity, is alike. If a submersed body, re

taining its weight, should dissolve and put on the form of a fluid, this

body, if before it would have ascended, descended, or from any pressure as

sume a new figure, would now likewise ascend, descend, or put on a new

figure ;
and that, because its gravity and the other causes of its motion

remain. But (by Case 5, Prop. XIX; it would now be at rest, and retain

its figure. Therefore also in the former case.

COR. 5. Therefore a body that is specifically heavier than a fluid con

tiguous to it will sink
;
and that which is specifically lighter will ascend,

and attain so much motion and change of figure as that excess or defect of

gravity is able to produce. For that excess or defect is the same thing as an

impulse, by which a body, otherwise in equilibria with the parts of the

fluid, is acted on: and may be compared with the excess or defect of a

weight in one of the scales of a balance.

COR. 6. Therefore bodies placed in fluids have a twofold gravity the

one true and absolute, the other apparent, vulgar, and comparative. Ab
solute gravity is the whole force with which the body tends downwards

;

relative and vulgar gravity is the excess of gravity with which the body
tends downwards more than the ambient fluid. By the first kind of grav

ity the parts of all fluids and bodies gravitate in their proper places ;
and

therefore their weights taken together compose the weight of the whole.

For the whole taken together is heavy, as may be experienced in vessels

full of liquor ;
and the weight of the whole is equal to the weights of all

the parts, and is therefore composed of them. By the other kind of grav

ity bodies do not gravitate in their places ;
that is, compared with one

another, they do not preponderate, but, hindering one another s endeavours

to descend, remain in their proper places, as if they were not heavy. Those

things which are in the air, and do not preponderate, are commonly looked

on as not heavy. Those which do preponderate are commonly reckoned

heavy, in as much as they are not sustained by the weight of the air. The

Common weights are nothing else but the excess of the true weights above

the weight of the air. Hence also, vulgarly, those things are called light

which are less heavy, and, by yielding to the preponderating air, mount

upwards. But these are only comparatively lig s &mA not truly so, because

hey descend in racuo. Thus, in water, bodies *&amp;gt;icfc. by their greater or
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less gravity, descend or ascend, are comparatively and apparently heavy or

light ;
and their comparative and apparent gravity or levity is the excess

.or defect by which their true gravity either exceeds the gravity of the

water or is exceeded by it. But those things which neither by preponder

ating descend, nor, by yielding to the preponderating fluid, ascend, although

by their true weight they do increase the weight of the whole, yet com

paratively, and in the sense of the vulgar, they do not gravitate in the wa

ter. For these cases are alike demonstrated.

COR. 7. These things which have been demonstrated concerning gravity

take place in any other centripetal forces.

COR. 8. Therefore if the medium in which any body moves be acted on

either by its own gravity, or by any other centripetal force, and the body
be urged more powerfully by the same force

;
the difference of the forces is

that very motive force, which, in the foregoing Propositions, I have con

sidered as a centripetal force. But if the body be more lightly urged by
that force, the difference of the forces becomes a centrifugal force, and is tc

be considered as such.

COR. 9. But since fluids by pressing the included bodies do not

change their external figures, it appears also (by Cor. Prop. XIX) that they

will not change the situation of their internal parts in relation to onf

another
;
and therefore if animals were immersed therein, and that all sen

sation did arise from the motion of their parts, the fluid will neither hurt

the immersed bodies, nor excite any sensation, unless so far as those bodies

may be condensed by the compression. And the case is the same of any

system of bodies encompassed with a compressing fluid. All the parts of

the system will be agitated with the same motions as if they were placed

in a vacuum, and would only retain their comparative gravity ;
unless so

far as the fluid may somewhat resist their motions, or be requisite to con-

glutinate them by compression.

PROPOSITION XXI. THEOREM XVI.

&amp;lt;et the density of any fluid be proportional to the compression, and its

parts be attracted downwards by a centripetal force reciprocally pro

portional to the distances from the centre : I say, that, if those dis

tances be taken continually proportional, the densities of thefluid at

the same distances will be also continually proportional.

Let ATV denote the spherical bottom of the fluid, S the centre, S A, SB.

SC, SD, SE, SF, &c., distances continually proportional. Erect the per

pendiculars AH, BI, CK, DL, EM, PN, &c., which shall be as the densi

ties of the medium in the places A, B, C, D, E, F : and the specific grav
ATT RT f^K&quot;

ities in those places will be aa -r-, ,

-
&c., or, which is all one, a&-
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AH BI CK
ATT BC CD Suppose, first, these gravities to be uniformly continued

from A to B, from B to C, from C to D, (fee., the decrements in the points

B, C, D, (fee., being taken by steps. Arid these gravi
ties drawn into the altitudes AB, BC, CD, (fee., will

give the pressures AH, BI, CK, (fee., by which the bot

tom ATV is acted on (by Theor. XV). Therefore the

particle A sustains all the pressures AH, BI, CK, DJL,

(fee., proceeding in infinitum ; and the particle B sus

tains the pressures of all but the first AH
;
and the par

ticle C all but the two first AH, BI
;
and so on : and

therefore the density AH of the first particle A is to

the density BI of the second particle B as the sum of

all AH -f- BI + CK + DL, in infinitum, to the sum of

all BI -f- CK -f DL, (fee. And BI the density of the second particle B is

to CK the density of the third C, as the sum of all BI -f CK + DL, (fee.,

to the sum of all CK -f- DL, (fee. Therefore these sums are proportional

to their differences AH, BI, CK, (fee., and therefore continually propor
tional (by Lem. 1 of this Book) ;

and therefore the differences AH, BI,

CK, (fee., proportional to the sums, are also continually proportional.

Wherefore since the densities in the places A, B, C, (fee., are as AH, BI,

CK, (fee., they will also be continually proportional. Proceed intermis-

sively, and, ex ccquo, at the distances SA, SC, SE, continially proportional,

the densities AH, CK, EM will be continually proportional. And by the

same reasoning, at any distances SA, SD, SG, continually proportional,
the densities AH. DL, GO, will be continually proportional. Let now the

points A, B, C. D, E, (fee., coincide, so that the progression of the specif .c

gravities from the bottom A to the top of the fluid may be made continual
;

and at any distances SA, SD, SG, continually proportional, the densities

AH, DL, GO, being all along continually proportional, will still remain

continually proportional. Q.E.D.

COR. Hence if the density of the fluid in two places,

as A and E, be given, its density in any other place Q,

may be collected. With the centre S, and the rectan

gular asymptotes SQ, SX, describe an hyperbola cut

ting the perpendiculars AH, EM, QT in
, e, and q}

as also the perpendiculars HX, MY, TZ, let fall upon
the asypmtote SX, in //, m, and t. Make the area

Y////Z to the given area YmAX as the given area

EeqQ to the given area EeaA
;
and the line Z produced will cut off the

line Q,T. proportional to the density. For if the lines SA, SE, SQ are

continually proportional, the areas ReqQ., fyaA will be equal, and thence

X
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the areas YwYZ. X/zwY, proportional to them, will be also equal ;
and

the lines SX, SY, SZ, that is, AH, EM, Q,T continually proportional, as

they ought to be. And if the lines SA, SE, SQ,5
obtain any other order

in the series of continued proportionals, the lines AH, EM, Q,T, because

of the proportional hyperbolic areas, will obtain the same order in another

series of quantities continually proportional.

PROPOSITION XXII THEOREM XVII.

Let the density of any fluid be proportional to the compression, and its

parts be attracted downwards by a gravitation reciprocally propor
tional to the squares of the distancesfrom the centre : I say, that if

the distances be taken in harmonic progression, the densities of the

fluid at those distances will be in a geometrical progression.
Let S denote the centre, and SA,

SB, SC, SD, SE, the distances in

geometrical progression. Erect the

perpendiculars AH, BI, CK, (fee.,

which shall be as the densities of c
the fluid in the places A, B, C, D,

E, (fee., and the specific gravities

thereof in those places will be as

AH BI
,^-, (fee. Suppose these

SA 2 SB 2 SC 2

gravities to be uniformly continued, the first from A to B, the second from

B to C, the third from C to I), &c. And these drawn into the altitudes

AB, BC, CO, DE, (fec.
; or, which is the same thing/into the distances SA,

ATT r&amp;gt;T OT7&quot;

SB, SC, (fee., proportional to those altitudes, will give -~-r-, ^=5, -~~, (fee..

the exponents of the pressures. Therefore since the densities are as th^

sums of those pressures, the differences AH BI, BI CK, (fee., of tb,

densities will be as the differences of those sums ~-r~, ^, ~~, (fee. With

the centre S, and the asymptotes SA, S#, describe any hyperbola, cutting

the perpendiculars AH, BI, CK, (fee., in a, 6, c, (fee., and the perpendicu
lars H/, I//,, K?#, let fall upon the asymptote Sv, in h, i, k ; and the dif

ferences of the densities tu, uw, (fee., will be as A , ^^, (fee. And the
SA ; SB ;

rectangles tu X th, uw X uij (fee., or tp, uq, (fee., as

that is, as Aa, Bb, (fee.

AH X th BI X ui
,

(fee.
SA SB

For, by the nature of the hyperbola, SA is to AH

or St as th to Ar, and therefore pri is equal to Aa . And, by a like
SA
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reasoning, ^n~~ *s e(
l
ua^ to ^, &c- But Aa

&amp;gt;

B
^&amp;gt; ^c, &cv are continu

ally proportional, and therefore proportional to their differences Aa B&,
B6 Cc

; &c., therefore the rectangles fy?, nq, &c., are proportional to those

differences
;
as also the sums of the rectangles tp + uq, or tp + uq -f w

to the sums of the differences Aa Cc or Aa Da7

. Suppose several of

these terms, and the sum of all the differences, as Aa F/, will be pro

portional t? the sum of all the rectangles, as zthn. Increase the number
of terms, and diminish the distances of the points A, B, C, (fee., in

iiijini-

tum, and those rectangles will become equal to the hyperbolic area zthn.

and therefore the difference Aa F/ 19 proportional to this area. Take
nowT

any distances, as SA, SD, SF, in harmonic progression, and the dif

ferences Aa Da7

,
Da1

F/ will be equal ;
and therefore the areas thlx,

xlnz, proportional to those differences will be equal among themselves, and

the densities St, S:r, Sz, that is, AH, DL, FN, continually proportional.

Q.E.D.

COR. Hence if any two densities of the fluid, as AH and BI, be given,

the area thiu, answering to their difference tu, will be given; and thence

the density FN will be found at any height SF, by taking the area thnz to

that given area thiu as the difference Aa F/ to the difference Aa Eh.

SCHOLIUM.

By a like reasoning it may be proved, that if the gravity of the particles

of a fluid be diminished in a triplicate ratio of the distances from the centre
;

and the reciprocals of the squares of the distances SA, SB, SC, &c., (namely,

SA 3 SA 3 SA 3
.

opt ^e ta^en m an arithmetical progression, the densities AH.

BI, CK, &c., will be in a geometrical progression. And if the gravity be

diminished in a quadruplicate ratio of the distances, and the reciprocals of

the cubes of the distances (as ^-r^, SRS sps
^c ^ ^e ta^cn ^n ai&amp;gt;itnmeti-

cai progression, the densities AH, BI, CK, &c., will be in geometrical pro

gression. And so in irtfinitum. Again ;
if the gravity of the particles of

the fluid be the same at all distances, and the distances be in arithmetical

progression, the densities will be in a geometrical progression as Dr. Hal-

ley has found. If the gravity be as the distance, and the squares of the

distances be in arithmetical progression, the densities will be in geometri

cal progression. And so in infinitum. These things will be so, when the

density of the fluid condensed by compression is as the force of compres

sion
; or, which is the same thing, when the space possessed by the fluid is

reciprocally as this force. Other laws of condensation may be supposed,

as that the cube of the compressing force may be as the biquadrate of the



SEC. V.] OF NATURAL PHILOSOPHY. 301

de isity ;
or the triplicate ratio of tlie force the same with the quadruplicate

ratio of the density : in which case, if the gravity he reciprocally as the

square of the distance from the centre, the density will be reciprocally at

the cube of the distance. Suppose that the cube of the compressing force

be as the quadrato-cube of the density ;
and if the gravity be reciprocally

as the square of the distance, the density will be reciprocally in a sesqui-

plicate ratio of the distance. Suppose the compressing force to be in a du

plicate ratio of the density, and the gravity reciprocally in a duplicate ra

tio of the distance, and the density will be reciprocally as the distance.

To run over all the cases that might bo offered would be tedious. But as

to our own air, this is certain from experiment, that its density is either

accurately, or very nearly at least, as the compressing force
;
and therefore

the density of the air in the atmosphere of the earth is as the weight of

the whole incumbent air, that is, as the height of the mercury in the ba

rometer.

PROPOSITION XXIII. THEOREM XVIII.

If a fluid be composed of particles mutually flying each other, and the

drnsity be as the compression, the centrifugal forces of the particles

will be reciprocally proportional to tlie distances of their centres. And,
vice versa, particlesflying each otli,er, with forces that are reciprocally

proportional to the distances of their centres^ compose an elastic fluid,

whose density is as the compression.
Let the fluid be supposed to be included in a cubic

space ACE, and then to be reduced by compression into

a lesser cubic space ace ; and the distances of the par- F
tides retaining a like situation with respect to each

other in both the spaces, will be as the sides AB, ab of

the cubes
;
and the densities of the mediums will be re

ciprocally as the containing spaces AB 3
,
ab 3

. In the

plane side of the greater cube ABCD take the square
DP equal to the plane side db of the lesser cube: and,

by the supposition, the pressure with which the square
DP urges the inclosed fluid will be to the pressure with

which that square db urges the inclosed fluid as the densities of the me
diums are to each other, that is, asa/&amp;gt;

3 to AB 3
. But the pressure with

which the square DB urges the included fluid is to the pressure with which
the square DP urges the same fluid as the square DB to the square DP,
that is, as AB 2

to ab z
. Therefore, ex cequo, the pressure with which the

square DB urges the fluid is to the pressure with which the square db

urges the fluid as ab to AB. Let the planes FGH,/V?, U drawn through
the middles of the two cubes, and divide the fluid into tw^/ parts, These

parts will press each other mutually with the same forces with which they

A
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are themselves pressed by the planes AC, ac, that is, in the proportion of

ab to AB : arid therefore the centrifugal forces by which these pressures
are sustained are in the same ratio. The number of the particles being
equal, and the situation alike, in both cubes, the forces which all the par
ticles exert, according to the planes FGH,/o7/,, upon all, are as the forces

which each exerts on each. Therefore the forces which each exerts on

each, according to the plane FGH in the greater cube, are to the forces

which each exerts on each, according to the planefgh in the lesser cube,
us ab to AB,*that is, reciprocally as the distances of the particles from each

other. Q.E.D.

And, vice versa, if the forces of the single particles are reciprocally as

the distances, that is, reciprocally as the sides of the cubes AB, ab ; the

sums of the forces will be in the same ratio, and the pressures of the sides

i)B, db as the sums of the forces
;
and the pressure of the square DP to

the pressure of the side DB as ab 2 to AB 2
. And, ex cequo, the pressure of

the square DP to the pressure of the side db as ab* to AB 3
;
that is, the

force of compression in the one to the force of compression in the other as

the density in the former to the density in the latter. Q.E.D.

SCHOLIUM.

By a like reasoning, if the centrifugal forces of the particles are recip

rocally in the duplicate ratio of the distances between the centres, the cubes

of the compressing forces will be as the biquadrates of the densities. If

the centrifugal forces be reciprocally in the triplicate or quadruplicate ratio

of the distances, the cubes of the compressing forces will be as the quadrato-

cubes, or cubo-cubes of the densities. And universally, if D be put for the

distance, and E for the density of the compressed fluid, and the centrifugal

forces be reciprocally as any power D n of the distance, whose index is the

number ??, the compressing forces will be as the cube roots of the power
En + 2

. whose index is the number n + 2
;
and the contrary. All these

things are to be understood of particles whose centrifugal forces terminate

in those particles that are next them, or are diffused not much further.

We have an example of this in magnetical bodies. Their attractive vir

tue is terminated nearly in bodies of their own kind that are next them.

The virtue of the magnet is contracted by the interposition of an iron

plate, and is almost terminated at it : for bodies further off are not attracted

by the magnet so much as by the iron plate. If in this manner particles repel

others of their own kind that lie next them, but do not exert their virtue

on the more remote, particles of this kind will compose such fluids as are

treated of in this Proposition, If the virtue of any particle diffuse itself

every way in inftnitum, there will be required a greater force to produce

an equal condensation of a greater quantity of the flui 1. But whether



SEC. VI.] OF NATURAL PHILOSOPHY. 303

elastic fluids do really consist of particles so repelling each other, is a phy
sical question. We have here demonstrated mathematically the property

of fluids consisting of particles of this kind, that hence philosophers may
take occasion to discuss that question.

SECTION VI.

Of the motion and resistance offunependulous bodies.

PROPOSITION XXIV. THEOREM XIX.

The quantities of matter i/ifunependulous bodies, whose centres of oscil

lation are equally distant from, the centre of suspension, are in a, ratio

compounded of the ratio of the weights and the duplicate ratio of the

times of the oscillations in vacuo.

For the velocity which a given force can generate in a given matter in

a given time is as the force and the time directly, and the matter inversely.

The greater the force or the time is, or the less the matter, the greater ve

locity will he generated. This is manifest from the second Law of Mo
tion. Now if pendulums are of the same length, the motive forces in places

equally distant from the perpendicular are as the weights : and therefore

if two bodies by oscillating describe equal arcs, and those arcs are divided

into equal parts ;
since the times in which the bodies describe each of the

correspondent parts of the arcs are as the times of the whole oscillations,

the velocities in the correspondent parts of the oscillations will be to each

other as the motive forces and the whole times of the oscillations directly,

and the quantities of matter reciprocally : and therefore the quantities of

matter are as the forces and the times of the oscillations directly and the

velocities reciprocally. But the velocities reciprocally are as the times,

and therefore the times directly and the velocities reciprocally are as the

squares of the times; and therefore the quantities of matter are as the mo
tive forces and the squares of the times, that is, as the weights and the

squares of the times. Q.E.D.

COR. 1. Therefore if the times are equal, the quantities of matter in

each of the bodies are as the weights.

COR. 2. If the weights are equal, the quantities of matter will be as the

pquarcs of the times.

COR. 3. If the quantities of matter are equal, the weights will be recip

rocally as the squares of the times.

COR. 4. Whence since the squares of the times, cceteris paribus, are as

the length* of the pendulums, therefore if both the times and quantities of

matter are equal, the weights will be as the lengths of the pendulums.
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COR. 5. And universally, the quantity of matter in the pendulous body
is as the weight and the square of the time directly, and the length of the

pendulum inversely.

COR. 6. But in a non-resisting medium, the quantity of matter in the

pendulous body is as the comparative weight and the square of the time

directly, and the length of the pendulum inversely. For the comparative

weight is the motive force of the body in any heavy medium, as was shewn

above
;
and therefore does the same thing in such a non-resisting medium

as the absolute weight does in a vacuum.

COR. 7. And hence appears a method both of comparing bodies one

among another, as to the quantity of matter in each
;
and of comparing

the weights of the same body in different places, to know the variation of

its gravity. And by experiments made with the greatest accuracy, I

have always found the quantity of matter in bodies to be proportional to

their weight.

PROPOSITION XXV. THEOREM XX.

Funependulous bodies that are, in, any medium, resisted in the ratio oj

the moments of time, andfunepetidulons bodies that move in a non-

resisting medium of the same specific gravity, perform their oscilla

tions in. a cycloid in the same time, and describe proportional parts oj

arcs together.

Let AB be an arc of a cycloid, which

a body D, by vibrating in a non-re

sisting medium, shall describe in any
time. Bisect that arc in C, so that C

may be the lowest point thereof
;
and

the accelerative force with which the

body is urged in any place D, or d or

E, will be as the length of the arc CD,

pressed by that same arc
;
and since the resistance is as the moment of the

time, and therefore given, let it ba expressed by the given part CO of the

cycloidal arc, and take the arc Od in the same ratio to the arc CD that

the arc OB has to the arc CB : and the force with which the body in d is

urged in a resisting medium, being the excess of the force Cd above the

resistance CO, will be expressed by the arc Od, and will therefore be to

the force with which the body D is urged in a non-resisting medium in the

place D, as the arc Od to the arc CD
;
and therefore also in the place B,

as the arc OB to the arc CB. Therefore if two bodies D, d go from the place

B, and are urged by these forces
;
since the forces at the beginning are as

the arc CB and OB, the first velocities and arcs first described will be in

the same ratio. Let those arcs be BD and Ed, and the remaining arcf
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CD, Odj will be in the same ratio. Therefore the forces, being propor

tional to those arcs CD, Od, will remain in the same ratio as at the be

ginning, and therefore the bodies will continue describing together arcs in

the same ratio. Therefore the forces and velocities and the remaining arcs

CD. Od, will be always as the whole arcs CB, OB, and therefore those re

maining arcs wLl be described together. Therefore the two bodies D and

d will arrive together at the places C and O
;
that whicli moves in the

non-resisting medium, at the place C, and the other, in the resisting me

dium, at the place O. Now since the velocities in C and O are as the arcs

CB, OB, the arcs which the bodies describe when they go farther will be

in the same ratio. Let those arcs be CE and Oe. The force with which

the body D in a non-resisting medium is retarded in E is as CE, and the

force with which the body d in the resisting medium is retarded in e, is as

the sum of the force Ce and the resistance CO, that is, as Oe ; and there

fore the forces with which the bodies are retarded are as the arcs CB, OB,

proportional to the arcs CE, Oe ; and therefore the velocities, retarded in

that given ratio, remain in the same given ratio. Therefore the velocities

and the arcs described with those velocities are always to each other in

that given ratio of the arcs CB and OB
;
and therefore if the entire arcs

AB, aB are taken in the same ratio, the bodies D andc/ will describe those

aics together, and in the places A and a will lose all their motion together.

Therefore the whole oscillations are isochronal, or are performed in equal

times
;
and any parts of the arcs, as BD, Ed, or BE, Be, that are described

together, are proportional to the whole arcs BA, B. Q,.E.D.

COR. Therefore the swiftest motion in a resisting medium does not fall

upon the lowest point C, but is found in that point O, in which the whole

arc described Ba is bisected. And the body, proceeding from thence to a,

is retarded at the same rate with which it was accelerated before in its de

scent from B to O.

PROPOSITION XXVI. THEOREM XXI.

Funependulous bodies, that are resisted in the ratio of the velocity, have

their oscillations in a cycloid isochronal.

For if two bodies, equally distant from their centres of suspension, de

scribe, in oscillating, unequal arcs, and the velocities in the correspondent

parts of the arcs be to each other as the whole arcs
;
the resistances, pro

portional to the velocities, will be also to each other as the same arcs.

Therefore if these resistances be subducted from or added to the motive

forces arising from gravity which are as the same arcs, the differences or

sums will be to each other in the same ratio of the arcs
;
and since the in

crements and decrements of the velocities are as these differences or sums,

the velocities will be always as the whole arcs; therefore if the velocities

are in any one case as the whole arcs, they will remain always in the same

20
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ratio. But at the beginning of the motion, when the bodies begin to de

scend and describe those arcs, the forces, which at that time are proportional
to the arcs, will generate velocities proportional to the arcs. Therefore

the velocities will be always as the whole arcs to be described, and there

fore those arcs will be described in the same time. Q,.E.D.

PROPOSITION XXVII. THEOREM XXII.

If fnnependulous bodies are resisted in the duplicate ratio of their

velocities, the differences between the times of the oscillations in a re

sisting medium, and the times of the oscillations in a non-resisting
medium of the same specific gravity, will be proportional to the arcs

described in oscillating nearly.

For let equal pendulums in a re

sisting medium describe the unequal
arcs A, B ;

and the resistance of the

body in the arc A will be to the resist

ance of the body in the correspondent

part of the arc B in the duplicate ra

tio of the velocities, that is, as, AA to

BB nearly. If the resistance in the

arc B were to the resistance in the arc

A as AB to AA, the times in the arcs A and B would be equal (by the last

Prop.) Therefore the resistance AA in the arc A, or AB in the arc B,

causes the excess of the time in the arc A above the time in a non-resisting

medium
;
and the resistance BB causes the excess of the time in the arc B

above the time in a non-resisting medium. But those excesses are as the

efficient forces AB and BB nearly, that is, as the arcs A and B. Q.E.D.

COR, 1. Hence from the times of the oscillations in unequal arcs in a

resisting medium, may be knowrn the times of the oscillations in a non- re

sisting medium of the same specific gravity. For the difference of the

times will be to the excess of the time in the lesser arc above the time in a

non-resisting medium as the difference of the arcs to the lesser arc.

COR. 2. The shorter oscillations are more isochronal, and very short

ones are performed nearly in the same times as in a non-resisting medium.

But the times of those which are performed in greater arcs are a little

greater, because the resistance in the descent of the body, by which the

time is prolonged, is greater, in proportion to the length described in the

descent than the resistance in the subsequent ascent, by which the time is

contracted. But the time of the oscillations, both short arid long, seems to

be prolonged in some measure by the motion of the medium. For retard

ed bodies are resisted somewhat less in proportion to the velocity, and ac

celerated bodies somewhat more than those that proceed uniformly forwards
;
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because the medium, by the motion it has received from the bodies, going
forwards the same way with them, is more agitated in the former case, and

less in the latter
;
and so conspires more or less with the bodies moved.

Therefore it resists the pendulums in their descent more, and in their as

cent less, than in proportion to the velocity; and these two causes concur

ring prolong the time.

PROPOSITION XXVIII. THEOREM XXIII.

If afunependvlous body, oscillating in a cycloid, be resisted in the rati &amp;gt;

of the moments of the time, its resistance will be to the force of grav

ity as the excess of the arc described in the whole descent above the

arc described in the subsequent ascent to twice the length of the pen
dulum.
Let BC represent the arc described

in the descent, Ca the arc described in

the ascent, and Aa the difference of

the arcs : and things remaining as they

were constructed and demonstrated in

Prop. XXV, the force with which the

oscillating body is urged in any place
D will be to the force of resistance as

the arc CD to the arc CO, which is

half of that difference Aa. Therefore the force with which the oscillating

body is urged at the beginning or the highest point of the cycloid, that is,

the force of gravity, will be to the resistance as the arc of the cycloid, be

tween that highest point and lowest point C, is to the arc CO
;
that is

(doubling those arcs), as the whole cycloidal arc, or twice the length of the

pendulum, to the arc Aa. Q.E.D.

PROPOSITION XXIX. PROBLEM VI.

Supposing that a body oscillating in a cycloid is resisted in a duplicate
ratio of the velocity: tofind the resistance in each place.

Let Ba be an arc described in one entire oscillation, C the lowest point

C O

K

O ,S P rR Q M
of the cycloid, and CZ half the whole cycloidal arc, equal to the length of
the pendulum ;

and let it be required to find the resistance of the body is
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any place D. Cut the indefinite right line OQ in the points O, S, P, Q,,

so that (erecting the perpendiculars OK, ST, PI, QE, and with the centre

O, and the aysmptotcs OK, OQ, describing the hyperbola TIGE cutting
the perpendiculars ST, PI, QE in T. I, and E, and through the point I

drawing KF. parallel to the asymptote OQ, meeting the asymptote OK i i

K, and the perpendiculars ST and QE in L and F) the hyperbolic area

PIEQ may be to the hyperbolic area PITS as the arc BC, described in the

descent of the body, to the arc Ca described in the ascent
;
and that the

area IEF may be to the area ILT as OQ to OS. Then with the perpen
dicular MN cut off the hyperbolic area PINM, and let that area be to the

hyperbolic area PIEQ as the arc CZ to the arc BC described in the de

scent. And if the perpendicular RG cut off the hyperbolic area PIGR,
which shall be to the area PIEQ as any arc CD to the arc BC described

in the whole descent, the resistance in any place D will be to the force of

OR
gravity as the area IEF IGH to the area PINM.

For since the forces arising from gravity with which the body is

urged in the places Z, B, D, a, are as the arcs CZ. CB, CD, Ca and those

arcs are as the areas PINM, PIEQ, PIGR, PITS; let those areas be the

exponents both of the arcs and of the forces respectively. Let DC? be a

very small space described by the body in its descent : and let it be expressed
r

&amp;gt;y

the very small area RGor comprehended between the parallels RG, rg ;

and produce r&amp;lt;?
to //, so that GYlhg- and RGr may be the contemporane

ous decrements of the areas IGH, PIGR. And the increment Gllhg

IEF, or Rr X HG -^ IEF, of the area~ IEF IGH will be
,OQ OQ

IFF
to the decrement RGr, or Rr X RG, of the area PIGR, as HG - -

OR
to RG

;
and therefore as OR X HG IEF to OR X GR or OP X

PL that is (because of the equal quantities OR X HG, OR X HR OR
X GR, ORHK OPIK, PIHR and PIGR + IGH), as PIGR + IGH
OR OR

IEF to OPIK. Therefore if the area - IEF IGH be called
OQ
Y, and RGgr the decrement of the area PIGR be given, the increment of

the area Y will be as PIGR Y.

Then if V represent the force arising from the gravity, proportional to

the arc CD to be described, by which the body is acted upon in D, and R
be put for the resistance, V R will be the whole force with which the

body is urged in D. Therefore the increment of the velocity is as V R
and the particle of time in which it is generated conjunctly. But the ve

locity itself is as the contempo] aueous increment of the space described di-
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rectly and the same particle of time inversely. Therefore, since the re

sistance is, by the supposition, as the square of the velocity, the increment

of the resistance will (by Lem. II) be as the velocity and the increment of

the velocity conjunctly, that is, as the moment of the space and V R
conjunctly ; and, therefore, if the moment of the space be given, as V
11

;
that is, if for the force V we put its exponent PIGR, and the resist

ance R be expressed by any other area Z
;
as PIGR Z.

v

Therefore the area PIGR uniformly decreasing by the subduction of

given moments, the area Y increases in proportion of PIGR Y, and

the area Z in proportion of PIGR Z. And therefore if the areas

Y and Z begin together, and at the beginning are equal, these, by the

addition of equal moments, will continue to be equal and in like man
ner decreasing by equal moments, \vill vanish together. And, vice versa,

if they together begin and vanish, they will have equal moments and te

always equal ;
and that, because if the resistance Z be augmented, the ve

locity together with the arc C, described in the ascent of the body, will be

diminished
;
and the point in which all the motion together with the re

sistance ceases coming nearer to the point C, the resistance vanishes sooner

than the area Y. And the contrary will happen when the resistance is

diminished.

Now the area Z begins and ends where the resistance is nothing, that is,

at the beginning of the motion where the arc CD is equal to the arc CB,

K /IK

O S P /~R Q M
and the right line RG falls upon the right line Q.E ; and at the end of

the motion where the arc CD is equal to the arc Ca, and RG falls upon

the right line ST. And the area* Y or IEF IGH begins and ends

also where the resistance is nothing, and therefore where IEF and

IGH are equal ;
that is (by the construction), where the right line RG

falls successively upon the right lines Q,E and ST. Therefore those areas

begin and vanish together, and are therefore always equal. Therefore the area

OR
IEF IGH is equal to the area Z, by which the resistance is ex

pressed, and therefore is to the area PINM, by which the gravity is ex

pressed, as the resistance to the gravity. Q.E.D.
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COR. 1 . Therefore the resistance in the lowest place C is to the force

OP
of gravity as the area ^ ~ IEF to the area PINM.

COR. 2. But it becomes greatest where the area PIHR is to the area

IEF as OR to OQ. For in that case its moment (that is, PIGR Y)
becomes nothing.

COR. 3. Hence also may be known the velocity in each place, as being

in the subduplicate ratio of the resistance, and at the beginning of the mo
tion equal to the velocity of the body oscillating in the same cycloid with

out any resistance.

However, by reason of the difficulty of the calculation by which the re

sistance and the velocity are found by this Proposition, we have thought
fit to subjoin the Proposition following.

PROPOSITION XXX. THEOREM XXIV.

If a right line aB be equal to the arc of a cycloid which an oscillating

body describes, and at each of its points D the perpendiculars DK be

erected, which shall be to the length of the pendulum as the resistance

of the body in the corresponding points of the arc to the force of grav

ity ; I say, that the difference between the arc described in the whole

descent and the arc described in the whole subsequent ascent drawn
into half the sum of the same arcs will be equal to the area BKa
which all those perpendiculars take up.

Let the arc of the cycloid, de

scribed in one entire oscillation, be

expressed by the right line aB,

equal to it, and the arc which

would have been described in vaciw

by the length AB. Bisect AB in

C, and the point C will represent

the lowest point of the cycloid, and

CD Mill be as the force arising from gravity,
with which the body in D i,s

urged in the direction of the tangent of the cycloid, and will have the same

ratio to the length of the pendulum as the force in D has to the force of

gravity. Let that force, therefore, be expressed by that length CD, and

the force of gravity by the length of the pendulum ;
and if in DE you

take DK in the same ratio to the length of the pendulum as the resistance

has to the gravity, DK will be the exponent of the resistance. From the

centre C with the interval CA or CB describe a semi-circle BEeA. Let

the body describe, in the least time, the space Dd ; and, erecting the per

pendiculars DE, de, meeting the circumference in E and e, they will be as

the velocities which the body descending in vacuo from the point B would

acquire in the places D and d. This appears by Prop, LII, Book L Let
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therefore, these velocities be expressed by those perpendiculars DE, de ;

arid let DF be the velocity which it acquires in D by falling from B in

the resisting medium. And if from the centre C with the interval OF we

describe the circle F/M meeting the right lines de and AB in / and M,
then M will be the place to which it would thenceforward, without farther

resistance, ascend, and
(//&quot;the velocity it would acquire in d. Whence,

also, if FO- represent the moment of the velocity which the body D, in de

scribing the least space DC/, loses by the resistance of the medium
;
and

CN be taken equal to Cg ;
then will N be the place to which the body, if

it met no farther resistance, would thenceforward ascend, and MN will be

the decrement of the ascent arising from the loss of that velocity. Draw

F/n perpendicular to dft
and the decrement Fg of the velocity DF gener

ated by the resistance DK will be to the incrementfm of the same velo

city, generated by the force CD, as the generating force DK to the gener

ating force CD. But because of the similar triangles F////, Fhg, FDC,
fm is to Fm or Dd as CD to DF

; and, ex ceqno, Fg to Dd as DK to

DF. Also Fh is to Fg as DF to CF
; and, ex ax/uo perturbate, Fh or

MN to Do1

as DK to CF or CM
;
and therefore the sum of all the MN X

CM will be equal to the sum of all the Dd X DK. At the moveable

point M suppose always a rectangular ordinate erected equal to the inde

terminate CM, which by a continual motion is drawn into the whole

length Aa ; and the trapezium described by that motion, or its equal, the

rectangle Aa X |aB, will be equal to the sum of all the MN X CM, and

therefore to the sum of all the Dd X DK, that is, to the area BKVTa
O.E.D.

COR. Hence from the law of resistance, and the difference Aa of the

arcs Ca
} CB, may be collected the proportion of the resistance to the grav

ity nearly.

For if the resistance DK be uniform, the figure BKTa will be a rec

tangle under Ba and DK; and thence the rectangle under ^Ba and Aa
will be equal to the rectangle under Ba and DK, and DK will be equal to

jAa. Wherefore since DK is the exponent of the resistance, and the

length of the pendulum the exponent of the gravity, the resistance will be

to the gravity as \Aa to the length of the pendulum ; altogether as in

Prop. XXVIII is demonstrated.

If the resistance be as the velocity, the figure BKTa will be nearly an

ellipsis. For if a body, in a non-resisting medium, by one entire oscilla

tion, should describe the length BA, the velocity in any place D would be

as the ordinate DE of the circle described on the diameter AB. There

fore since Ea in the resisting medium, and BA in the non-resisting one,

are described nearly in the same times
;
and therefore the velocities in each

of the points of Ba are to the velocities in the correspondent points of the

length BA. nearly as Ba is to BA , the velocity in the point D in the re-
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sisting medium will be as the ordinate of the circle or ellipsis described

upon the diameter Ba ; and therefore the figure BKVTa will be nearly ac

ellipsis. Since the resistance is supposed proportional to the velocity, le\

OV be the exponent of the resistance in the middle point O ;
and an ellip

sis BRVSa described with the centre O, and the semi-axes OB, OV, will

be nearly equal to the figure BKVTa, and to its equal the rectangle Act

X BO. Therefore Aa X BO is to OV X BO as the area of this ellipsis

to OV X BO; that is, Aa is to OV as the area of the semi-circle to the

square of the radius, or as 1 1 to 7 nearly ; and, therefore, T
7
TAa is to the

length of the pendulum as the resistance of the oscillating body in O to

its gravity.

Now if the resistance DK be in the duplicate ratio of the velocity, the

figure BKVTa will be almost a parabola having V for its vertex arid OV
for its axis, and therefore will be nearly equal to the rectangle under fBa
and OV. Therefore the rectangle under |Ba and Aa is equal to the rec

tangle fBa X OV, and therefore OV is equal to fAa ;
and therefore the

resistance in O made to the oscillating body is to its gravity as fAa to the

length of the pendulum.
And I take these conclusions to be accurate enough for practical uses.

For since an ellipsis or parabola BRVSa falls in with the figure BKVTa
in the middle point V, that figure, if greater towards the part BRV or

VSa than the other, is less towards the contrary part, and is therefore

nearly equal to it.

PROPOSITION XXXI. THEOREM XXV.

If the resistance made to an oscillating body in each of the proportional

parts of the arcs described be augmented or diminished in, a given ra

tio, the difference between the arc described in the descent and the arc

described in the subsequent ascent ivill be augmented or diminished in

the same ratio.

For that difference arises from

the retardation of the pendulum

by the resistance of the medium,
and therefore is as the whole re

tardation and the retarding resist

ance proportional thereto. In the

foregoing Proposition the rectan-

M isr u c o .-/ n P
gle under the right line ^aB and

the difference Aa of the arcs CB, Ca, was equal to the area BKTa, And

that area, if the length aB remains, is augmented or diminished in the ra

tio of the ordinates DK ; that is, in the ratio of the resistance and is there

fore as the length aB and the resistance conjunctly. And therefore the

rectangle under Aa and |aB is as aB and the resistance conjunctly, anc

therefore Aa is as the resistance. QJE.D.
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COR. 1. Hence if the resistance be as the velocity, the difference of

the arts in the same medium will be as the whole arc described : and the

contrary.

COR. 2. If the resistance be in the duplicate ratio of the velocity, that

difference will be in the duplicate ratio of the whole arc : and the contrary.

COR. 3. And universally, if the resistance be in the triplicate or any

other ratio of the velocity, the difference will be in the same ratio of the.

whole arc : and the contrary.

COR. 4. If the resistance be partly in the simple ratio of the velocity,

and partly in the duplicate ratio of the same, the difference will be partly

in the ratio of the whole arc, and partly in the duplicate ratio of it: and

the contrary. So that the law arid ratio of the resistance will be the

same for the velocity as the law and ratio of that difference for the length

of the arc.

COR. 5. And therefore if a pendulum describe successively unequal arcs,

and we can find the ratio of the increment or decrement of this difference

for the length of the arc described, there will be had also the ratio of the

increment or decrement of the resistance for a greater or less velocity.

GENERAL SCHOLIUM.
From these propositions we may find the resistance of mediums by pen

dulums oscillating therein. I found the resistance of the air by the fol

lowing experiments. I suspended a wooden globe or ball weighing oT^
ounces troy, its diameter CJ London inches, by a fine thread on a firm

hook, so that the distance between the hook and the centre of oscillation of

the globe was 10| feet. I marked on the thread a point 10 feet and 1 inch

distant from the centre of suspension and even with that point I placed a

ruler divided into inches, by the help whereof I observed the lengths of the

arcs described by the pendulum. Then I numbered the oscillations ia

which the globe would lose
-{- part of its motion. If the pendulum was

drawn aside from the perpendicular to the distance of 2 inches, and thence

let go, so that in its whole descent it described an arc of 2 inches, and in

the first whole oscillation, compounded of the descent and subsequent

ascent, an arc of almost 4 inches, the same in 164 oscillations lost j part

of its motion, so as in its last ascent to describe an arc of If inches. If

in the first descent it described an arc of 4 inches, it lost j part of its mo
tion in 121 oscillations, so as in its last ascent to describe an arc of 3^
inches. If in the first descent it described an arc of 8, 16, 32, or 64 inches,

it lost | part of its motion in 69, 35|, 18|-7 9| oscillations, respectively.

Therefore the difference between the arcs described in the first descent and

the last ascent was in the 1st, 2d, 3d, 4th, 5th, 6th cases, }, 1. 1, 2, 4, 8

inches respectively. Divide those differences by the number of oscillations

in each case, and in one mean oscillation, wherein an arc of 3
, 7-|, 15, 30
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60, 120 inches was described, the difference of the arcs described in the

descent and subsequent ascent will be |^, ^{^ e\&amp;gt; T
4

r; -sji fir parts of an

inch, respectively. But these differences in the greater oscillations are in

the duplicate ratio of the arcs described nearly, but in lesser oscillations

something greater than in that ratio
;
and therefore (by Cor. 2, Prop. XXXI

of this Book) the resistance of the globe, when it moves very swift, is in

the duplicate ratio of the velocity, nearly; and when it moves slowly,

somewhat greater than in that ratio.

Now let V represent the greatest velocity in any oscillation, and let A,

B, and C be given quantities, and let us suppose the difference of the arcs

3^

to be AV + BV 2 + CV 2
. Since the greatest velocities are in the cycloid

as ^ the arcs described in oscillating, and in the circle as | the chords of

those arcs
;
and therefore in equal arcs are greater in the cycloid than in

the circle in the ratio of | the arcs to their chords
;
but the times in the

circle are greater than in the cycloid, in a reciprocal ratio of the velocity ;

it is plain that the differences ofthe arcs (which are as the resistance and

the square of the time conjunctly) are nearly the same in both curves : for

in the cycloid those differences must be on the one hand augmented, with

the resistance, in about the duplicate ratio of the arc to the chord, because

of the velocity augmented in the simple ratio of the same
;
and on the

other hand diminished, with the square of the time, in the same duplicate

ratio. Therefore to reduce these observations to the cycloid, we must take

the same differences of the arcs as were observed in the circle, and suppose

the greatest velocities analogous to the half, or the whole arcs, that is, to

the numbers
, 1, 2, 4, 8, 16. Therefore in the 2d, 4th, and 6th cases, put

1,4, and 1 6 for V
;
and the difference of the arcs in the 2d case will become

i 2
* = A + B + C; in the4th case, ^- = 4A + SB + 160

;
in the 6th

121 OOj

case, ^ = 16A + 64B -f- 256C. These equations reduced give A =
9?

0,000091 6, B =-. 0,0010847, and C= 0,0029558. Therefore the difference

of the arcs is as 0,0000916V -f 0,0010847V* + 0,0029558V* : and there

fore since (by Cor. Prop. XXX, applied to this case) the re.-ist;mcc of the

globe in the middle of the arc described in oscillating, where the velocity

is V, is to its weight as T
7
TAV -f- T\BV^ + fCV 2 to the length of the

pendulum, if for A, B, and C you put the numbers found, the resistance of

the globe will be to its weight as 0,0000583V + 0,0007593V* + 0,OJ22169V
2

to the length of the pendulum between the centre of suspension and the

ruler, that is, to 121 inches. Therefore since V in the second case repre

sents 1, in the 4th case 4, and in the 6th case 16, the resistance will be to

the weight of the globe, in the 2d case, as 0,0030345 to 121
;
in the 4th, as

0,041748 to 121
;
in the 6th, as 0,61705 to 121.
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The arc, which the point marked in the thread described in the 6th case,

was of 120 Q^,
or 119/g inches. And therefore since the radius was

y
a

121 inches, and the length of the pendulum between the point of suspen

sion and the centre of the globe was 126 inches, the arc which the centre of

the globe described was 124/T inches. Because the greatest velocity of the

oscillating body, by reason of the resistance of the air, does not fall on the

lowest point of the arc described, but near the middle place of the whole

arc, this velocity will be nearly the same as if the globe in its whole descent

in a non-resisting medium should describe 62^ inches, the half of that arc,

and that in a cycloid, to which we have above reduced the motion of the

pendulum; and therefore that velocity will be equal to that which the

globe would acquire by falling perpendicularly from a height equal to the

versed sine of that arc. But that versed sine in the cycloid is to that arc

62/2 as the same arc to twice the length of the pendulum 252, and there

fore equal to 15,278 inches. Therefore the velocity of the pendulum is the

same which a body would acquire by falling, and in its fall describing a

space of 15,278 inches. Therefore with such a velocity the globe meets

with a resistance which is to its weight as 0,61705 to 121, or (if we take

that part only of the resistance which is in the duplicate ratio of the ve-

loc.ty) as 0,56752 to 121.

I found, by an hydrostatical experiment, that the weight of this wooden

globe was to the weight of a globe of water of the same magnitude as 55

to 97: and therefore since 121 is to 213,4 in the same ratio, the resistance

made to this globe of water, moving forwards with the above-mentioned

velocity, will be to its weight as 0,56752 to 213,4, that is, as 1 to 376^.
Whence since the weight of a globe of water, in the time in which the

globe with a velocity uniformly continued describes a length of 30,556

inches, will generate all that velocity in the falling globe, it is manifest

that the force of resistance uniformly continued in the same time will take

away a velocity, which will be less than the other in the ratio of 1 to 376^- ,

that is, the rr^-r part of the whole velocity. And therefore in the time
37VSG

Jiat the globe, with the same velocity uniformly continued, would describe

the length of its semi-diameter, or 3 T\ inches, it would lose the 3^42 part
of its motion.

I also counted the oscillations in which the pendulum lost j part of its

motion. In the following table the upper numbers denote the length of the

arc described in the first descent, expressed in inches and parts of an inch
;

the middle numbers denote the length of the arc described in the last as

cent
;
and in the lowest place are the numbers of the oscillations. I give

un account of this experiment, as being more accurate than that in which
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only
1
part of the motion was lost. I leave the calculation to such as are

disposed to make it.

First descent ... 2 4 8 16 32 64

Last ascent . . , 1| 3 6 12 24 48

Numb.ofoscilL . .374 272 162i 83J 41f 22|
I afterward suspended a leaden globe of 2 inches in diameter, weighing

26 1 ounces troy by the same thread, so that between the centre of the

globe and the point of suspension there was an interval of 10^ feet, and 1

counted the oscillations in which a given part of the motion was lost. The
iirst of the following tables exhibits the number of oscillations in which

J-

part of the whole motion was lost
;
the second the number of oscillations

in which there was lost \ part of the same.

First descent .... 1 2 4 8 16 32 64

Last ascent .... f J 3^ 7 14 28 56

Numb, of oscilL . . 226 228 193 140 90^ 53 30

First descent .... 1 2 4 8 16 32 64

Last ascent .... 1^ 3 6 12 24 4S

Nunib. of oscill. . .510 518^ 420 318 204 12170

Selecting in the first table the 3d, 5th, and 7th observations, and express

ing the greatest velocities in these observations particularly by the num
bers 1, 4, 16 respectively, and generally by the quantity V as above, there

will come out in ihe 3d observation ~- = A + B + C, in the 5th obser-

2 8
vation ^

= 4A 4- 8B + 16C. in the 7th observation ^--
== 16A 4- 64B t-

,t(j j oU

256C. These equations reduced give A = 0,001414, B == 0,000297, C

0,000879. And thence the resistance of the globe moving with the velocity

V will be to its weight 26^ ounces in the same ratio as 0,0009V +

0,000208V* + 0,000659V
2 to 121 inches, the length of the pendulum.

And if we regard that part only of the resistance which is in the dupli

cate ratio of the velocity, it will be to the weight of the globe as 0,000659V
2

to 121 inches. But this part of the resistance in the first experiment was

to the weight oi the wooden globe of 572-
7
2
ounces as 0,002217V

2 to 121
;

and thence the resistance of the wooden globe is to the resistance of the

leaden one (their velocities being equal) as 57/2- into 0,002217 to 26
J-

into 0,000659, that is, as 7|- to 1. The diameters of the two globes were

6f and 2 inches, and the squares of these are to each other as 47 and 4,

or 11-J-f and 1, nearly. Therefore the resistances of these equally swift

globes were in less than a duplicate ratio of the diameters. But we have

not yet considered the resistance of the thread, which was certainly very

considerable, and ought to be subducted from the resistance of the pendu
lums here found. I could not determine this accurately, but I found il
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greater than a third part of the whole resistance of the lesser pendulum ;

and thence I gathered that the resistances of the globes, when the resist

ance of the thread is subducted, are nearly in the duplicate ratio of their

diameters. For the ratio of 7} } to 1
,
or l(H to 1 is not very

different from the duplicate ratio of the diameters 1 L}f to I.

Since the resistance of the thread is of less moment in greater globes, I

tried the experiment also with a globe whose diameter was ISf inches.

The length of the pendulum between the point of suspension and the cen

tre of oscillation was 122| inches, and between the point of suspension and

the knot in the thread 109| inches. The arc described by the knot at the

first descent of the pendulum was 32 inches. The arc described by the

same knot in the last ascent after five oscillations was 2S inches. The

sum of the arcs, or the whole arc described in one mean oscillation, was 60

inches. The difference of the arcs 4 inches. The y
1

,,- part of this, or the

difference between the descent and ascent in one mean oscillation, is f of

an inch. Then as the radius 10 (

J| to the radius 122^, so is the whole arc

of 60 inches described by the knot in one mean oscillation to the whole arc

of 67} inches described by the centre of the globe in one mean oscillation
;

and so is the difference | to a new difference 0,4475. If the length of the

arc described were to remain, and the length of the pendulum should be

augmented in the ratio of 126 to 122}, the time of the oscillation would

be augmented, and the velocity of the pendulum would be diminished in

the subduplicate of that ratio
;
so that the difference 0,4475 of the arcs de

scribed in the descent and subsequent ascent would remain. Then if the

arc described be augmented in the ratio of 124
3
3
T to 67}, that difference

0.4475 would be augmented in the duplicate of that ratio, and so would

become 1,5295. These things would be so upon the supposition that the

resistance of the pendulum were in the duplicate ratio of the velocity.

Therefore if the pendulum describe the whole arc of 1243
3
T inches, and its

length between the point of suspension and the centre of oscillation be 126

inches, the difference of the arcs described in the descent and subsequent
ascent would be 1,5295 inches. And this difference multiplied into the

weight of the pendulous globe, which was 208 ounces, produces 318,136.

Again ;
in the pendulum above-mentioned, made of a wooden globe, when

its centre of oscillation, being 126 inches from the point of suspension, de

scribed the whole arc of 124/T inches, the difference of the arcs described

in the descent and ascent was ^^ into ^. This multiplied into the
i/wi y^

weight of the globe, which was 57-2
7
2 ounces, produces 49,396. But I mul

tiply these differences into the weights of the globes, in order to find their

resistances. For the differences arise from the resistances, and are as the

resistances directly and the weights inversely. Therefore the resistances

are as the numbers 318,136 and 49,396. But that part of the resistance
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of the lesser globe, which is in the duplicate ratio of the velocity, was to

the whole resistance as 0,56752 to- 0,61675, that is, as 45,453 to 49,396 ;

whereas that part of the resistance of the greater globe is almost equal to

its whole resistance
;
and so those parts are nearly as 318,136 and 45,453,

that is, as 7 and 1. But the diameters of the globes are 18f and 6| ;
and

their squares 351 T
9 and 47 J are as 7,438 and 1, that is, as the resistances

of the globes 7 and 1, nearly. The difference of these ratios is scarce

greater than may arise from the resistance of the thread. Therefore those

parts of the resistances which are, when the globes are equal, as the squares
of the velocities, are also, when the velocities are equal, as the squares of

the diameters of the globes.

But the greatest of the globes I used in these experiments was not per

fectly spherical, and therefore in this calculation I have, for brevity s sake,

neglected some little niceties
; being not very solicitous for an accurate

calculus in an experiment that was not very accurate. So that I could

wish that these experiments were tried again with other globes, of a larger

size, more in number, and more accurately formed
;
since the demonstra

tion of a vacuum depends thereon. If the globes be taken in a geometrical

proportion, as suppose whose diameters are 4, 8, 16, 32 inches; one may
collect from the progression observed in the experiments what would hap

pen if the globes were still larger.

In order to compare the resistances of different fluids with each other, 1

made the following trials. I procured a wooden vessel 4 feet long, 1 foot

broad, and 1 foot high. This vessel, being uncovered, 1 filled with spring

water, and, having immersed pendulums therein, I made them oscillate in

the water. And I found that a leaden globe weighing 166| ounces, and in

diameter 3f inches, moved therein as it is set down in the following table
;

the length of the pendulum from the point of suspension to a certain

point marked in the thread being 126 inches, and to the centre of oscilla

tion 134f inches.

The arc described in }

the first descent, by
a point marked in

\ 64 . 32 . 16 . $ . 4 . 2 . 1 . . J
the thread was

\

inches.

The arc described in )

the last ascent was V 48 . 24 . 12 . 6 . 3 . 1| . . f . T\
inches. \

The difference of the

arcs, proportional
to the motion lost,

was inches.

The number ofthe os

cillations in water.

The number of the os

cillations in air.

16

. li . 3 . 7 . lH.12f.13j

85i . 287 . 535
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In the experiments of the 4th column there were equal motions lost in

535 oscillations made in the air, and If in water. The oscillations in the

air were indeed a little swifter than those in the water. But if the oscil

lations in the water were accelerated in such a ratio that the motions of

the pendulums might be equally swift in both mediums, there would be

still the same number 1 j of oscillations in the water, and by these the

same quantity of motion would be lost as before
;
because the resistance i&amp;gt;

increased, and the square of the time diminished in the same duplicate ra

tio. The pendulums, therefore, being of equal velocities, there were equal

motions lost in 535 oscillations in the air, and 1} in the water; and there

fore the resistance of the pendulum in the water is to its resistance in the

air as 535 to 1 }. This is the proportion of the whole resistances in the

case of the 4th column.

Now let AV + CV 2

represent the difference of the arcs described in the

descent and subsequent ascent by the globe moving in air with the greatest

velocity V ;
and since the greatest velocity is in the case of the 4th column

to the greatest velocity in the case of the 1st column as 1 to 8
;
and that

difference of the arcs in the case of the 4th column to the difference in the

2 16
case of the 1st column as ^ to

7,
or as 86J to 4280

; put in these

cases 1 and 8 for the velocities, and 85 1 and 4280 for the differences of

the arcs, and A + C will be S5|, and 8A -f 640 == 4280 or A + SC
= 535 ; and then by reducing these equations, there will come out TC =
449^ and C = 64 T\ and A = 21f ;

and therefore the resistance, which is

as TVAV + fCV 2
,
will become as 13 T

6
TV + 48/^Y

2
. Therefore in the

case of the 4th column, where the velocity was 1, the whole resistance is to

its part proportional to the square of the velocity as 13T
6
T + 48/F or

61 }f to 48/e ;
and therefore the resistance of the pendulum in water is to

that part of the resistance in air, which is proportional to the square of the

velocity, and which in swift motions is the only part that deserves consid

eration, as 61}^ to 4S/g and 535 to 1} conjunctly, that is, as 571 to 1.

If the whole thread of the pendulum oscillating in the water had been im

mersed, its resistance would have been still greater ;
so that the resistance

of the pendulum oscillating in the water, that is, that part which is pro

portional to the square of the velocity, and which only needs to be consid

ered in swift bodies, is to the resistance of the same whole pendulum, oscil

lating in air with the same velocity, as about 850 to 1, that is as, the den

sity of water to the density of air, nearly.

In this calculation we ought also to have taken in that part of the re

sistance of the pendulum in the water which was as the square of the ve

locity ;
but I found (which will perhaps seem strange) that the resistance

in the water was augmented in more than a duplicate ratio of the velocity.

In searching after the cause, I thought upon this, that the vessel was toe
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narrow for the magnitude of the pendulous globe, and by its narrowness

obstructed the motion of the water as it yielded to the oscillating globe.
For when I immersed a pendulous globe, whose diameter was one inch only,
the resistance was augmented nearly in a duplicate ratio of the velocity,
I tried this by making a pendulum of two globes, of which the lesser and

lower oscillated in the water, and the greater and higher was fastened to

the thread just above the water, and, by oscillating in the air, assisted the

motion of the pendulum, and continued it longer. The experiments made

by this contrivance proved according to the following table.

Arc descr. in first descent . .16.8. 4. 2.1.1.1
Arc descr. in last ascent . . 12 . 6 . 3 . li . J . | . T

3
F

Dif. of arcs, proport. to 1 . pi i

motion lost
$

T r T*

Number of oscillations... 3f . 6j . 12^. 211 . 34 . 53 . 62)
In comparing the resistances of the mediums with each other, I also

caused iron pendulums to oscillate in quicksilver. The length of the iron

wire was about 3 feet, and the diameter of the pendulous globe about i of

an inch. To the wire, just above the quicksilver, there was fixed another

leaden globe of a bigness sufficient to continue the motion of the pendulum
for some time. Then a vessel, that would hold about 3 pounds of quick

silver, was filled by turns with quicksilver and common water, that, by

making the pendulum oscillate successively in these two different fluids, I

might find the proportion of their resistances
;
and the resistance of the

quicksilver proved to be to the resistance of water as about 13 or 14 to 1
;

that is. as the density of quicksilver to the density of water. When I made
use of a pendulous globe something bigger, as of one whose diameter was

about ^ or | of an inch, the resistance of the quicksilver proved to be to

the resistance of the water as about 12 or 10 to 1. But the former experi
ment is more to be relied on, because in the latter the vessel was too nar

row in proportion to the magnitude of the immersed globe; for the vessel

ought to have been enlarged together with the globe. I intended to have

repeated these experiments with larger vessels, and in melted metals, and

other liquors both cold and hot
;
but I had not leisure to try all: and be

sides, from what is already described, it appears sufficiently that the resist

ance of bodies moving swiftly is nearly proportional to the densities of

the fluids in which they move. I do not say accurately ;
for more tena

cious fluids, of equal density, will undoubtedly resist more than those that

are more liquid ;
as cold oil more than warm, warm oil more than rain

water, and water more than spirit of wine. But in liquors, which are sen

sibly fluid enough, as in air, in salt and fresh water, in spirit of wine, of

turpentine, and salts, in oil cleared of its fseces by distillation and warmed,
in oil of vitriol, and in mercury, and melted metals, and any other such

like, that are fluid enough to retaia for some time the motion impressed
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upon them by the agitation of the vessel, and which being poured out are

easily resolved into drops, I doubt not but the rule already laid down may
be accurate enough, especially if the experiments be made with larger

pendulous bodies and more swiftly moved.

Lastly, since it is the opinion of some that there is a certain ^ethereal

medium extremely rare and subtile, which freely pervades the pores of all

bodies
;
and from such a medium, so pervading the pores of bodies, some re

sistance must needs arise; in order to try whether the resistance, which wr
e

experience in bodies in motion, be made upon their outward superficies only,

or whether their internal parts meet with any considerable resistance upon
their superficies, I thought of the following experiment I suspended a

round deal box by a thread 11 feet long, on a steel hook, by means of a ring

of the s-ime metal, so as to make a pendulum of the aforesaid length. The
hook had a sharp hollowr

edge on its upper part, so that the upper arc of

the ring pressing on the edge might move the more freely ;
and the thread

was fastened to the lower arc of the ring. The pendulum being thus pre

pared, I drew it aside from the perpendicular to the distance of about 6

feet, and that in a plane perpendicular to the edge of the hook, lest the

ring, while the pendulum oscillated, should slide to and fro on the edge of

the hook : for the point of suspension, in which the ring touches the hook,

ought to remain immovable. I therefore accurately noted the place to

which the pendulum was brought, and letting it go, I marked three other

places, to which it returned at the end of the 1st, 2d, and 3d oscillation.

This I often repeated, that I might find those places as accurately as pos

sible. Then I filled the box with lead and other heavy metals that were

near at hand. But, first, I weighed the box when empty, and that pnrt of

the thread that went round it, and half the remaining part, extended be

tween the hook and the suspended box
;
for the thread so extended always

acts upon the pendulum, when drawn aside from the perpendicular, with half

its weight. To this weight I added the weight of the air contained in the

box And this whole weight was about -fj of the weight of the box when

filled writh the metals. Then because the box when full of the metals, by ex

tending the thread with its weight, increased the length of the pendulum,
f shortened the thread so as to make the length of the pendulum, when os

cillating, the same as before. Then drawing aside the pendulum to the

place first marked, and letting it go, I reckoned about 77 oscillations before

the box returned to the second mark, and as many afterwards before it came

to the third mark, and as many after that before it came to the fourth

xnark. From whence I conclude that the whole resistance of the box, when

full, had not a greater proportion to the resistance of the box, when empty,
than 78 to 77. For if their resistances were equal, the box, when full, by
reason of its vis insita, which was 78 times greater than the vis tfuritoof

the same when empty, ought to have continued its oscillating motion so

21
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much the longer, and therefore to have returned to those marks at the end

of 78 oscillations. But it returned to them at the end of 77 oscillations.

Let, therefore, A represent the resistance of the box upon its external

superficies, and B the resistance of the empty box on its internal superficies ;

and if the resistances to the internal parts of bodies equally swift be as the

matter, or the number of particles that are resisted, then 78B will be the

resistance made to the internal parts of the box, when full
;
and therefore

the whole resistance A + B of the empty box will be to the whole resist

ance A + 7SB of the full box as 77 to 78, and, by division, A + B to 77B
as 77 to 1

;
and thence A + B to B as 77 X 77 to 1, and, by division

again, A to B as 5928 to 1. Therefore the resistance of the empty box in

its internal parts will be above 5000 times less than the resistance on its

external superficies. This reasoning depends upon the supposition that the

greater resistance of the full box arises not from any other latent cause,

but only from the action of some subtile fluid upon the included metal.

This experiment is related by memory, the paper being lost in which I

had described it
;
so that I have been obliged to omit some fractional parts,

which are slipt out of my memory ;
and I have no leisure to try it again.

The first time I made it, the hook being weak, the full box was retarded

sooner. The cause I found to be, that the hook was not strong enough to

bear the weight of the box : so that, as it oscillated to and fro, the hook

was bent sometimes this and sometimes that way. I therefore procured a

hook of sufficient strength, so that the point of suspension might remain

unmoved, and then all things happened as is above described.



SEC. VI I.] OF NATURAL PHILOSOPHY. 323

SECTION VII.

Of the, motion offluids, and the resistance made to projected bodies.

PROPOSITION XXXII. THEOREM XXVI.

Suppose two similar systems of bodies consisting of an equal number of

particles, and let the correspondent particles be similar and propor

tional, each in, one system to each in the other, and have a like situa

tion among themselves, and the same given ratio of density to each

other ; and let them begin to move anwng themselves in proportional

times, and with like motions (that is, those in one system among one

another, and those in the other among one another). And if the par
ticles that are in the same system do not touch otte another, except ir

the moments of reflexion ; nor attract, nor repel each other, except with

accelerativeforc.es that are as the diameters of the correspondent parti
cles inversely, and the squares of the velocities directly ; I say, that the

particles of those systems will continue to move among themselves wit It

like motions and in proportional times.

Like bodies in like situations are said to be moved among themselves

with like motions and in proportional times, when their situations at the

end of those times are always found alike in respect of each other
;

as sup

pose we compare the particles in one system with the correspondent parti

cles in the other. Hence the times will be proportional, in which similar

and proportional parts of similar figures will be described by correspondent

particles. Therefore if we suppose two systems of this kind; the corre

spondent particles, by reason of the similitude of the motions at their

beginning, will continue to be moved with like motions, so long as they
move without meeting one another

;
for if they are acted on by no forces,

they will go on uniformly in right lines, by the 1st Law. But if they do

agitate one another with some certain forces, and those forces are as the

diameters of the correspondent particles inversely and the squares of the

velocities directly, then, because the particles are in like situations, and

their forces are proportional, the whole forces with which correspondent

particles are agitated, and which are compounded of each of the agitating

forces (by Corol. 2 of the Laws), will have like directions, and have the

same effect as if they respected centres placed alike among the particles ;

and those whole forces will be to each other as the several forces which

compose them, that is, as the diameters of the correspondent particles in

versely, and the squares of the velocities directly : and therefore will cans**
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correspondent particles to continue to describe like figures. These things
will be so (by Cor. 1 and S, Prop. IV.

;
Book

1), if those centres are at rest

but if they are moved, yet by reason of the similitude of the translations,
their situations among the particles of the system will remain similar

,
so

that the changes introduced into the figures described by the particles will

still be similar. So that the motions of correspondent and similar par
ticles will continue similar till their first meeting with each other

;
and

thence will arise similar collisions, and similar reflexions; which will again
beget similar motions of the particles among themselves (by what was just
now shown), till they mutually fall upon one another again, and so on ad

infinitum.

COR. 1. Hence if any two bodies, which are similar and in like situations

to the correspondent particles of the systems, begin to move amongst them
in like manner and in proportional times, and their magnitudes and densi

ties be to each other as the magnitudes and densities of the corresponding

particles, these bodies will continue to be moved in like manner and in

proportional times: for the case of the greater parts of both systems and of

the particles is the very same.

COR. 2. And if all the similar and similarly situated parts of both sys
tems be at rest among themselves

;
and two of them, which are greater than

the rest, and mutually correspondent in both systems, begin to move in

lines alike posited, with any similar motion whatsoever, they will excite

similar motions in the rest of the parts of the systems, and will continue

to move among those parts in like manner and in proportional times ; and

will therefore describe spaces proportional to their diameters.

PROPOSITION XXXIII. THEOREM XXVII.

The same things biting supposed, I say, that the greater parts of the

systems are resisted in a ratio compounded of the duplicate ratio of
their velocities, and the duplicate ratio of their diameters, and Ihe sim

ple ratio of the density of the parts of the systems.
For the resistance arises partly from the centripetal or centrifugal, forces

with which the particles of the system mutually act on each other, partly

from the collisions and reflexions of the particles and the greater parts.

The resistances of the first kind are to each other as the whole motive

forces from which they arise, that is, as the whole accelerative forces and

the quantities of matter in corresponding parts ;
that is (by the sup

position), as the squares of the velocities directly, and the distances of the

corresponding particles inversely, and the quantities of matter in the cor

respondent parts directly : and therefore since the distances of the parti

cles in one system are to the correspondent distances of the particles of the

;ther S3 the diameter of one particle or part in *he former system to the
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diameter of the correspondent particle or part in the other, and since the

quantities of matter are as the densities of the parts and the cubes of the

diameters
;
the resistances arc to each other as the squares of the velocities

and the squares of the diameters and the densities of the parts of the sys

tems. Q.E.D. The resistances of the latter sort are as the number of

sorrespondent reflexions and the forces of those reflexions conjunctly ;
but

the number of the reflexions are to each other as the velocities of the cor

responding parts directly and the spaces between their reflexions inversely.

And the forces of the reflexions are as the velocities and the magnitudes
and the densities of the corresponding parts conjunctly ;

that is, as the ve

locities and the cubes of the diameters and the densities of the parts. And,

joining all these ratios, the resistances of the corresponding parts are to

each other as the squares of the velocities and the squares of the diameters

and the densities of the parts conjunctly. Q.E.T).

COR. 1. Therefore if those systems are two elastic fluids, like our air,

and their parts are at rest among themselves
;
and two similar bodies pro

portional in magnitude and density to the parts of the fluids, and similarly

gituated among those parts, be any how projected in the direction of lines

similarly posited ;
and the accelerative forces with which the particles of

the fluids mutually act upon each other are as the diameters of the bodies

projected inversely and the squares of their velocities directly ;
those bodies

will excite similar motions in the fluids in proportional times, and will de

scribe similar spaces and proportional to their diameters.

COR. 2. Therefore in the same fluid a projected body that moves swiftly

meets with a resistance that is, in the duplicate ratio of its velocity, nearly.

For if the forces with which distant particles act mutually upon one

another should be augmented in the duplicate ratio of the velocity, the

projected body would be resisted in the same duplicate ratio accurately ;

and therefore in a medium, whose parts when at a distance do not act mu

tually with any force on one another, the resistance is in the duplicate ra

tio of the velocity accurately. Let there be, therefore, three mediums A,

B, C, consisting of similar and equal parts regularly disposed at equal
distances. Let the parts of the mediums A and B recede from each other

with forces that are among themselves as T and V
;
and let the parts of

the medium C be entirely destitute of any such forces. And if four equal
bodies D, E, P7 G, move in these mediums, the two first D and E in the

two first A and B, and the other two P and G in the third C
;
and if the

velocity of the body D be to the velocity of the body E, and the velocity

of the body P to the velocity of the body G, in the subduplicate ratio of

the force T to the force V
;
the resistance of the body D to the resistance

of the body E, and the resistance of the body P to the resistance of the

body G, will be in the duplicate ratio of the velocities
;
and therefore the

resistance of the body D will be to the resistance of the body P as the re-
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sistance of the body E to the resistance of the body G. Let the bodies 1)

and F be equally swift, as also the bodies E and G
; and, augmenting the

velocities of the^bodies
D arid F in any ratio, and diminishing the forces

of the particles of the medium B in the duplicate of the same ratio, the

medium B will approach to the form and condition of the medium C at

pleasure ;
and therefore the resistances of the equal and equally swift

bodies E and G in these mediums will perpetually approach to equality

so that their difference will at last become less than any given. There

fore since the resistances of the bodies D and F are to each other as the

resistances of the bodies E and G, those will also in like manner approach

to the ratio of equality. Therefore the bodies 1) and F, when they move

with very great swiftness, meet with resistances very nearly equal; and

therefore since the resistance of the body F is in a duplicate ratio of the

velocity, the resistance of the body D will be nearly in the same ratio.

Con. 3. The resistance of a body moving very swift in an elastic fluid

is almost the same as if the parts of the fluid were destitute of their cen

trifugal forces, and did not fly from each other; if so be that the elasti

city of the fluid arise from the centrifugal forces of the particles, and the

velocity be so great as not to allow the particles time enough to act.

COR. 4. Therefore, since the resistances of similar and equally swift

bodies, in a medium whose distant parts do not fly from each other, are as

the squares of the diameters, the resistances made to bodies moving with

very great and equal velocities in an elastic fluid will be as the squares of

the diameters, nearly.

COR. 5. And since similar, equal, and equally swift bodies, moving

through mediums of the same density, whose particles do not fly from each

other mutually, will strike against an equal quantity of matter in equal

times, whether the particles of which the medium consists be more and

smaller, or fewer and greater, and therefore impress on that matter an equal

quantity of motion, and in return (by the 3d Law of Motion) suffer an

equal re-action from the same, that is, are equally resisted
;

it is manifest,

also, that in elastic fluids of the same density, when the bodies move with

extreme swiftness, their resistances are nearly equal, whether the fluids

consist of gross parts, or of parts ever so subtile. For the resistance of

projectiles moving with exceedingly great celerities is not much diminished

by the subtilty of the medium.

COR. G. All these things are so in fluids whose elastic force takes its rise

from the centrifugal forces of the particles. But if that force arise from

some other cause, as from the expansion of the particles after the manner

of wool, or the boughs of trees, or any other cause, by which the particles

are hindered from moving freely among themselves, the resistance, by

reason of the lesser fluidity of the medium, will be greater than in the

Corollaries above.
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PROPOSITION XXXIV. THEOREM XXV1I1.

If iu a rare medium, consisting of equal particles freely disposed at

equal distances from each other, a globe and a cylinder described on

equal diameters move with equal velocities in the. direction of the axis

of the cylinder, the resistance of the globe ivill be but half so great an

that of the cylinder.

For since the action of the medi

um upon the body is the same (by

Cor. 5 of the Laws) whether the body
move in a quiescent medium, or

whether the particles of the medium

impinge with the same velocity upon
the quiescent body, let us consider

the body as if it were quiescent, and

see with what force it would be im-

pelled by the moving medium. Let, therefore, ABKI represent a spherical

body described from the centre C with the semi-diameter CA, and let the

particles of the medium impinge with a given velocity upon that spherical

body in the directions of right lines parallel to AC : and let FB be one of

those right lines. In FB take LB equal to the semi-diameter CB, and

draw BI) touching the sphere in B. Upon KG and BD let fall the per

pendiculars BE, LD ;
and the force with which a particle of the medium,

impinging on the globe obliquely in the direction FB, would strike the

globe in B, will be to the force with which the same particle, meeting the

cylinder ONGQ, described about the globe with the axis ACI, would strike

it perpendicularly in b, as LD to LB, or BE to BC. Again ;
the efficacy

of this force to move the globe, according to the direction of its incidence

FB or AC, is to the efficacy of the same to move the globe, according to

the direction of its determination, that is, in the direction of the right line

BC in which it impels the globe directly, as BE to BC. And, joining

these ratios, the efficacy of a particle, falling upon the globe obliquely in

the direction of the right line FB
y
to move the globe in the direction of its

incidence, is to the efficacy of the same particle falling in the same line

perpendicularly on the cylinder, to move it in the same direction, as BE 2

to BC 3
. Therefore if in 6E, which is perpendicular to the circular base of

the cylinder NAO, and equal to the radius AC, we take H equal to

BE a

-
;
then 6H will be to 6E as the effect of the particle upon the globe t&amp;lt;?

\~i\j

the effect of the particle upon the cylinder. Arid therefore the solid which

is formed by all the right lines 6H will be to the solid formed by all the

right lines /&amp;gt;E as the effect of all the particles upon the globe to the effect

of all the particles upon the cylinder. But the former of these solids is a
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paraboloid whose vertex is C, its axis CA, and latus rectum CA, and the

latter solid is a cylinder circumscribing the paraboloid ;
and it is knowr

that a paraboloid is half its circumscribed cylinder. Therefore the whole

force of the medium upon the globe is half of the entire force of the same

upon the cylinder. And therefore if the particles of the medium are at

rest, and the cylinder and globe move with equal velocities, the resistance

of the globe will be half the resistance of the cylinder. Q.E.D.

SCHOLIUM.

By the same method other figures may be compared together as to their

resistance; and those may be found which are most apt to continue their

motions in resisting mediums. As if upon the circular base CEBH from

the centre O, with thy radius OC, and the altitude OD, one would construct

a frustum CBGF of a cone, which should meet with less resistance than

any other frustum constructed with the same base and altitude, and going
forwards towards D in the direction of its axis : bisect the altitude OD in

U,, and produce OQ, to S, so that QS may be equal to Q,C, and S will be

the vertex of the cone whose frustum is sought.
r

J

Whence, by the bye, since the angle CSB is always acute, it follows, that,

if the solid ADBE be generated by the convolution of an elliptical or oval

figure ADBE about its axis AB, and the generating figure be touched by-

three right lines FG, GH, HI, in the points F, B, and I, so that GH shall

be perpendicular to the axis in the point of contact B, arid FG, HI may be

inclined to GH in the angles FGB, BHI of 135 degrees: the solid arising

from the convolution of the figure ADFGH1E about the same axis AB
will be less resisted than the former solid; if so be that both move forward

in the direction of their axis AB, and that the extremity B of each go

foremost. Which Proposition I conceive may be of use in the building of

ships.

If the figure DNFG be such a curve, that if, from any point thereof, as

N, the perpendicular NM be let fall on the axis AB, and from the given

point G there be drawn the right line GR parallel to a right line touching

the figure in N, and cutting the axis produced in R, MN becomes to GR
as GR, 3 to 4BR X GB 2

,
the solid described, by the revolution of this figure
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about its axis AB, moving in the before-mentioned rare medium from A
towards B, will be less resisted than any other circular solid whatsoever,

described of the same length and breadth.

PROPOSITION XXXV. PROBLEM VII.

If a rare medium consist of very small quiescent particles of equal mag
nitudes, and freely disposed at equal distances from one another : to

jind the resistance of a globe moving uniformly forward in this

medium.

CASE 1. Let a cylinder described with the same diameter and altitude be

conceived to go forward with the same velocity in the direction of its axis

through the same medium
;
and let us suppose that the particles of the

medium, on which the globe or cylinder falls, fly back with as great a force

of reflexion as possible. Then since the resistance of the globe (by the last

Proposition) is but half the resistance of the cylinder, and since the globe

is to the cylinder as 2 to 3, and since the cylinder by falling perpendicu

larly on the particles, and reflecting them with the utmost force, commu
nicates to them a velocity double to its own; it follows that the cylinder.

in moving forward uniformly half the length of its axis, will communicate

a motion to the particles which is to the whole motion of the cylinder as

the density of the medium to the density of the cylinder ;
and that the

globe, in the time it describes one length of its diameter in moving uni

formly forward, will communicate the same motion to the particles ;
and

in the time that it describes twr

o thirds of its diameter, will communicate

a motion to the particles which is to the whole motion of the globe as the

density of the medium to the density of the globe. Arid therefore the

globe meets with a resistance, which is to the force by which its whole mo
tion may be either taken away or generated in the time in which it de

scribes two thirds of its diameter moving uniformly forward, as the den

sity of the medium to the density of the globe.

CASE 2. Let us suppose that the particles of the medium incident on

the globe or cylinder are not reflected
;
and then the cylinder falling per

pendicularly on the particles will communicate its own simple velocity to

them, and therefore meets a resistance but half so great as in the former

case, and the globe also meets with a resistance but half so great.

CASE 3. Let us suppose the particles of the medium to fly back from

the globe with a force which is neither the greatest, nor yet none at all, but

with a certain mean force
;
then the resistance of the globe will be in the

same mean ratio between the resistance in the first case and the resistance

in the second. Q.E.I.

COR. 1. Hence if the globe and the particles are infinitely hard, and

destitute of all elastic force, and therefore of all force of reflexion
;

thf

resistance of the globe will be to the force by which its whole motion may
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be destroyed or generated, in the time that the globe describes four third

parts of its diameter, as the density of the medium to the density of the

^lobe.

Con. 2. The resistance of the globe, cceteris paribus, is in the duplicate
ratio of the velocity.

CUR. 3. The resistance of the globe, cocterisparibus, is in the duplicate
ratio of the diameter.

COR. 4. The resistance of the globe is, cceteris paribus, as the density of

the medium.

COR, 5. The resistance of the globe is in a ratio compounded of the du

plicate ratio of the velocity, arid the duplicate ratio of the diameter, and
the ratio of the density of the medium.

COR. 6. The motion of the globe and its re

sistance may be thus expounded Let AB be the

time in which the globe may, by its resistance

uniformly continued, lose its whole motion.

Erect AD, BC perpendicular to AB. J ,et BC be

that whole motion, and through the point C, the

asymptotes being AD, AB, describe the hyperbola
CF. Produce AB to any point E. Erect the perpendicular EF meeting
the hyperbola in F. Complete the parallelogram CBEG, and draw AF
meeting BC in H. Then if the globe in any time BE, with its first mo
tion BC uniformly continued, describes in a non-resisting medium the space
CBEG expounded by the area of the parallelogram, the same in a resisting

medium will describe the space CBEF expounded by the area of the hv-

perbola; and its motion at the end of that time will be expounded by EF,
the ordinate of the hyperbola, there being lost of its motion the part FG.
And its resistance at the end of the same time will be expounded by the

length BH, there being lost of its resistance the part CH. All these things

appear by Cor. 1 and 3, Prop. V., Book II.

COR. 7. Hence if the globe in the time T by the resistance R uniformly
continued lose its whole motion M, the same globe in the time t in a

resisting medium, wherein the resistance R decreases in a duplicate

/M
ratio of the velocity, will lose out of its motion M the part ,.i the

TM
part rn .

; remaining ;
and will describe a space which is to the space de

scribed in the same time
t,
with the uniform motion M, as the logarithm of

T + t

the number ^. multiplied by the number 2,302585092994 is to the

number ^ because the hyperbolic area BCFE is to the rectangle BCGE

in that proportion.
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SCHOLIUM.

I have exhibited in this Proposition the resistance and retardation of

spherical projectiles in mediums that are not continued, and shewn that

this resistance is to the force by which the whole motion of the globe may be

destroyed or produced in the time in which the globe can describe two thirds

of its diameter, with a velocity uniformly continued, as the density of the

medium to the density of the globe, if so be the globe and the particles of

the medium be perfectly elastic, and are endued with the utmost force of

reflexion
;
and that this force, where the globe and particles of the medium

are infinitely hard and void of any reflecting force, is diminished one half.

But in continued mediums, as water, hot oil, and quicksilver, the globe as

it passes through them does not immediately strike against all the parti

cles of the fluid that generate the resistance made to it, but presses only

the particles that lie next to it, which press the particles beyond, which

press other particles, and so on
;
and in these mediums the resistance is di

minished one other half. A globe in these extremely fluid mediums meets

with a resistance that is to the force by which its whole motion may be

destroyed or generated in the time wherein it can describe, with that mo

tion uniformly continued, eight third parts of its diameter, as the density

of the medium to the density of the globe. This I shall endeavour to shew

in what follows.

PROPOSITION XXXVI. PROBLEM VIII.

To define the motion of water running out of a cylindrical vessel through
a hole made at the bottom.

LetAC DB be a cylindrical vessel, AB the mouth p =

Q:

of it, CD the bottom p irallel to the horizon, EF a

circular hole in the middle of the bottom, G the

c-?ritre of the hole, and GH the axis of the cylin- K j

cler perpendicular to the horizon. And suppose a

cylinder of ice APQ,B to be of the same breadth

with the cavity of the vessel, and to have the same

axis, and to descend perpetually with an uniform

motion, and that its parts, as soon as they touch the

superficies AB, dissolve into water, and flow

( wn by their weight into the vessel, and in their

fall compose the cataract or column of water

ABNFEM, passing through the hole EF, and filling up the same exactly.

Let the uniform velocity of the descending ice and of the contiguous water

in the circle AB be that which the water would acquire by falling through

the space IH ; and let IH and HG lie in the same right line
;
and through
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the point I let there be drawn the right line KL parallel to the horizon

and meeting the ice on both the sides thereof in K and L. Then the ve

locity of the water running out at the hole EF will be the same that it

would acquire by falling from I through the space IG. Therefore, by
Galih cJ s Theorems, IG will be to IH in the duplicate ratio of the velo

city of the water that runs out at the hole to the velocity of the wrater in

the circle AB, that is, in the duplicate ratio of the circle AB to the circle

EF
;
those circles being reciprocally as the velocities of the water which

in the same time and in equal quantities passes severally through each of

them, and completely fills them both. We are now considering the velo

city with which the water tends to the plane of the horizon. But the mo
tion parallel to the same, by which the parts of the falling water approach to

each other, is not here taken notice of; since it is neither produced by

gravity, nor at all changes the motion perpendicular to the horizon which the

gravity produces. We suppose, indeed, that the parts of the water cohere

a little, that by their cohesion they may in falling approach to each othei

with motions parallel to the horizon in order to form one single cataract,

and to prevent their being divided into several : but the motion parallel to

the horizon arising from this cohesion does not come under our present

consideration.

CASE 1. Conceive now the w^hole cavity in the vessel, wrhich encompasses

the falling water ABNFEM, to be full of ice, so that the water may pass

through the ice as through a funnel. Then if the water pass very near to

the ice only, without touching it; or, which is the same tiling, if by rea

son of the perfect smoothness of the surface of the ice, the water, though

touching it. glides over it writh the utmost freedom, and without the le-ast

resistance; the water will run through the hole EF with the same velocity

as before, and the whole weight of the column of water ABNFEM will be

all taken up as before in forcing out the water, and the bottom of the vessel

will sustain the weight of the ice encompassing that column.

Let now the ice in the vessel dissolve into water
; yet will the efflux of

the water remain, as to its velocity, the same as before. It will not be

less, because the ice now dissolved will endeavour to descend
;

it will not

be greater, because the ice. now become water, cannot descend without hin

dering the descent of other water equal to its own descent. The same force

ought always to generate the same velocity in the effluent water.

But the hole at the bottom of the vessel, by reason of the oblique mo

tions of the particles of the effluent water, must be a little greater than before,

For now the particles of the water do not all of them pass through the

hole perpendicularly, but, flowing down on all parts from the sides of the

vessel, and converging towards the hole, pass through it with oblique mo

tions : r,r,d in tending downwards meet in a stream whose diameter is a little

smaller below the hole than at the hole itself : its diameter being to the
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diameter of the hole as 5 to 6, or as 5^ to 6|, very nearly, if I took the

measures of those diameters right. I procured a very thin flat plate, hav

ing a hole pierced in the middle, the diameter of the circular hole being

f parts of an inch. And that the stream of running waters might not be

accelerated in falling, and by that acceleration become narrower, I fixed

this plate not to the bottom, but to the side of the vessel, so us to make the

water go out in the direction of a line parallel to the horizon. Then, when

the vessel was full of water, I opened the hole to let it run out
;
and the

diameter of the stream, measured with great accuracy at the distance of

about half an inch from the hole, was f J-
of an inch. Therefore the di

ameter of this circular hole was to the diameter of the stream very nearly

as 25 to 21. So that the water in passing through the hole converges on

all sides, and, after it has run out of the vessel, becomes smaller by converg

ing in that manner, and by becoming smaller is accelerated till it comes to

the distance of half an inch from the hole, and at that distance flows in a

smaller stream and with greater celerity than in the hole itself, and this

in the ratio of 25 X 25 to 21 X 21, or 17 to 12, very nearly ;
that is, in

about the subdaplicate ratio of 2 to 1. Now it is certain from experiments,
that the quantity of water running out in a given time through a circular

hole made in the bottom of a vessel is equal to the quantity, which, flow

ing with the aforesaid velocity, would run out in the same time through
another circular hole, whose diameter is to the diameter of the former as

21 to 25. And therefore that running water in passing through the

hole itself has a velocity downwards equal to that which a heavy body
would acquire in falling through half the height of the stagnant water in

the vessel, nearly. But, then, after it has run out, it is still accelerated by

converging, till it arrives at a distance from the hole that is nearly equal to

its diameter, and acquires a velocity greater than the other in about the

subduplicate ratio of 2 to 1
;
which velocity a heavy body would nearly

acquire by falling through the whole height of the stagnant water in the

vessel.

Therefore in what follows let the diameter of

the stream be represented by that lesser hole which

we called EF. And imagine another plane VW
above the hole EF, and parallel to the plane there

of, to be placed at a distance equal to the diame

ter of the same hole, and to be pierced through
with a greater hole ST, of such a magnitude that

a stream which will exactly fill the lower hole EF
may pass through it

;
the diameter of which hole

will therefore be to the diameter of the lower hole as 25 to 21, nearly. By
this means the water will run perpendicularly out at the lower hole

;
and

the quantity of the water running out will be, according to the magnitude
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of this last hole, the same, very nearly, which the solution of the Problem

requires. The space included between the two planes and the falling stream

may be considered as the bottom of the vessel. But, to make the solution

more simple and mathematical, it is better to take the lower plane alone

for the bottom of the vessel, and to suppose that the water which flowed

through the ice as through a funnel, and ran out of the vessel through the

hole EF made in the lower plane, preserves its motion continually, and that

the ice continues at rest. Therefore in what follows let ST be the diame
ter of a circular hole described from the centre Z, and let the stream run

out of the vessel through that hole, when the water in the vessel is all

fluid. And let EP be the diameter of the hole, which the stream, in fall

ing through, exactly fills up, whether the water runs out of the vessel by
that upper hole ST, or flows through the middle of the ice in the vessel,

as through a funnel. And let the diameter of the upper hole ST be to the

diameter of the lower EF as about 25 to 21, and let the perpendicular di&

tance between the planes of the holes be equal to the diameter of the lesser

hole EF. Then the velocity of the water downwards, in running out of

the vessel through the hole ST, will be in that hole the same that a body

may acquire by falling from half the height IZ
;
and the velocity of both

the falling streams will be in the hole EF, the same which a body would

acquire by falling from the Avhole height IG.

CASE 2. If the hole EF be not in the middle of the bottom of the ves

sel, but in some other part thereof, the water will still run out with the

same velocity as before, if the magnitude of the hole be the same. For

though an heavy body takes a longer time in descending to the same depth,

by an oblique line, than by a perpendicular line, yet in both cases it acquires

in its descent the same velocity ;
as Galileo has demonstrated.

CASE 3. The velocity of the water is the same when it runs out through
a hole in the side of the vessel. For if the hole be small, so that the in

terval between the superficies AB and KL may vanish ns to sense, and the

stream of water horizontally issuing out may form a parabolic figure; from

the latus rectum of this parabola may be collected, that the velocity of the

effluent water is that which a body may acquire by falling the height IG

or HG of the stagnant water in the vessel. For, by making an experi

ment, I found that if the height of the stagnant water above the hole were

20 inches, and the height of the hole above a plane parallel to the horizon

were also 20 inches, a stream of water springing out from thence wrould

fall upon the plane, at the distance of 37 inches, very nearly, from a per

pendicular let fall upon that plane from the hole. For without resistance

the stream would have fallen upon the plane at the distance of 40 inches,

the latus rectum of the parabolic stream being 80 inches.

CASE 4. If the effluent water tend upward, it will still issue forth with

the same velocity. For the small stream of water springing upward, as-
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cends with a perpendicular motion to GH or GI, the height of the stagnant

water in the vessel
; excepting in so far as its ascent is hindered a little by

the resistance of the air : and therefore it springs out with the same ve

locity that it would acquire in falling from that height. Every particle of

the stagnant water is equally pressed on all sides (by Prop. XIX., Book II),

and, yielding to the pressure, tends always with an equal force, whether it

descends through the hole in the bottom of the vessel, or gushes out in an

horizontal direction through a hole in the side, or passes into a canal, and

springs up from thence through a little hole made in the upper part of the

canal. And it may not only be collected from reasoning, but is manifest

also from the well-known experiments just mentioned, that the velocity

with which the water runs out is the very same that is assigned in this

Proposition.

CASE 5. The velocity of the effluent water is the same, whether the

figure of the hole be circular, or square, or triangular, or any other figure-

equal to the circular
;
for the velocity of the effluent water does not depend

upon the figure of the hole, but arises from its depth below the plane

KL.
CASE 6. If the lower part of the vessel ABDC

B be immersed into stagnant water, and the height
of the stagnant water above the bottom of the ves

sel be GR, the velocity with which the water that

is in the vessel will run out at the hole EF into

the stagnant water will be the same which the

water would acquire by falling from the height
IR

;
for the weight of all the water in the vessel

that is below the superficies of the stagnant water

will be sustained in equilibrio by the weight of the stagnant water, and

therefore does riot at all accelerate the motion of the descending water in

the vessel. This case will also appear by experiments, measuring the times

in which the water will run out.

COR. 1. Hence if CA the depth of the water be produced to K, so that

AK may be to CK in the duplicate ratio of the area of a hole made in any

part of the bottom to the area of the circle AB, the velocity of the effluent

water will be equal to the velocity which the water would acquire by falling
from the height KC.

COR. 2. And the force with which the whole motion of the effluent watei

may be generated is equal to the weight of a cylindric column of water
r

whose base is the hole EF, and its altitude 2GI or 2CK. For the effluent

water, in the time it becomes equal to this column, may acquire, by falling

by its own weight from the height GI, a velocity equal to that with which
it runs out.

COR. 3. The weigb t of all the water in the vessel ABDC is to that part
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of the weight which is employed in forcing out the water as the sum of

the circles AB and EF to twice the circle EF. For let IO be a mean pro

portional between IH and IG, and the water running out at the hole EF
will, in the time that a drop falling from I would describe the altitude IG,
become equal to a cylinder whose base is the circle EF and its altitude

2IG
;
that is, to a cylinder whose base is the circle AB, and whose altitude

is 2IO. For the circle EF is to the circle AB in the subduplicate ratio cf

the altitude IH to the altitude IG
;
that is, in the simple ratio of the mean

proportional IO to the altitude IG. Moreover, in the time that a drop

falling from I can describe the altitude IH, the water that runs out will

hare become equal to a cylinder whose base is the circle AB, and its alti

tude 2IH
;
and in the time that a drop falling from I through H to G de

scribes HG, the difference of the altitudes, the effluent water, that is, the

water contained within the solid ABNFEM, will be equal to the difference

of the cylinders, that is, to a cylinder whose base is AB, and its altitude

2HO. And therefore all the water contained in the vessel ABDC is to the

whole falling water contained in the said solid ABNFEM as HG to2HO,
that is, as HO + OG to 2HO, or IH + K ) to 2IH. But the weight of all

the water in the solid ABNFEM is employed in forcing out the water ;

and therefore the weight of all the water in the vessel is to that part of

the weight that is employed in forcing out the water as IH + IO to 2IH,

and therefore as the sum of the circles EF and AB to twice the circle

EF.

COR. 4. And hence the weight of all the water in the vessel ABDC is

to the other part of the weight which is sustained by the bottom of the

vessel as the sum of the circles AB and EF to the difference of the same

circles.

COR. 5. And that part of the weight which the bottom of the vessel sus

tains is to the other part of the weight employed in forcing out the water

as the difference of the circles AB and EF to twice the lesser circle EF, or

as the area of the bottom to twice the hole.

COR. 6. That part of the weight which presses upon the bottom is to

the whole weight of the water perpendicularly incumbent thereon as the

circle AB to the sum of the circles AB and EF, or as the circle AB to thf

excess of twice the circle AB above the area of the bottom. For that part

of the weight which presses upon the bottom is to the weight of the whole

water in the vessel as the difference of the circles AB and EF to the sum

of the same circles (by Cor. 4) ;
and the weight of the whole water in the

vessel is to the weight of the whole water perpendicularly incumbent on

the bottom as the circle AB to the difference of the circles AB and EF.

Therefore, ex ce,quo perturbate, that part of the weight which presses upon
the bottom is to the weight of the whole water perpendicularly incumbent
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thereon as the circle AB to the sum of the circles AB and EF. or the ex

cess of twice the circle AB above the bottom.

COR. 7. If in the middle of the hole EF there be placed the little circle

PQ described about the centre G, and parallel to the horizon, the weight

of water which that little circle sustains is greater than the weight of a

third part of a cylinder of water whose base is that little circle and its

height GH. For let ABNFEM be the cataract or column of falling water

whose axis is GH, as above, and let all the wa- K ^

ter, whose fluidity is not requisite for the ready

and quick descent of the water, be supposed to

be congealed, as well round about the cataract,

as above the little circle. And let PHQ be the

column of water congealed above the little cir

cle, whose vertex is H, and its altitude GH.
And suppose this cataract to fall with its whole

weight downwards, and not in the least to lie

against or to press PHQ, but to glide freely by
it without any friction, unless, perhaps, just at

the very vertex of the ice, where the cataract at the beginning of its fall

may tend to a concave figure. And as the congealed water AMEC, BNFD,
lying round the cataract, is convex in its internal superficies AME, BNF,
towards the falling cataract, so this column PHQ will be convex towards

the cataract also, and will therefore be greater than a cone whose base is

that little circle PQ and its altitude GH; that is, greater than a third

part of a cylinder described with the same base and altitude. Now that

little circle sustains the weight of this column, that is, a weight greater
than the weight of the cone, or a third part of the cylinder.

COR. 8. The weight of water which the circle PQ
;
when very small, sus

tains, seems to be less than the weight of two thirds of a cylinder of water

whose base is that little circle, and its altitude HG. For, things standing
as above supposed, imagine the half of a spheroid described whose base id

that little circle, and its semi-axis or altitude HG. This figure will be

equal to two thirds of that cylinder, and will comprehend within it the

column of congealed water PHQ, the weight of which is sustained by that

little circle. For though the motion of the water tends directly down

wards, the external superficies of that column must yet meet the base PQ
in an angle somewhat acute, because the water in its fall is perpetually ac

celerated, and by reason of that acceleration become narrower. Therefore,

oince that angle is less than a right one, this column in the lower parts
thereof will lie within the hemi-spheroid. In the upper parts also it will be

acute or pointed; because to make it otherwise, the horizontal motion of

the water must be at the vertex infinitely more swift than its motion to

wards the horizon. And the less this circle PQ is, the more acute will

22
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the vertex of this column be
;
and the circle being diminished in infinitn/n

the angle PHQ will be diminished in infinitum, and therefore the co

lumn will lie within the hemi-spheroid. Therefore that column is less than

that hemi-spheroid, or than two-third parts of the cylinder whose base is

that little circle, and its altitude GH. Now the little circle sustains a

force of water equal to the weight of this column, the weight of the ambient

water being employed in causing its efflux out at the hole.

COR. 9. The weight of water which the little circle PQ sustains, when

it is very small, is very nearly equal to the weight of a cylinder of water

whose base is that little circle, and its altitude |GH for this weight is an

arithmetical mean between the weights of the cone and the hemi-spheroid
above mentioned. But if that little circle be not very small, but on the

contrary increased till it be equal to the hole EF, it will sustain the weight
of all the water lying perpendicularly above it, that is, the weight of a

cylinder of water whose base is that little circle, and its altitude GH.
COR. 10. Arid (as far as I can judge) the weight which this little circle

sustains is always to the weight of a cylinder of water whose base is that

little circle, and its altitude iGH, as EF 2 to EF 2 |PQ 2
,
or as the cir

cle EF to the excess of this circle above half the little circle PQ,, very

nearly.

LEMMA IV.

If a cylinder move uniformly forward in. the direction of its length, the

resistance made thereto is not at all changed by augmenting or di

minishing- that length ; and is therefore the same with the resistance

of a circle, described with the same diameter, and moving forward
with the same velocity in the direction, of a right line perpendicular to

its plane.

For the sides are not at all opposed to the motion
;
and a cylinder be

comes a circle when its length is diminished in infinitum.

PROPOSITION XXXVII. THEOREM XXIX.

If a cylinder move uninformly forward in a compressed, infinite, arid

non-elasticfinid, in the direction of its length, the resistance arising

from the magnitude of its transverse section is to the force by which

its whole motion may be destroyed or generated, in the time that it

moves four times its length, as the density of the medium to the den

sity of the cylinder, nearly.

For let the vessel ABDC touch the surface of stagnant water with its

bottom CD, and let the water run out of this vessel into the stagnant wa

ter through the cylindric canal EFTS perpendicular co the horizon
;
and

let the little circle PQ, be placed parallel to the horizon any where in the
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middle of the canal
;
and produce CA to K, so K I JL

fthat AK may be to CK in the duplicate of the
-^ jg

&quot;&quot;

e

ratio, which the excess of the orifice of the canal

EF above the little circle PQ bears to the cir

cle AB. Then it is manifest (by Case 5, Case

6, and Cor. 1, Prop. XXXVI) that the velocity

of the water passing through the annular space

between the little circle and the sides of the ves

sel will be the very same which the water would

acquire by falling, and in its fall describing the

altitude KG or IG.

And (by Cor. 10, Prop. XXXVI) if the breadth of the vessel be infinite,

so that the lineola HI may vanish, arid the altitudes IG, HG become equal ;

the force of the water that flows down and presses upon the circle will be

to the weight of a cylinder whose base is that little circle, and the altitude

iIG, as EF 2 to EF 2 |PQ 2
, very nearly. For the force of the water

flowing downward uniformly through the whole canal will be the same

upon the little circle PQ. in whatsoever part of the canal it be placed.

I ,et now the orifices of the canal EF, ST be closed, and let the littk

circle ascend in the fluid compressed on every side, and by its ascent let it

oblige the water that lies above it to descend through the annular space
between the little circle and the sides of the canal. Then will the velocity

of the ascending little circle be to the velocity of the descending water as

the difference of the circles EF and PQ, is to the circle PQ; and the ve

locity of the ascending little circle will be to the sum of the velocities, that

is, to the relative velocity of the descending water with which it passes by
the little circle in its ascent, as the difference of the circles EF and PQ to

the circle EF, or as EF* PQ 2 to EF 2
. Let that relative velocity be

equal to the velocity with v/hich it was shewn above that the water would

pass through the annular space, if the circle were to remain unmoved, that

is, to the velocity which the water would acquire by falling, and in its fall

describing the altitude IG
;
and the force of the water upon the ascending-

circle will be the same as before (by Cor. 5, of the Laws of Motion) ;
that

is, the resistance of the ascending little circle will be to the weight of a

cylinder of water whose base is that little circle, and its altitude iIG, as

EF 2 to EF 2 iPQ 2
, nearly. But the velocity of the little circle will

be to the velocity which the water acquires by falling, and in its fall de

scribing the altitude [G, as EF 2 PQ 2 to EF 2
.

Let the breadth of the canal be increased in wfinitum ; and the ratios

between EF 2 PQ 2 and EF 2
,
and between EF 2 and EF 2 iPQ 2

.

will become at last ratios of equality. And therefore the velocity of the

little circle wr
ill now be the same which the water would acquire in falling,

and in its fall describing the altitude IG: and the resistance will become
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equal to the weight of a cylinder whose base is that little circle, and its

altitude half the altitude IG, from which the cylinder must fall to acquire
the velocity of the ascending circle

;
and with this velocity the cylinder in

the time of its fall will describe four times its length. But the resistance

of the cylinder moving forward with this velocity in the direction of its

length is the same with the resistance of the little circle (by Lem. IV), and

is therefore nearly equal to the force by which its motion may be generated
while it describes four times its length.

If the length of the cylinder be augmented or diminished, its motion,
and the time in which it describes four times its length, will be augmentedO t &
or diminished in the same ratio, and therefore the force by which the mo
tion so increased or diminished, may be destroyed or generated, will con

tinue the same
;
because the time is increased or diminished in the same

proportion ;
and therefore that force remains still equal to the resistance

of the cylinder, because (by Lem. IV) that resistance will also remain the

same.

If the density of the cylinder be augmented or diminished, its motion,

and the force by which its motion may be generated or destroyed in the

same time, will be augmented or diminished in the same ratio. Therefore

the resistance of any cylinder whatsoever will be to the force by which its

whole motion may be generated or destroyed, in the time during which it

moves four times its length, as the density of the medium to the density of

the cylinder- nearly. Q..E.D.

A fluid must be compressed to become continued; it must be continued

and non-elastic, that all the pressure arising from its compression may be

propagated in an instant
;
and so, acting equally upon all parts of the body

moved, may produce no change of the resistance. The pressure arising
from the motion of the body is spent in generating a motion in the parts
of the fluid, and this creates the resistance. But the pressure arising from

the compression of the fluid, be it ever so forcible, if it be propagated in an

instant, generates no motion in the parts of a continued fluid, produces no

change at all of motion therein
;
and therefore neither augments nor les

sens the resistance. This is certain, that the action of the fluid arising
from the compression cannot be stronger on the hinder parts of the body
moved than on its fore parts, and therefore cannot lessen the resistance de

scribed in this proposition. And if its propagation be infinitely swifter

than the motion of the body pressed, it will not be stronger on the fore

parts than on the hinder parts. But that action will be infinitely

swifter, and propagated in an instant, if the fluid be continued and non-

elastic.

COR. 1. The resistances, made to cylinders going uniformly forward in

the direction of their lengths through continued infinite mediums are in a
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ratio compounded of the duplicate ratio of the velocities and the duplicate

ratio of the diameters, and the ratio of the density of the mediums.

COR. 2. If the breadth of the canal be not infinitely increased but the

cylinder go forward in the direction of its length through an included

quiescent medium, its axis all the while coinciding with the axis of the

canal, its resistance will be to the force by which its whole motion, in the

time in which it describes four times its length,
K

.............I... ........
L

may be generated or destroyed, in a ratio

pounded of the ratio of EF 2 to EF 2 i

once, and the ratio of EF 2 to EF 2 PQ, 2

twice, and the ratio of the density of the medium

to the density of the cylinder.

COR. 3. The same thing supposed, and that a

length L is to the quadruple of the length of

the cylinder in a ratio compounded of the ratio

EF 2 -- iPQ 2 to EF 2
once, and the ratio of

EF 2 PQ, 2 to EF 2
twice; the resistance of

the cylinder will be to the force by which its whole motion, in the time

during which it describes the length L, may be destroyed or generated, as

the density of the medium to the density of the cylinder.

SCHOLIUM.

In this proposition we have investigated that resistance alone which

arises from the magnitude of the transverse section of the cylinder, neg

lecting that part of the same which may arise from the obliquity of the

motions. For as, in Case 1, of Prop. XXXVL, the obliquity of the mo
tions with which the parts of the water in the vessel converged on every

side to the hole EF hindered the efflux of the water through the hole, so,

in this Proposition, the obliquity of the motions, with which the parts of

the water, pressed by the antecedent extremity of the cylinder, yield to the

pressure, and diverge on all sides, retards their passage through the places

that lie round that antecedent extremity, toward the hinder parts of the

cylinder, and causes the fluid to be moved to a greater distance; which in

creases the resistance, and that in the same ratio almost in which it dimin

ished the efflux of the water out of the vessel, that is, in the duplicate ratio

of 25 to 21, nearly. And as, in Case 1, of that Proposition, we made the

parts of the water pass through the hole EF perpendicularly and in the

greatest plenty, by supposing all the water in the vessel lying round the

cataract to be frozen, and that part of the water whose motion was oblique,

and useless to remain without motion, so in this Proposition, that the

obliquity of the motions may be taken away, and the parts of the water

may give the freest passage to the cylinder, by yielding to it witli the most

direct and quick motion possible, so that only so much resistance may re-
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main as arises from the magnitude of the transverse section, and which is

incapable of diminution, unless by diminishing the diameter of the cylinder ;

we must conceive those parts of the fluid whose motions are oblique and

useless, and produce resistance, to be at rest among themselves at both ex

tremities of the cylinder, and there to cohere, and be joined to the cylinder.

Let ABCD be a rectangle, and let

AE and BE be two parabolic arcs, i 1

described with the axis AB, and g j^
with a latus rectum that is to the .----&quot;&quot;

space HG, which must be described

by the cylinder in falling, in order

to acquire the velocity with which it moves, as HG to ^AB. Let CF and

DF be two other parabolic arcs described with the axis CD, and a latus

rectum quadruple of the former; and by the convolution of the figure

about the axis EF let there be generated a solid, whose middle part ABDC
is the cylinder we are here speaking of, and whose extreme parts ABE and

CDF contain the parts of the fluid at rest among themselves, and concreted

into two hard bodies, adhering to the cylinder at each end like a head and

tail. Then if this solid EACFDB move in the direction of the length of

its axis FE toward the parts beyond E, the resistance will be the same

which we have here determined in this Proposition, nearly ;
that is, it will

have the same ratio to the force with which the whole motion of the cyl

inder may be destroyed or generated, in the time that it is describing the

length 4AC with that motion uniformly continued, as the density of the

fluid has to the density of the cylinder, nearly. And (by Cor. 7, Prop.

XXXVI) the resistance must be to this force in the ratio of 2 to 3, at the

least.

LEMMA V.

If a cylinder, a sphere, and a spheroid, of equal breadths be placed suc

cessively in the middle of a cylindric canal, so that their axes may
coincide with the axis of the canal, these bodies will equally hinder t^e

passage of the water through the canal.

For the spaces lying between the sides of the canal, and the cylinder,

sphere, and spheroid, through which the water passes, are equal ;
and the

water will pass equally through equal spaces.

This is true, upon the supposition that all the water above the cylinder,

sphere, or spheroid, whose fluidity is not necessary to make the passage of

the water the quickest possible, is congealed, as was explained above in Cer

7, Prop. XXXVI.
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LEMMA VI.

The same supposition remaining, the fore- mentioned bodies are equally

acted OIL by the water Jlowing through the canal.

This appears by Lein. V and the third Law. For tht water and the

bodies act upon each other mutually and equally.

LEMMA VIL

If the water be at rest in the canal, and these bodies move with equil ve

locity and the contrary way through the canal, their resistances will

be equal among themselves.

This appears from the last Lemma, for the relative motions remain the

same among themselves.

SCHOLIUM.

The case is the same of all convex and round bodies, whose axes coincide

with the axis of the canal. Some difference may arise from a greater or

less friction; but in these Lemmata we suppose the bodies to be perfectly

smooth, and the medium to be void of all tenacity and friction
;
and that

those parts of the fluid which by their oblique and superfluous motions may
disturb, hinder, and retard the flux of the water through the canal, are at

rest amorg themselves
; being fixed like water by frost, and adhering to

the fore and hinder parts of the bodies in the manner explained in the

Scholium of the last Proposition : for in what follows we consider the very
least resistance that round bodies described with the greatest given trans

verse sections can possibly meet with.

Bodies swimming upon fluids, when they move straight forward, cause

the fluid to ascend at their fore parts and subside at their hinder parts,

especially if they are of an obtuse figure ;
and thence they meet with a

little more resistance than if they were acu*-e at the head and tail. And

bodies moving in elastic fluids, if they are obtuse behind and before, con

dense the fluid a little more at their fore parts, and relax the same at theii

hinder parts ;
and therefore meet also with a little more resistance than ii

they were acute at the head and tail. But in these Lemmas and Proposi

tions we are not treating of elastic but non-elastic fluids; not of bodies

floating on the surface of the fluid, but deeply immersed therein. And
when the resistance of bodies in non-elastic fluids is once known, we may
then augment this resistance a little in elastic fluids, as our air; and in

the surfaces of stagnating fluids, as lakes and seas.

PROPOSITION XXXVIII. THEOREM XXX.

If a globe move uniformly forward in a compressed, infinite,
and no?t

elasticfluid, its resistance is to the force by which its whole
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may be destroyed or generated, in the time that it describes eight third

parts of its diameter, as the density of the fluid to the density of the

globe, very nearly.

For the globe is to its circumscribed cylinder as two to three
;
and there

fore the force which can destroy all the motion of the cylinder, while the

same cylinder is describing the length of four of its diameters, will destroy

all the motion of the globe, while the globe is describing two thirds of this

length, that is, eight third parts of its own diameter. Now the resistance

of the cylinder is to this force very nearly as the density of the fluid to the

density of the cylinder or globe (by Prop. XXXVII), and the resistance of

the globe is equal to the resistance of the cylinder (by Lem. V, VI, and

VII). Q.E.D.

COR. I. The resistances of globes in infinite compressed mediums are in

a ratio compounded of the duplicate ratio of the velocity, and the dupli

cate ratio of the diameter, and the ratio of the density of the mediums.

COR. 2. The greatest velocity, with which a globe can descend by its

comparative weight through a resisting fluid, is the same which it may

acquire by falling with the same weight, and without any resistance, and

in its fall describing a space that is, to four third parts of its diameter as

the density of the globe to the density of the fluid. For the globe in the

time of its fall, moving with the velocity acquired in falling, will describe

a space that will be to eight third parts of its diameter as the density of

the globe to the density of the fluid
;
and the force of its weight which

generates this motion will be to the force that can generate the same mo

tion, in the time that the globe describes eight third parts of its diameter,

with the same velocity as the density of the fluid to the density of the

globe; and therefore (by this Proposition) the force of weight will be equal

to the force of resistance, and therefore cannot accelerate the globe.

COR. 3. If there be given both the density of the globe and its velocity

at the beginning of the motion, and the density of the compressed quiescent

fluid in which the globe moves, there is given at any time both the velo

city of the globe and its resistance, and the space described by it (by Cor.

7, Prop. XXXV).
COR. 4. A globe moving in a compressed quiescent fluid of the same

density with itself will lose half its motion before it can describe the length

of two of its diameters (by the same Cor. 7).

PROPOSITION XXXIX. THEOREM XXXI.

If a S lobe move uniformly forward through a fluid inclosed and com

pressed in a cylindric canal, its resistance is to theforce by which its

whole motion may be generated or destroyed, in the time in which it

describes eight third parts of its dia?neter
t
in a ratio compounded of
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the ratio of the orifice of the canal to the excess of that orifice above

half the greatest circle of the globe ; and the duplicate ratio of the

orifice of the canal, to the excess of that orifice above the greatest circle

of the globe ; and t/ie ratio of the density of thefluid to the density of

the globe, nearly.

This appears by Cor. 2, Prop. XXXVII, and the demonstration pro
ceeds in the same manner as in the foregoing Proposition.

SCHOLIUM.

In the last two Propositions we suppose (as was done before in Lem. V)
that all the water which precedes the globe, and whose fluidity increases

the resistance of the same, is congealed. Now if that water becomes fluid,

it will somewhat increase the resistance. But in these Propositions that

increase is so small, that it may be neglected, because the convex superfi

cies of the globe produces the very same effect almost as the congelation
of the water.

PROPOSITION XL. PROBLEM IX.

Tofind by phenomena the resistance of a globe moving through a per

fectlyfluid compressed medium.

Let A be the weight of the globe in vacua, B its weight in the resisting

medium, D the diameter of the globe. F a space which is to fD as the den

sity of the globe to the density of the medium, that is, as A to A B, G
the time in which the globe falling with the weight B without resistance

describes the space P, and H the velocity which the body acquires by that

fall. Then H will be the greatest velocity with which the globe can pos

sibly descend with the weight B in the resisting medium, by Cor. 2, Prop
XXXVIII

;
and the resistance which the globe meets with, when descend

ing with that velocity, will be equal to its weight B ;
and the resistance it

meets with in any other velocity will be to the weight B in the duplicate ra

tio of that velocity to the greatest velocity H, by Cor. 1, Prop. XXXVIII.
This is the resistance that arises from the inactivity of the matter of

the fluid. That resistance which arises from the elasticity, tenacity, and

friction of its parts, may be thus investigated.

Let the globe be let fall so that it may descend in the fluid by the weight
B

;
and let P be the time of falling, and let that time be expressed in sec

onds, if the time G be given in seconds. Find the absolute number N
2P

agreeing to the logarithm 0,4342944819 &amp;gt;

and let L be the logarithm of

N 4- 1

the number and *^e velocity acquired in falling will bf
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N i 2PF
jj=

H, and the height described will be
-^

1 .38629430 IIP +

4,6051701S6LF. If the fluid be of a sufficient depth, we may neglect the

2PF
term 4,6051 70186LF; and r

-

1,3362943611F will be the altitude

described, nearly. These things appear by Prop. IX, Book II, and its Corol

laries, and are true upon this supposition, that the globe meets with no other

resistance but that which arises from the inactivity of matter. Now if it

really meet with any resistance of another kind, the descent will be slower,

and from the quantity of that retardation will be known the quantity of

this new resistance.

That the velocity and descent of a body falling in a fluid might more

easily be known, I have composed the following table
;
the first column of

which denotes the times of descent
;
the second shews the velocities ac

quired in falling, the greatest velocity being 100000000: the third exhib

its the spaces described by falling in those times, 2F being the space which

the body describes in the time G with the greatest velocity ;
and the fourth

gives the spaces described with the greatest velocity in the same times.

2P
The numbers in the fourth column are

-pn
and by subducting the number

1,3962944 4,60517021,, are found the numbers in the third column
;

and these numbers must be multiplied by the space F to obtain the spaces

described in falling. A fifth column is added to all these, containing the

spaces described in the same times by a body falling in vacno with the

force of B its comparative weight,
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SCHOLIUM*
In order to investigate the resistances of lluids from experiments, I pro

cured a square wooden vessel, whose length and breadth on the inside was

9 inches English measure, and its depth 9 feet \ ;
this I filled with rain

water: and having provided globes made up of wax, and lead included

therein, I noted the times of the descents of these globes, the height through
which they descended being 112 inches. A solid cubic foot of English
measure contains 76 pounds troy weight of rain water

;
and a solid inch

contains if ounces troy weight, or 253 grains: and a globe of water of

one inch in diameter contains 132,645 grains in air, or 132,8 grains in

vacn.o ; and any other globe will be as the excess of its weight in vacuo

above its weight in water.

EXPER. 1. A globe whose weight was 156^ grains in air, and 77 grains
in water, described the whole height of 1 12 inches in 4 seconds. And, upon

repeating the experiment, the globe spent again the very same time of 4

seconds in falling.

The weight of this globe in vacuo is 156^1 grains; and the excess of

this weight above the weight of the globe in water is 79^ f grains. Hence
the diameter of the globe appears to be 0,84224 parts of an inch. Then it

will be, as that excess to the weight of the globe in vacuo, so is the density

of the water to the density of the globe; and so is f parts of the diameter

of the globe (viz. 2,24597 inches) to the space 2F, which will be therefore

4.4256 inches. Now a globe falling in vacuo with its whole weight of

156^f grains in one second of time will describe 193| inches
;
and falling

in water in the same time with the weight of 77 grains without resistance,

will describe 95,219 inches
;
and in the time G, which is to one second of

time in the subduplicate ratio of the space P, or of 2,2128 inches to 95,219

inches, will describe 2,2128 inches, and will acquire the greatest velocity H
with which it is capable of descending in water. Therefore the time G is

0&quot;,15244. And in this time G, with that greatest velocity H, the globe

will describe the space 2F, which is 4,4256 inches; and therefore in 4 sec

onds will describe a space of 1 16,1245 inches. Subduct the space 1,3862944 F,

or 3,0676 inches, and there will remain a space of 113,0569 inches, which

the globe falling through water in a very wide vessel will describe in 4 sec

onds. But this space, by reason of the narrowness of the wooden vessel

before mentioned, ought to be diminished in a ratio compounded of the sub-

duplicate ratio of the orifice of the vessel to the excess of this orifice above

half a great circle of the globe, and of the simple ratio of the same orifice

to its excess above a great circle of the globe, that is, in a ratio of 1 to

0,9914. This done, we have a space of 112,08 inches, which a globe fall

ing through the water in this wooden vessel in 4 seconds of time ought

nearly to describe by this theory; but it described 112 inches by the ex

periment.
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EXPER. 2. Three equal globes, whose weights were severally 76^- grains
in air, and 5 T^ grains in water, were let fall successively -;

and every one

fell through the water in 15 seconds of time, describing in its fall a height
of 112 inches.

By computation, the weight of each globe in vacuo is 76 T
5
2 grains ;

the

excess of this weight above the weight in water is 71 grains J ;
the diam

eter of the globe 0,81296 of an inch; f parts of this diameter 2,167S

inches; the space 2F is 2,3217 inches; the space which a globe of 5 T\

grains in weight would describe in one second without resistance, 12,80

inches, and the time G0&quot;,301056. Therefore the globe, with the greatest

velocity it is capable of receiving from a weight of 5^ grains in its de

scent through water, will describe in the time 0&quot;,3L)1056the space of 2,3217

inches; and in 15 seconds the space 115,678 inches. Subduct the space

1,3862944F, or 1,609 inches, and there remains the space 114.069 inches,

which therefore the falling globe ought to describe in the same time, if the

vessel were very wide. But because our vessel was narrow, the space ought
to be diminished by about 0,895 of an inch. And so the space will remain

113,174 inches, which a globe falling in this vessel ought nearly to de

scribe in 15 seconds, by the theory. But by the experiment it described

112 inches. The difference is riot sensible.

EXPER. 3. Three equal globes, whose weights were severally 121 grains

in air, and 1 grain in water, were successively let fall
;
and they fell

through the water in the times
46&quot;, 47&quot;,

and
50&quot;, describing a height oi

112 inches.

By the theory, these globes ought to have fallen in about 40&quot;. Now
whether their falling more slowly were occasioned from hence, that in slow

motions the resistance arising from the force of inactivity does really bear

a less proportion to the resistance arising from other causes
;
or whether

it is to be attributed to little bubbles that might chance to stick to the

globes, or to the rarefaction of the wax by the warmth of the weather, or

of the hand that let them fall
; or, lastly, whether it proceeded from some

insensible errors in weighing the globes in the water, I am not certain.

Therefore the weight of the globe in water should be of several grains, that

the experiment may be certain, and to be depended on.

EXPER. 4. I began the foregoing experiments to investigate the resistan

ces of fluids, before I was acquainted with the theory laid down in the

Propositions immediately preceding. Afterward, in order to examine the

theory after it was discovered, I procured a wooden vessel, whose breadth

on the inside was Sf inches, and its depth ] 5 feet and -i. Then I made

four globes of wax, with lead included, each of which weighed 1391 grains

in air, and 7\ grains in water. These I let fall, measuring the times of their

falling in the water with a pendulum oscillating to half seconds. The

globes were cold, and had remained so some time, both when they were
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.reighed and when they were let fall
;
because warmth rarefies the wax. and

by rarefying it diminishes the weight of the globe in the water
;
and wax,

when rarefied, is not instantly reduced by cold to its former density. Be

fore they were let fall, they were totally immersed under water, lest, by the

weight of any part of them that might chance to be above the water, their

descent should be accelerated in its beginning. Then, when after their

immersion they were perfectly at rest, they were let go with the greatest

care, that they might not receive any impulse from the hand that let them

down. And they fell successively in the times of 47 J, 48^, 50, and 51 os

cillations, describing a height of 15 feet and 2 inches. But the weather

was now a little colder than when the globes were weighed, and therefore 1

repeated the experiment another day ;
and then the globes fell in the times

of 49, 49i, 50. and 53; and at a third trial in the times of 49, 50, 51.

and 53 oscillations. And by making the experiment several times over, I

found that the globes fell mostly in the times of 49| and 50 oscillations.

When they fell slower, I suspect them to have been retarded by striking

against the sides of the vessel.

Now, computing from the theory, the weight of the globe in vacno is

139| grains; the excess of this weight above the weight of the globe in

water 132|i grains ;
the diameter of the globe 0,99868 of an inch :

|- parts

of the diameter 2,66315 inches; the space 2F 2,8066 inches; the space

which a globe weighing 7| grains falling without resistance describes in a

second of time 9,88164 inches; and the time G0&quot;,376843 Therefore the

globe with the greatest velocity with which it is capable of descending

through the water by the force of a weight of 7} grains, will in the time

0&quot;,376843 describe a space of 2,8066 inches, and in one second of time a

space of 7,44766 inches, and in the time
25&quot;,

or in 50 oscillations, the space

186,1915 inches. Subduct the space 1,386294F, or 1,9454 inches, and

there will remain the space 184,2461 inches which the globe will describe

in that time in a very wide vessel. Because our vessel was narrow, let this

space be diminished in a ratio compounded of the subduplicate ratio of the

orifice of the vessel to the excess of this orifice above half a great circle of

the globe, and of the simple ratio of the same orifice to its excess above a

great circle of the globe ;
and we shall have the space of 181,86 inches,

which the globe ought by the theory to describe in this vessel in the time

of 50 oscillations, nearly. But it described the space of 182 inches, by

experiment, in 49^ or 50 oscillations.

EXPER. 5. Pour globes weighing 154| grains in air, and 21 1 grains in

water, being let fall several times, fell in the times of 28^, 29, 29
,
and 30,

and sometimes of 31, 32, and 33 oscillations, describing a height of 15 feet

and 2 inches.

They ought by the theory to have fallen in the time of 29 oscillations,

nearly.
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EXPER. 6. Five globes, weighing 212f grains in air, and 79^ in water,

being several times let fall, fell in the times of 15, 15^, 16, 17, and 18 os

cillations, describing a height of 15 feet and 2 inches.

By the theory they ought to have fallen in the time cf 15 oscillations,

nearly.

EXPER. 7. Four globes, weighing 293 f grains in air, and 35| grains in

water, being let fall several times, fell in the times of 29 30, 301 31, 32,

and 33 oscillations, describing a height of 15 feet and 1 inch and .

By the theory they ought to have fallen in the time of 28 oscillations,

nearly.

In searching for the cause that occasioned these globes of the same weight
and magnitude to fall, some swifter and some slower, I hit upon this

;
that

the globes, when they were first let go and began to fall, oscillated about

their centres; that side which chanced to be the heavier descending first,

and producing an oscillating motion. Now by oscillating thus, the globe

communicates a greater motion to the water than if it descended without

any oscillations
;
and by this communication loses part of its own motion

with which it should descend
;
and therefore as this oscillation is greater

or less, it will be more or less retarded. Besides, the globe always recedes

from that side of itself which is descending in the oscillation, and by so

receding comes nearer to the sides of the vessel, so as even to strike against

them sometimes. And the heavier the globes are, the stronger this oscil

lation is
;
and the greater they are, the more is the water agitated by it.

Therefore to diminish this oscillation of the globes, 1 made new ones of

lead and wax, sticking the lead in one side of the globe very near its sur

face; and I. let fall the globe in such a manner, that, as near as possible,

the heavier side might be lowest at the beginning of the descent. By this

means the oscillations became much less than before, and the times in which

the globes fell were not so unequal: as in the following experiments.

EXPER. 8. Four globes weighing 139 grains in air, and 6| in water,

were let fall several times, and fell mostly in the time of 51 oscillations,

never in more than 52, or in fewer than 50, describing a height of 182

inches.

By the theory they ought to fall in about the time of 52 oscillations

EXPER. 9. Four globes weighing 273^ grains in air, and 140 in water,

being several times let fall, fell in never fewer than 12, and never more

than 13 oscillations, describing a height of 182 inches.

These globes by the theory ought to have fallen in the time of 1 1 } os

cillations, nearly.

EXPER. 10. Four globes, weighing 384 grains in air, and 119^ in water,

oeing let fall several times, fell in the times of 17f 18, 18^, and 19 oscilla

tions, descril ing a height of 181| inches. And when they fell in the time
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of 19 oscillations, I sometimes heard them hit against the sides of tl.e ves

sel before they reached the bottom.

By the theory they ought to have fallen in the time of 15f oscillations,

nearly.

EXPER. 11. Three equal globes, weighing 48 grains in the air, and 3||
in water, being several times let fall, fell in the times of 43J, 44, 44 1, 45,

and 46 oscillations, and mostly in 44 and 45. describing a height of 182*

inches, nearly.

By the theory they ought to have fallen in the time of 46 oscillations

and f, nearly.

EXPER. 12. Three equal globes, weighing 141 grains in air, and 4| in

water, being let fall several times, fell in the times of 61, 62, 63, 64, and

65 oscillations, describing a space of 182 inches.

And by the theory they ought to have fallen in 641 oscillations

nearly.

From these experiments it is manifest, that when the globes fell slowly,

as in the second, fourth, fifth, eighth, eleventh, and twelfth experiments;

the times of falling are rightly exhibited by the theory but when the

globes fell more swiftly, as in the sixth, ninth, and tenth experiments, the

resistance was somewhat greater than in the duplicate ratio of the velocity.

For the globes in falling oscillate a little : and this oscillation, in those

globes that are light and fall slowly, soon ceases by the weakness of the

motion
;
but in greater and heavier globes, the motion being strong, it con

tinues longer, and is not to be checked by the ambient water till after sev

eral oscillations Besides, the more swiftly the globes move, the less are

they pressed by the fluid at their hinder parts; and if the velocity be. per

petually increased, they will at last leave an empty space behind them,

unless the compression of the fluid be increased at the same time. For the

compression of the fluid ought to be increased (by Prop. XXXII and

XXXIII) in the duplicate ratio of the velocity, in order to preserve the re

sistance in the same duplicate ratio. But because this is not done, the

globes that move swiftly are not so much pressed at their hinder parts as

the others; and by the defect of this pressure it comes to pass that their

resistance is a little greater than in a duplicate ratio of their velocity.

So that the theory agrees with the phenomena of bodies falling in water

It remains that we examine the phenomena of bodies falling in air.

EXPER. 13. From the top of St. Paul s Church in London, in Juiib

1710, there w.ere let fall together two glass globes, one full of quicksilver,

the other of air; and in their fall they described a height of 220 English
feet. A wooden table was suspended upon iron hinges on one

sidi&amp;gt;
and the

other side of the same was supported by a wooden pin. The twn globes

lying upon this table were let fall together by pulling out the pin bj

means of an iron wire reaching from thence quite down to the ground ;
s&amp;lt;
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that, the pin being removed, the table, which had then no support but the

iron hinges, fell downward, and turning round upon the hinges, gave leave
to the globes to drop off from it. At the same instant, with the same pull
of the iron wire that took out the pin, a pendulum oscillating to seconds
was let go, and began to oscillate. The diameters and weights of the

globes, and their times of falling, are exhibited in the following table.

But the times observed must be corrected
;
for the globes of mercury (by

Galileo s theory), in 4 seconds of time, will describe 257 English feet, and

220 feet in only 3&quot;42 &quot;. So that the wooden table, when the pin was taken

out, did not turn upon its hinges so quickly as it ought to have done; and

the slowness of that revolution hindered the descent of the globes at the

beginning. For the globes lay about the middle of the table, and indeed

were rather nearer to the axis upon which it turned than to the pin. And
hence the times of falling were prolonged about 18

&quot;;

and therefore ought
to be corrected by subducting that excess, especially in the larger globes,

which, by reason of the largeness of their diameters, lay longer upon the

revolving table than the others. This being done, the times in which the

six larger globes fell will come forth 8&quot; 12
&quot;,

7&quot; 42% 7&quot; 42
&quot;,

7&quot; 57
&quot;,

8&quot; 12
&quot;

and 7&quot; 42 &quot;.

Therefore the fifth in order among the globes that were full of air being
5 inches in diameter, and 483 grains in weight, fell in 8&quot; 12

&quot;, describing a

space of 220 feet. The weight of a bulk of water equal to this globe is

16600 grains; and the weight of an equal bulk of air is l||f- grains, or I9 r
3
o

grains ;
and therefore the weight of the globe in vacuo is 502T

3
?r grains;

and this weight is to the weight of a bulk of air equal to the globe as

502T
;

v to 19T
3
o- ;

and so is 2P to | of the diameter of the globe, that is, to

13i inches. Whence 2F becomes 28 feet 11 inches. A globe, falling in

vacuo with its whole weight of 502 T
3

grains, will in one second of time

describe 193| inches as above
;
and with the weight of 483 grains will de

scribe 185,905 inches; and with that weight 483 grains in vacuo will de

scribe the space F, or 14 feet 5i inches, in the time of 57
&quot;

58&quot;&quot;,
and ac

quire the greatest velocity it is capable of descending with in the air.

With this velocity the globe in 8&quot; 12 &quot;

of time will describe 245 feet and

5i inches. Subduct 1,3863F, or 20 feet and | an inch, and there remain

225 feet 5 inches. This space, therefore, the falling globe ought by the
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theory to describe in 8&quot; 12 &quot;. But* by the experiment it descrioed a space

of 220 feet. The difference is insensible.

By like calculations applied to the other globes full of air, I composed
the following table.

EXPER. 14. Anno 1719, in the month of July, Dr. Desaguliers made

some experiments of this kind again, by forming hogs bladders into spheri

cal orbs
;
which was done by means of a concave wooden sphere, which the

bladders, being wetted well first, were put into. After that being blown

full of air. they were obliged to fill up the spherical cavity that contained

them
;
and then, when dry, were taken out. These were let fall from the

lantern on the top of the cupola of the same church, namely, from a height

of 272 feet
;
and at the same moment of time there was let fall a leaden

globe, whose weight was about 2 pounds troy weight. And in the mean

time some persons standing in the upper part of the church where the

globes were let fall observed the whole times of falling ;
and others stand

ing on the ground observed the differences of the times between the fall

of the leaden weight and the fall of the bladder. The times were measured

by pendulums oscillating to half seconds. And one of those that stood

upon the ground had a machine vibrating four times in one second
;
and

another had another machine accurately made with a pendulum vibrating

four times in a second also. One of those also who stood at the top of the

church had a like machine
;
and these instruments were so contrived, that

their motions could be stopped or renewed at pleasure. Now the leaden

globe fell in about four seconds and i of time; and from the addition of

this time to the difference of time above spoken of, was collected the \Vhole

time in which the bladder was falling. The times which the five bladders

spent in falling, after the leaden globe had reached the ground, were, tn*e

first time, 14&quot;, 12f, 14f , 17 f, and
16J-&quot; ;

and the second time, 14i&quot;, 14}&quot;,

14&quot;, 19&quot;,
and 16

J&quot;.
Add to these

4&quot;,
the time in which the leaden globe

was falling, and the whole times in which the five bladders fell were, the

first fane, 19* 17&quot;, 18J&quot;, 22&quot;,
and

21}&quot;;
and the second time, 18f, 18i&quot;,

ISj&quot;, 23{&quot;,
and 21&quot;. The times observed at the top of the church were,

the first time, 19
f&quot;, 17f , 18f, 22f ,

and
21f&quot;;

and the second time, 19&quot;,

ISf&quot;, ISf, 24&quot;. and 211&quot;. But the bladders did not always fall directly

down, but sometimes fluttered a little in the air, and waved to and fro, aa
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they were descending. And by these motions the times of their falling

were prolonged, and increased by half a second sometimes, and sometimes

by a whole second. The second and fourth bladder fell most directly the

first time, and the first and third the second time. The fifth bladder was

wrinkled, and by its wrinkles was a little retarded. I found their diame

ters by their circumferences measured with a very fine thread wound about

them twice. In the following table I have compared the experiments with

the theory ; making the density of air to be to the density of rain-water as

1 to 860, and computing the spaces which by the theory the globes ought
to describe in falling.

Our theory, therefore, exhibits rightly, within a very little, all the re

sistance that globes moving either in air or in water meet with
; which^ap-

pears to be proportional to the densities of the fluids in globes of equal ve

locities and magnitudes.
In the Scholium subjoined to the sixth Section, we shewed, by experi

ments of pendulums, that the resistances of equal and equally swift globes

moving in air, water, and quicksilver, are as the densities of the fluids.

We here prove the same more accurately by experiments of bodies falling

in air and water. For pendulums at each oscillation excite a motion in

the fluid always contrary to the motion of the pendulum in its return : and

the resistance arising from this motion, as also the resistance of the thread

by which the pendulum is suspended, makes the whole resistance of a pen
dulum greater than the resistance deduced from the experiments of falling

bodies. For by the experiments of pendulums described in that Scholium,

a globe of the same density as water in describing the length of its semi-

diameter in air would lose the -3^-0 part of its motion. But by the

theory delivered in this seventh Section, and confirmed by experiments of

falling bodies, the same globe in describing the same length would lose only
a part of its motion equal to j-Vir? supposing the density of water to be

to the density of air as 8 r&amp;gt;0 to 1. Therefore the resistances were found

greater by the experiments of pendulums (for the reasons just mentioned)
than by the experiments of falling globes ;

and that in the ratio of about

4 to 3. Bat yet since the resistances of pendulums oscillating in air, wa

ter, and quicksilver, are alike increased by like causes, the proportion of

the resistances in these mediums will be rightly enough exhibited by th
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experiments of pendulums, as well as by the experiments of falling bodies.

And from all this it may be concluded, that the resistances of bodies, moving
in any fluids whatsoever, though of the most extreme fluidity, are, cceteris

paribus, as the densities of the fluids.

These things being thus established, we may now determine what part

of its motion any globe projected in any fluid whatsoever would nearly lose

in a given time. Let D be the diameter of the globe, and V its velocity

at the beginning of its motion, and T the time in which a globe with the

velocity V can describe in vacua a space that is, to the space |D as the

density of the globe to the density of the fluid
;
and the globe projected

*V
in that fluid will, in any other time t lose the part ,

the part
1 -p t

TV
r remaining ;

and will describe a space, which will be to that de

scribed in the same time in, vacua with the uniform velocity V, as the

T + t

logarithm of the number ~ multiplied by the number 2,302585093 is

to the number
7^, by Cor. 7, Prop. XXXV. In slow motions the resist

ance may be a little less, because the figure of a globe is more adapted to

motion than the figure of a cylinder described with the same diameter. In

swift motions the resistance may be a little greater, because the elasticity

and compression of the fluid do not increase in the duplicate ratio of the

velocity. But these little niceties I take no notice of.

And though air. water, quicksilver, and the like fluids, by the division

of their parts in infinitum, should be subtilized, and become mediums in

finitely fluid, nevertheless, the resistance they would make to projected

globes would be the same. For the resistance considered in the preceding

Propositions arises from the inactivity of the matter; and the inactivity

of matter is essential to bodies, and always proportional to the quantity
of matter. By the division of the parts of the fluid the resistance arising
from the tenacity and friction of the parts may be indeed diminished : but

the quantity of matter will not be at all diminished by this division
;
and

if the quantity of matter be the same, its force of inactivity will be the

same
;
and therefore the resistance here spoken of will be the sanue, as being

always proportional to that force. To diminish this resistance, the quan

tity of matter in the spaces through which the bodies move must be dimin

ished
;
and therefore the celestial spaces, through which the globes of the

planets and comets are perpetually passing towards all parts, with the

utmost freedom, and without the least sensible diminution of their motion,

must be utterly void of any corporeal fluid, excepting, perhaps, some ex

tremely rare vapours and the rays of light.
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Projectiles excite a motion in fluids as they pass through them, and this

motion arises from the excess of the pressure of the fluid at the fore parts

of the projectile above the pressure of the same at the hinder parts : and

cannot be less in mediums infinitely fluid than it is in air, water, and quick

silver, in proportion to the density of matter in each. Now this excess of

pressure does, in proportion to its quantity, not only excite a motion in the

fluid, but also acts upon the projectile so as to retard its motion
;
and there

fore the resistance in every fluid is as the motion excited by the projectile

in the fluid
;
and cannot be less in the most subtile aether in proportion to

the density of that aether, than it is in air, water, and Quicksilver, in pro

portion to the densities of those fluids.

SECTION VIII.

Of motion propagated through fluids.

PROPOSITION XLI. THEOREM XXXII.

A pressure is not propagated through a fluid in rectilinear directions

unless ichere the particles of the fluid lie in a right line.

If the particles a, b
} c, d, e, lie in a right line, the pres

sure may be indeed directly propagated from a to e ; but

then the particle e will urge the obliquely posited parti

te) cles / and g obliquely, and those particles / and g will

not sustain this pressure, unless they be supported by the

particles h and k lying beyond them
;
but the particles

that support them are also pressed by them
;
and those particles cannot

sustain that pressure, without being supported by, and pressing upon, those

particles that lie still farther, as / and m, and so on in itiflnitum. There

fore the pressure, as soon as it is propagated to particles that lie out of

right lines, begins to deflect towards one hand and the other, and will be

propagated obliquely in infinitum ; and after it has begun to be propagat

ed obliquely, if it reaches more distant particles lying out of the right

line, it will deflect again on each hand and this it will do as often as it

lights on particles that do not lie exactly in a right line. Q.E.D.

COR. If any part of a pressure, propagated through a fluid from a given

point, be intercepted by any obstacle, the remaining part, which is not in

tercepted, will deflect into the spaces behind the obstacle. This may be

demonstrated also after the following manner. Let a pressure be propagat

ed from the point A towards any part, and, if it be possible, in rectilinear
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directions
;

and the obstacle

NBCK being perforated in BC,
let all the pressure be intercepted

but the coniform part A PQ, pass

ing through the circular hole BC.

Let the cone APQ, be divided

into frustums by the transverse

plants, de, fg, Id. Then while

the cone ABO, propagating the

pressure, urges the conic frustum.

degf beyond it on the superficies

de, and this frustum urges the next frustum fgih on the
superficies/g&quot;,

and

that frustum urges a third frustum, and so in infinitum ; it is manifest

(by the third Law) that the first frustum defg is, by the re-action of the

second frustum fghi, as much urged and pressed on the superficies fg, as

it urges and presses that second frustum. Therefore the frustum degf is

compressed on both sides, that is, between the cone Ade and the frustum

fhig; and therefore (by Case 6, Prop. XtX) cannot preserve its figure,

unless it be compressed with the same force on all sides. Therefore with

the same force with which it is pressed on the superficies de,fg, it will

endeavour to break forth at the sides df, eg ; and there (being not in the

least tenacious or hard, but perfectly fluid) it will run out, expanding it

self,- unless there be an ambient fluid opposing that endeavour. Therefore,

by the effort it makes to run out, it will press the ambient fluid, at its sides

df, eg, with the same force that it does the frustum fylti ; and therefore,

the pressure will be propagated as much from the sides df, e~, into the

spaces NO, KL this way and that way, as it is propagated from the sr-

ptrficies/g- towards PQ,. QJE.D.

PROPOSITION XLII. THEOREM XXXIII.
All motion propagated through a fluid diverges from a rectilinear pro*

gress into ///. unmoved spaces.

CASE 1. Let a motion be

propagated from the point A
through the hole BC, and, if it

be possible, let it proceed in the

conic space BCQP according to

right lines diverging from the

point A. And let us first sup

pose this motion to be that of

waves in the surface of standing
water

;
and let de,fg, hi, kl, &c.,

be the tops of the several waves,
divided from each other by as

any intermediate valleys or hollows. Then, because the water in tht
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ridges of the waves is higher than in the unmoved parts of the fluid KL,

NO, it will run down from off the tops of those ridges, e, g, i, I, &c., d
y fj

hj k, &c., this way and that way towards KL and NO
;
and because the

water is more depressed in the hollows of the waves than in the unmoved

parts of the fluid KL, NO, it will run down into those hollows out of those

unmoved parts. By the first deflux the ridges of the waves will dilate

themselves this way and that way, and be propagated towards KL and NO.

And because the motion of the waves from A towards PQ is carried on by
a continual deflux from the ridges of the waves into the hollows next to

them, and therefore cannot be swifter than in proportion to the celerity of

the descent
;
and the descent of the water on each side towards KL and NO

must be performed with the same velocity ;
it follows that the dilatation

of the waves on each side towards KL and NO will be propagated with the

same velocity ;is the waves themselves go forward with directly from A to

PQ,. And therefore the whole space this way and that way towards KL
and NO will be filled by the dilated waves rfgr, shis, tklt, v/nnv, &c.

Q.E.I). That these things are so, any one may find by making the exper

iment in still water.

CASE 2. Let us suppose that de, fg, hi, kl, mn, represent pulses suc

cessively propagated from the point A through an elastic medium. Con

ceive the pulses to be propagated by successive condensations and rarefactions

of the medium, so that the densest part of every pulse may occupy a

spherical superficies described about the centre A, and that equal intervals

intervene between the successive pulses. Let the lines de, fg. hi, Id, &c..

represent the densest parts of the pulses, propagated through the hole BC ;

and because the medium is denser there than in the spaces on either side

towards KL and NO. it will dilate itself as well towards those spaces KL,

NO, on each hand, as towards the rare intervals between the pulses ;
and

thence the medium, becoming always more rare next the intervals, and

more dense next the pulses, will partake of their motion. And because the

progressive motion of the pulses arises from the perpetual relaxation of the

den?er parts towards the antecedentrnre intervals; and since the pulses will

relax themselves on each hand towards the quiescent parts of the medium

KL, NO, with very near the same celerity ;
therefore the pulses will dilate

themselves on all sides into the unmoved parts KL, NO, with almost the

same celerity with which they are propagated directly from the centre A;
and therefore will fill up the whole space KLON. Q.E.D. And we find

the same by experience also in sounds which are heard through a mountain

interposed ; and,*if they come into a chamber through the window, dilate

themselves into all the parts of the room, and are heard in every corner;

and not as reflected from the opposite walls, but directly propagated from

the window, as far as our sense can judge.

CASE 3 Let us suppose, lastly, that a motion of any kind is propagated
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from A through the hole BC. Then since the cause of this propagation is

that the parts of the medium that are near the centre A disturb and agitate

those which lie farther from it; and since the parts which are urged are

fluid, and therefore recede every way towards those spaces where they are

less pressed, they will by consequence recede towards all the parts of tht

quiescent medium; as well to the parts on each hand, as KL and NO,
as to those right before, as PQ,

;
and by this means all the motion, as soon

as it has passed through the hole BC, will begin to dilate itself, and from

thence, as from its principle and centre, will be propagated directly every

way. Q.E.D.

PROPOSITION XLIII. THEOREM XXXIV.

Every tremulous body in an elastic medium propagates the motion of
the pulses on every side right forward ; but in a non-elastic medium
excites a circular motion.

CASE. 1. The parts of the tremulous body, alternately going and return

ing, do in going urge and drive before them those parts of the medium that

lie nearest, and by that impulse compress and condense Nthem ;
and in re

turning suffer those compressed parts to recede again, and expand them

selves. Therefore the parts of the medium that lie nearest to the tremulous

body move to and fro by turns, in like manner as the parts of the tremulous

body itself do
;
and for the same cause that the parts of this body agitate

these parts of the medium, these parts, being agitated by like tremors, will

in their turn agitate others next to themselves
;
and these others, agitated

in like manner, will agitate those that lie beyond them, and so on in, infin-

itum. And in the same manner as the lirst parts of the medium were

condensed in going, and relaxed in returning, so will the other parts be

condensed every time they go, and expand themselves every time they re

turn. And therefore they will not be all going and all returning at the

same instant (for in that case they would always preserve determined dis

tances from each other, and there could be no alternate condensation and

rarefaction) ;
but since, in the places where they are condensed, they ap

proach to, and, in the places where they are rarefied, recede from each other,

therefore some of them will be going while others are returning ;
and so on

in infinitum. The parts so going, and in their going condensed, are pulses,

by reason of the progressive motion with which they strike obstacles in

their way; and therefore the successive pulses produced by a tremulous

body will be propagated in rectilinear directions
;
and that at nearly equal

distances from each other, because of the equal intervals of time in which

the body, by its several tremors produces the several pulses. And though
the parts of the tremulous body go and return .n some certain and deter

minate direction, yet the pulses propagated from thence through the medium

will dilate themselves towards the sides, by the foregoing Proposition : anc
7
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will be propagated on all sides from that tremulous body, as from a com
mon centre, in superficies nearly spherical and concentrical. An example
of this we have in waves excited by shaking a finger in water, which

proceed not only forward and backward agreeably to the motion of the

finger, but spread themselves in the manner of concentrical circles all round

the finger, and are propagated on every side. For the gravity of the water

supplies the place of elastic force.

Case 2. If the medium be not elastic, then, because its parts cannot be

condensed by the pressure arising from the vibrating parts of the tremulous

body, the motion will be propagated in an instant towards the parts where

the medium yields most easily, that is
;
to the parts which the tremulous

body would otherwise leave vacuous behind it. The case is the same with

that of a body projected in any medium whatever. A medium yielding
to projectiles does not recede in infinitum, but with a circular motion comes

round to the spaces which the body leaves behind it. Therefore as often

as a tremulous body tends to any part, the medium yielding to it comes

round in a circle to the parts which the body leaves
;
and as often as the

body returns to the first place, the medium will be driven from the place it

came round to, and return to its original place. And though the tremulous

bod} be not firm and hard, but every way flexible, yet if it continue of a

given magnitude, since it cannot impel the medium by its treniors any
where without yielding to it somewhere else, the medium receding from the

parts of the body where it is pressed will always come round in a circle to

the parts that yield to it. Q.E.D.

COR. It is a mistake, therefore, to think, as some have done, that the

agitation of the parts of flame conduces to the propagation of a pressure in

rectilinear directions through an ambient medium. A pressure of that

kind must be derived not from the agitation only of the parts of flame, but

from the dilatation of the whole.

PROPOSITION XL1V. THEOREM XXXV.

If water ascend a/id descend alternately in the erected legs KL, MN, of

a canal or pipe ; and a pendulum be constructed whose length between

the point of suspension and the centre of oscillation is equal to half

the length of the ivater in the canal ; I say, that the water will ascend

and descend in the same times in which the pendulum oscillates.

I measure the length of the water along the axes of the canal and its legs,

and make it equal to the sum of those axes; and take no notice of the

resistance of the water arising from its attrition by the sides of the canal.

Let, therefore, AB, CD, represent the mean height of the water in both

legs ;
and when the water in the leg KL ascends to the height EF, the

water will descend in the leg MN to the height GH. Let P be a pendulou/
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body, VP the thread, V the point of suspension, RPQS the cycloid whicL

ii

L N
the pendulum describes, P its lowest point, PQ an arc equal to the neight

AE. The force with which the motion of the water is accelerated and re

tarded alternately is the excess of the weight of the water in one leg above

the weight in the other; and, therefore, when the water in the leg KL
ascends to EF, and in the other leg descends to GH, that force is double

the weight of the water EABF, and therefore is to the weight of the whole

water as AE or PQ, to VP or PR. The force also with which the body P
is accelerated or retarded in any place, as Q, of a cycloid, is (by Cor. Prop.

LI) to its whole weight as its distance PQ, from the lowest place P to the

length PR of the cycloid. Therefore the motive forces of the water and

pendulum, describing the equal spaces AE, PQ, are as the weights to be

moved
;
and therefore if the water and pendulum are quiescent at first,

those forces will move them in equal times, and will cause them to go and

return together with a reciprocal motion. Q.E.D.
COR. 1. Therefore the reciprocations of the water in ascending and de

scending are all performed in equal times, whether the motion be more or

less intense or remiss.

COR. 2. If the length of the whole water in the canal be of 6J feet oi

French measure, the water will descend in one second of time, and will as-

cond in another second, and so on by turns in infinitum ; for a pendulum
of Sy -j

such feet in length will oscillate in one second of time.

COR. 3. But if the length of the water be increased or diminished, the

time of the reciprocation will be increased or diminished in the subdupli-

cate ratio of the length.

PROPOSITION XLY. THEOREM XXXVI.

The velocity of waves is in the subduplicate ratio of the breadths.

This follows from the construction of the following Proposition.

PROPOSITION XLVI. PROBLEM X.

Tofind the velocity of waves.

Let a pendulum be constructed, whose length between the point of sus

pension and the centre of oscillation is equal to the breadth of the waves
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and in the time that the pendulum will perform one single oscillation the

waves will advance forward nearly a space equal to their breadth.

That which I call the breadth of the waves is the transverse measure

lying between the deepest

part of the hollows, or the

tops of the ridges. Let

ABCDEF represent the surface of stagnant water ascending and descend

ing in successive waves
;
and let A, C, E, &c., be the tops of the waves

;

and let B, D, F, &c., be the intermediate hollows. Because the motion of

the waves is carried on by the successive ascent and descent of the water,

so that the parts thereof, as A, C, E, &c., which are highest at one time

become lowest immediately after
;
and because the motive force, by which

the highest parts descend and the lowest ascend, is the weight of the eleva

ted water, that alternate ascent and descent will be analogous to the recip

rocal motion of the water in the canal, and observe the same laws as to the

times of its ascent and descent; and therefore (by Prop. XLIV) if the

distances between the highest places of the waves A, C, E, and the lowest

B, D, F, be equal to twice the length of any pendulum, the highest parts

A, C, E, will become the lowest in the time of one oscillation, and in the

time of another oscillation will ascend again. Therefore between the pas

sage of each wave, the time of two oscillations will intervene
;
that is, the

wave will describe its breadth in the time that pendulum will oscillate

twice; but a pendulum of four times that length, and which therefore is

equal to the breadth of the waves, will just oscillate once in that time.

Q.E.L
COR. 1. Therefore waves, whose breadth is equal to 3 7\ French feet,

will advance through a space equal to their breadth in one second of time;

and therefore in one minute will go over a space of 1S3J feet
;
and in an

hour a space of 11000 feet, nearly.

COR. 2. And the velocity of greater or less waves will be augmented or

diminished in the subduplicatc ratio of their breadth.

These things are true upon the supposition that the parts of water as

cend or descend in a right line; but, in truth, that ascent and descent is

rather performed in a circle ; and therefore I propose the time denned by

this Proposition as only near the truth.

PROPOSITION XLVIL THEOREM XXXVII.

Ifpulses are propagated through a fluid, the .ve eral particles of the

Jluid, goittff and returning with the shortest reciprocal motion, are al

ways accelerated or retarded according to the law of the oscillating

pendulum.
Let AB, BC, CD, &c., represent equal distances of successive pulses,

ABC the line of direction of the motion of the successive pulses propagated
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from A to B
; E, F, G three physical points of the quiescent medium sit

uate in the right line AC at equal distances from each other
; Ee, F/, G^,

equal spaces of extreme shortness, through which those

points go and return with a reciprocal motion in each vi

bration
; e, &amp;lt;/&amp;gt;, y, any intermediate places of the same points ;

EF, FG physical lineolae, or linear parts of the medium

lying betAveen those points, and successively transferred into

the places t0, 0y, and ef, fg. Let there be drawn the

right line PS equal to the right line Ee. Bisect the same

in O, and from the centre O, with the interval OP, describe

the circle SIPi. Let the whole time of one vibration
;
with

its proportional parts, be expounded by the whole circum-

lerence of this circle and its parts, in such sort, that, when

any time PH or PHS/i is completed, if there be let fall to

PS the perpendicular HL or hi, and there

be taken E equal to PL or PI, the physi

cal point E may be found in e. A point,

as E, moving acccording to this law with

a reciprocal motion, in its going from E
through e to e, and returning again through
e to E, will perform its several vibrations with the same de

grees of acceleration and retardation with those of an oscil

lating pendulum. We are now to prove that the several

physical points of the medium will be agitated with such a

kind of motion. Let us suppose, then, that a medium hath

such a motion excited in it from any cause whatsoever, and

consider what will follow from thence.

In the circumference PHSA let there be taken the equal

arcs, HI, IK, or hi, ik, having the same ratio to the whole

circumference as the equal right lines EF, FG have to BC,
the whole interval of the pulses. Let fall the perpendicu

lars IM, KN, or wi, kn ; then because the points E, F, G are

successively agitated with like motions, and perform their en tire vibrations

composed of their going and return, while the pulse is transferred from B
to C

;
if PH or PHS/t be the time elapsed since the beginning of the mo

tion of the point E, then will PI or PHSi be the time elapsed since the

beginning of the motion of the point F, and PK or PHSA; the time elapsed

since the beginning of the motion of the point G; and therefore Ee, F0,

Gy, will be respectively equal to PL, PM, PN, while the points are going,

and to PI, Ptn, Pn, when the points are returning. Therefore ey or EG
4- Gy Et will, when the points are going, be equal to EG LN
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and in their return equal to EG + In. But ey is the breadth or ex

pansion of the part EG of the medium in the place ey ;
and therefore the

expansion of that part in its going is to its mean expansion as EG
LN to EG; and in its return, as EG -f In or EG + LN to EG.

Therefore since LN is to KH as IM to the radius OP, and KH to EG
as the circumference PHSAP to BC

;
that is, if we put V for the

radius of a circle whose circumference is equal to BC the interval of the

pulses, as OP to V and, ex cequo, LN to EG as IM to V
;
the expansion

of the part EG, or of the physical point F in the place ey, to the mean ex

pansion of the same part in its first place EG, will be as V IM to V
in going, and as V -f im to V in its return. Hence the elastic force of the

point P in the place ey to its mean elastic force in the place EG is as11. 11,
v fivf

* v m 1 ^s Som o&amp;gt;

an&amp;lt;^ as v i

^ v in lts re^urn. And by
V J.1VJL V V -f Iffl V

the same reasoning the elastic forces of the physical points E and G in going

are as .

qr
and ^ ==~ to T, ; and the difference of the forces to the

mean elastic force of the medium as TV̂V-V X HL-Vx KN + HL X KN
1 HL KN 1

to ~
;
that is, as : to

^,
or as HL KN to V

;
if we suppose

(by reason of the very short extent of the vibrations) HL and KN to be

indefinitely less than the quantity V. Therefore since the quantity V is

given, the difference of the forces is as HL KN
;
that is (because HL

KN is proportional to HK, and OM to OI or OP
;
and because HK

and OP are given) as OM
;
that is, if F/ be bisected in ft, as

ft&amp;lt;/&amp;gt;.

And
for the same reason the difference of the elastic forces of the physical points
e and y, in the return of the physical lineola ey, is as ftr/&amp;gt;. But that dif

ference (that is, the excess of the elastic force of the point e above the

elastic force of the point y) is the very force by which the intervening phy
sical lineola ey of the medium is accelerated in going, and retarded in re

turning ;
and therefore the accelerative force of the physical lineola ey is

as its distance from ft, the middle place of the vibration. Therefore (by

Prop. XXXVIII, Book 1) the time is rightly expounded by the arc PI
;

and the linear part of the medium sy is moved according to the law above-

mentioned, that is, according to the law of a pendulum oscillating ;
and

the case is the same of all the linear parts of which the whole medium is

compounded. Q,.E.D.

COR. Hence it appears that the number of the pulses propagated is the

same with the number of the vibrations of the tremulous body, and is not

multiplied in their progress. For the physical lineola ey as soon as it

returns to its first place is at rest
;
neither will it move again, unless ii
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receives a new motion either from the impulse of the tremulous body, or

of the pulses propagated from that body. As soon, therefore, as the pulses

cease to be propagated from the tremulous body, it will return to a state

of rest, and move no more.

PROPOSITION XLVIII. THEOREM XXXVIII.

The velocities of pulses propagated in an elastic fluid are in a ratin

compounded of the subduplicate, ratio of the elasticforce directly, and

the subduplicate ratio of the density inversely ; supposing the elastic

Jorce of thefluid to be proportional to its condensation

CASE I. If the mediums be homogeneous, and the distances of the pulses

in those mediums be equal amongst themselves, but the motion in one me
dium is more intense than in the other, the contractions and dilatations of

the correspondent parts will be as those motions
;
not that this proportion

is perfectly accurate. However, if the contractions and dilatations are not

exceedingly intense, the error will not be sensible
;
and therefore this pro

portion may be considered as physically exact. Now the motive elastic

forces are as the contractions and dilatations
;
and the velocities generated

in the same time in equal parts are as the forces. Therefore equal and

corresponding parts of corresponding pulses will go and return together,

through spaces proportional to their contractions and dilatations, with ve

locities that are as those spaces ;
and therefore the pulses, which in the

time of one going and returning advance forward a space dq aal to their

breadth, and are always succeeding into the places of the pulses that im

mediately go before them, will, by reason of the equality of the distances,

go forward in both mediums with equal velocity.

CASE 2. If the distances of the pulses or their lengths are greater in one

medium than in another, let us suppose that the correspondent parts de

scribe spaces, in going and returning, each time proportional to the breadths

of the pulses ;
then will their contractions and dilatations be equal : and

therefore if the mediums are homogeneous, the motive elastic forces, which

agitate them with a reciprocal motion, will be equal also. Now the matter

to be moved by these forces is as the breadth of the pulses ;
and the space

through which they move every time they go and return is in the same

ratio. And, moreover, the time of one going and returning is in a ratic

compounded of the subduplicate ratio of the matter, and the o-uwuupncatc
ratio of the space ;

and therefore is as the space. But the pulses advance

a space equal to their breadths in the times of going once and returning

once; that is, they go over spaces proportional to the times, and therefore

are equally swift.

CASE 3. And therefore in mediums of equal density and elastic force,

all the pulses are equally swift. Now if the density or the elastic force of

the medium were augmented, then, because the motive force is increased
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in the ratio of the elastic force, and the matter to be moved is increased in

the ratio of the density, the time which is necessary for producing the

same motion as before will be increased in the subduplicate ratio of the

density, and will be diminished in the subduplicate ratio of the elastic

force. And therefore the velocity of the pulses will be in a ratio com

pounded of the subduplicate ratio of the density of the medium inversely,

and the subduplicate ratio of the elastic force directly. Q,.E.D.

This Proposition will be made more clear from the construction of the

following Problem.

PROPOSITION XLIX. PROBLEM XL

The. density and elastic force of a medium being given, to find the, ve

locity of the pulses.

Suppose the medium to be pressed by an incumbent weight after the manner

of our air
;
and let A be the height, of a homogeneous medium, whose

weight is equal to the incumbent weight, and whose density is the same

with the density of the compressed medium in which the pulses are propa

gated. Suppose a pendulum to be constructed whose length between the

point of suspension and the centre of oscillation is A : and in the time in

which that pendulum will perform one entire oscillation composed of

its going and returning, the pulse will be propagated right onwards

through a space equal to the circumference of a circle described with the

radius A.

For, letting those things stand which were constructed in Prop. X.LV11,
if any physical line, as EF, describing the space PS in each vibration, be

acted on in the extremities P and S of every going and return that it

makes by an elastic force that is equal to its weight, it will perform its

several vibrations in the time in which the same might oscillate in a cy

cloid whose whole perimeter is equal to the length PS
;
and that because

equal forces will impel equal corpuscles through equal spaces in the same

or equal times. Therefore since the times of the oscillations are in the

subduplicate ratio of the lengths of the pendulums, and the length of the

pendulum is equal to half the arc of the whole cycloid, the time of one vi

bration would be to the time of the oscillation of a pendulum whose length

is A in the subduplicate ratio of the length ^PS or PO to the length A.

But the elastic force with which the physical lineola EG is urged, when it

Is found in its extreme places P, S, was (in the demonstration of Prop.

XLVII) to its whole elastic force as HL KN to V, that is (since the

point K now falls upon P), as HK to V: and all that force, or which is

the same thing, the incumbent weight by which the lineola EG is com

pressed, is to the weight of the lineola as the altitude A of the incumbent

weight to EG the length of the lineola
;
and therefore, ex ctquo, the force
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with which the lincola EG is urged in the places P and S

is to the weight of that lineola as HK X A to V X EG
;
or

as PO X A to VV; because HK was to EG as PO to V.

Therefore since the times in which equal bodies are impelled

through equal spaces are reciprocally in the subduplicate

ratio of the forces, the time of one vibration, produced by
the action of that elastic force, will be to the time of a vi

bration, produced by. the impulse of the weight in a subdu

plicate ratio of VV to PO X A, and therefore to the time

of the oscillation of a pendulum whose length is A in the

subduplicate ratio of VV to PO X A, and the subdupli

cate ratio of PO to A conjunctly ;
that is, in the entire ra

tio of V to A. But in the time of one

vibration composed of the going and re

turning of the pendulum, the pulse will

be propagated right onward through a

space equal to its breadth BC. There

fore the time in which a pulse runs over

the space BC is to the time of one oscillation composed of

the going and returning of the pendulum as V to A, that is,

as BC to the circumference of a circle whose radius is A.

But the time in which the pulse will run over the space BC
is to the time in which it will run over a length equal to

that circumference in the same ratio; and therefore in the

time of such an oscillation the pulse will run over a length

equal to that circumference. G,.E.D.

COR. 1. The velocity of the pulses is equal to that which

heavy bodies acquire by falling with an equally accele

rated motion, and in their fall describing half the alti

tude A. For the pulse will, in the time of this fall, sup

posing it to move with the velocity acquired by that fall, run over a

space that will be equal to the whole altitude A
;
and therefore in the

time of one oscillation composed of one going and return, will go over a

space equal to the circumference of a circle described with the radius A
;

for the time of the fall is to the time of oscillation as the radius of a circle

to its circumference.

COR. 2. Therefore since that altitude A is as the elastic force of the

fluid directly, and the density of the same inversely, the velocity of the

pulses will be in a ratio compounded of the subduplicate ratio of the den

sity inversely, and the subduplicate ratio of the clastic force directly.
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PROPOSITION L. PROBLEM XII.

Tofind the distances of the pulses.

Let the number of the vibrations of the body, by whose tremor the pulses

are produced; be found to any given time. By that number divide the

space which a pulse can go over in the same time, and the part found will

be the breadth of one pulse. Q.E.I.

SCHOLIUM.

The last Propositions respect the motions of light and sounds
;
for since

light is propagated in right lines, it is certain that it cannot consist in ac

tion alone (by Prop. XLI and XLIl). As to sounds, since they arise from

tremulous bodies, they can be nothing else but pulses of the air propagated

through it (by Prop. XLIII) ;
and this is confirmed by the tremors which

sounds, if they be loud and deep, excite in the bodies near them, as we ex

perience in the sound of drums
;
for quick and short tremors are less easily

excited. But it is well known that any sounds, falling upon strings in

unison with the sonorous bodies, excite tremors in those strings. This is

also confirmed from the velocity of sounds; for since the specific gravities

of rain-water and quicksilver are to one another as about 1 to 13f, and

when the mercury in the barometer is at the height of 30 inches of our

measure, the specific gravities of the air and of rain-water are to one

another as about 1 to 870, therefore the specific gravity of air and quick

silver are to each other as 1 to 11890. Therefore when the height of

the quicksilver is at 30 inches, a height of uniform air, whose weight would

be sufficient to compress our air to the density we find it to be of, must be

equal to 356700 inches, or 29725 feet of our measure
;
and this is that

very height of the medium, which I have called A in the construction of

the foregoing Proposition. A circle whose radius is 29725 feet is 186768

feet in circumference. And since a pendulum 39} inches in length com

pletes one oscillation, composed of its going and return, in two seconds of

time, as is commonly known, it follows that a pendulum 29725 feet, or

356700 inches in length will perform a like oscillation in 190f seconds.

Therefore in that time a sound will go right onwards 186768 feet, and

therefore in one second 979 feet.

But in this computation we have made no allowance for the crassitude

of the solid particles of the air, by which the sound is propagated instan

taneously. Because the weight of air is to the weight of water as 1 tc

870, and because salts are almost twice as dense as water
;

if the particles

of air are supposed to be of near the same density as those of water or salt,

and the rarity of the air arises from the intervals of the particles ;
the

diameter of one particle of air will be to the interval between the centres
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of the particles as 1 to about 9 or 10, and to the interval between the par

ticles themselves as 1 to 8 or 9. Therefore to 979 feet, which, according to

the above calculation, a sound will advance forward in one second of time,

\ve may add ^- 9
-,
or about 109 feet, io compensate for the cra-ssitude of the

particles of the air : and then a sound will go forward about 1088 feet in

one second of time.

Moreover, the vapours floating in the air being of another spring, and a

different tone, will hardly, if at all, partake of the motion of the true air

in which the sounds are propagated. Now if these vapours remain unmov

ed, that motion will be propagated the swifter through the true air alone,

and that in the subduplicate ratio of the defect of the matter. So if the

atmosphere consist of ten parts of true air and one part of vapours, the

motion of sounds will be swifter in the subduplicate ratio of 11 to 10, or

very nearly in the entire ratio of 21 to 20, than if it were propagated

through eleven parts of true air : and therefore the motion of sounds above

discovered must be increased in that ratio. By this means the sound will

pass through 1 142 feet in one second of time.

These things will be found true in spring and autumn, when the air is

rarefied by the gentle warmth of those seasons, and by that means its elas

tic force becomes somewhat more intense. But in winter, when the air is

condensed by the cold, and its elastic force is somewhat remitted, the mo
tion of sounds will be slower in a subduplicate ratio of the density ;

and,

on the other hand, swifter in the summer.

Now by experiments it actually appears that sounds do really advance

in one second of time about 1142 feet of English measure, or 1070 feet of

French measure.

The velocity of sounds being known, the intervals of the pulses are known
also. For M. Sauveur, by some experiments that he made, found that an

open pipe about five Paris feet in length gives a sound of the same tone

with a viol-string that vibrates a hundred times in one second. Therefore

there are near 10J pulses in a space of 1070 Paris feet, which a sound runs

over in asecond of time
;
and therefore one pulse fills up a space of about 1 T

7-

Paris feet, that is, about twice the length of the pipe. From whence it is

probable that the breadths of the pulses, in all sounds made in open pipes,

are equal to twice the length of the pipes.

Moreover, from the Corollary of Prop. XLVIt appears the reason why
the sounds immediately cease with the motion of the sonorous body, and

why they are heard no longer when we are at a great distance from the

sonorous bodies than when we are very near them. And besides, from the

foregoing principles, it plainly appears how it comes to pass that sounds are

so mightily increased in speaking-trumpets ;
for all reciprocal motion usea

to be increased by the generating cause at each return. And in tubes hin

dering the dilatation of the sounds, the motion decays more slowly, and

24
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recurs more forcibly ;
and therefore is the more increased by the new mo

tion impressed at each return. And these are the principal phasr. )mena oi

sounds.

SECTION IX.

Of the circular motion offluids.

HYPOTHESIS.

The resistance arisingfrom the want of lubricity in the parts of afluid,
is, casteris paribus, proportional to the velocity with which the parts of

thefluid are separatedfro?n each other.

PROPOSITION LI. THEOREM XXXIX.

If a solid cylinder infinitely long, in an uniform and infinite fluid, revolve

with an uniform motion about an axis given in position, and thefluid
be forced round by only this impulse of the cylinder, and every part

of the fluid persevere uniformly in its motion ; I say, that the periodic
times of the parts of thefluid are as their distances Jrom the axis of

the cylinder.

Let AFL be a cylinder turning uni

formly about the axis S, arid let the

concentric circles BGM, CHN, DIO,

EKP, &c., divide the fluid into innu

merable concentric cylindric solid orbs

of the same thickness. Then, because

the fluid is homogeneous, the impres
sions which the contiguous orbs make

upon each other mutually will be (by

the Hypothesis) as their translations

from each, other, and as the contiguous

superficies upon which the impressions

are made. If the impression made upon any orb be greater or less on its

concave than on its convex side, the stronger impression will prevail, and

will either accelerate or retard the motion of the orb, according as it agrees

with, or is contrary to, the motion of the same. Therefore, that every orb

may persevere uniformly in its motion, the impressions made on both sides

must be equal and their directions contrary. Therefore since the impres

sions are as the contiguous superficies, and as their translations from one

another, the translations will be inversely as the superficies, that is, inversely

as the distances of the superficies from the axis. But the differences of
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the angular motions about the axis are as those translations applied to the

distances, or as the translations d.rectly arid the distances inversely ;
that

is, joining these ratios together, as the squares of the distances inversely.

Therefore if there be erected the lines
A&quot;, B&, Cc, !.)&amp;lt;/, Ee, &c., perpendic

ular to the several parts of he infinite right line SABCDEQ,, and recip

rocally proportional to the squares of SA, SB, SO, SO, SE, &c., and

through the extremities of those perpendiculars there be supposed to pass

an hyperbolic curve, the sums of the differences, that is, the whole angular

motions, will be as the correspondent sums of the lines Ati, B6, Cc
1

, DC/, Ed?,

that is (if to constitute a medium uniformly fluid the number of the orbs

be increased and their breadth diminished in infinitum\ as the hyperbolic

areas AaQ, B6Q,, CcQ,, Dc/Q,, EeQ, &c., analogous to the sums
;
and the

times, reciprocally proportional to the angular motions, will be also recip

rocally proportional to those areas. Therefore the periodic time of any

particle as I), is reciprocally as the area Dc/Q,, that is (as appears

from the known methods of quadratures of curves), directly as the dis

tance SD. Q.E.D.

COR. 1. Hence the angular motions of the particles of the fluid are re

ciprocally as their distances from the axis of the cylinder, and the absolute

velocities are equal.

COR. 2. If a fluid be contained in a cylindric vessel of an infinite length,
and contain another cylinder within, and both the cylinders revolve about

one common axis, and the times of their revolutions be as their semi-

diameters, and every part of the fluid perseveres in its motion, the peri

odic times of the several parts will be as the distances from the axis of the

cylinders.

COR. 3. If there be added or taken away any common quantity of angu
lar motion from the cylinder and fluid moving in this manner; yet because

this new motion will not alter the mutual attrition of the parts of the fluid,

the motion of the parts among themselves will not be changed; for the

translations of the parts from one another depend upon the attrition.

Any part will persevere in that motion, which, by the attrition made

on both sides with contrary directions
,
is no more accelerated than it is re

tarded.

COR. 4. Therefore if there be taken away from this whole system of the

cylinders and the fluid all the angular motion of the outward cylinder, we

shall have the motion of the fluid in a quiescent cylinder.

COR. 5. Therefore if the fluid and outward cylinder are at rest, and the

inward cylinder revolve uniformly, there will be communicated a circular

motion to the fluid, which will be propagated by degrees through the whole

fluid
;
and will go on continually increasing, till such time as the several

parts of the fluid acquire the motion determined in Cor. 4.

COR. 6. And because the fluid endeavours to propagate its motion stil!
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farther, its impulse will carry the outmost cylinder also about with it, Tin-

less the cylinder be violently detained; and accelerate its motion till the

periodic times of both cylinders become equal among themselves. But if

the outward cylinder be violently detained, it will make an effort to retard

the motion of the fluid
;
and unless the inward cylinder preserve that mo

tion by means of some external force impressed thereon, it will make it

3ease by degrees.

All these things will be found true by making the experiment in deep

standing water.

PROPOSITION LIL THEOREM XL.

If a solid sphere, in an uniform and infinite fluid, revolves about an axis

given in position with an uniform motion., and thejiuid beforced round

by only this impulse of the sphere ; and every part of the fluid perse
veres uniformly in its motion ; I say, that the periodic times of the

parts of thefluid are as the squares of their distances from the centre

of the sphere.

CASE 1. Let AFL be a sphere turn

ing uniformly about the axis S, and let

the concentric circles BGM, CHN, DIO,
EKP, &cv divide the fluid into innu

merable concentric orbs of the same

thickness. Suppose those orbs to be

solid
; and, because the fluid is homo

geneous, the impressions which the con

tiguous orbs make one upon another

will be (by the supposition) as their

translations from one another, and the

contiguous superficies upon which the

impressions are made. If the impression upon any orb be greater or less

upon its concave than upon its convex side, the more forcible impression
will prevail, and will either accelerate or retard the velocity of the orb, ac

cording as it is directed with a conspiring or contrary motion to that of

the orb. Therefore that every orb may persevere uniformly in its motion,

it is necessary that the impressions made upon both sides of the orb should

be equal, and have contrary directions. Therefore since the impressions

are as the contiguous superficies, and as their translations from one
another^

the translations will be inversely as the superficies, that is, inversely as the

squares of the distances of the superficies from the centre. But the differ

ences of the angular motions about the axis are as those translations applied

to the distances, or as the translations directly and the distances inversely;

that is, by compounding those ratios, as the cubes of the distances inversely.

Therefore if upon the several parts of the infinite right line SABCDEQ
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there be erected the perpendiculars Aa, B6. Cc, Dd, Ee, c.
; reciprocally

proportional to the cubes of SA
5 SB, SO, SD, SE, etc., the sums of the

differences, that is, the whole angular motions will be as the corresponding
sums of the lines A#, B&, Cc, DC/, Ee, &amp;lt;fcc.,

that is (if to constitute an uni

formly fluid medium the number of the orbs be increased and their thick

ness diminished in infinitum), as the hyperbolic areas AaQ, B&Q,, CcQ,
Dtf Q,, EeQ,, etc., analogous to the sums

;
and the periodic times being re

ciprocally proportional to the angular motions, will be also reciprocally

proportional to those areas. Therefore the periodic time of any orb DIO
is reciprocally as the area Dt/Q,, that is (by the known methods of quadra

tures), directly as the square of the distance SD. Which was first to be

demonstrated.

CASE 2. From the centre of the sphere let there be drawn a great num
ber of indefinite right lines, making given angles with the axis, exceeding

one another by equal differences
; and, by these lines revolving about the

axis, conceive the orbs to be cut into innumerable annuli; then will every

annulus have four annuli contiguous to it, that is, one on its inside, one on

its outside, and two on each hand. Now each of these annuli cannot be

impelled equally and with contrary directions by the attrition of the inte

rior and exterior annuli, unless the motion be communicated according to

the law which we demonstrated in Case 1. This appears from that dem

onstration. And therefore any series of annuli, taken in any right line

extending itself in infinitum from the globe, will move according to the

law of Case 1, except we should imagine it hindered by the attrition of the

annuli on each side of it. But now in a motion, according to this law, no

such is, and therefore cannot be, any obstacle to the motions persevering

according to that law. If annuli at equal distances from the centre

revolve either more swiftly or more slowly near the poles than near the

ecliptic, they will be accelerated if slow, and retarded if swift, by their

mutual attrition; and so the periodic times will continually approach to

equality, according to the law of Case 1. Therefore this attrition will not

at all hinder the motion from going on according to the law of Case 1
,
and

therefore that law will take place ;
that is, the periodic times of the several

annuli will be as the squares of their distances from the centre of the globe.

Which was to be demonstrated in the second place.

CASE 3. Let now every annulus be divided by transverse sections into

innumerable particles constituting a substance absolutely and uniformly

fluid
;
and because these sections do not at all respect the law of circular

motion, but only serve to produce a fluid substance, the law of circular mo

tion will continue the same as before. All the very small annuli will eithei

not at all change their asperity and force of mutual attrition upon account

of these sections, or else they will change the same equally. Therefore the

proportion of the causes remaining the same, the proportion of the effects
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will remain the same also
;
that is, the proportion of the motions and tin

periodic times. Q.E.D. But now as the circular motion, and the centri

fugal force thence arising, is greater at the ecliptic than at the poles, there

must be some cause operating to retain the several particles in their ciicles
;

otherwise the matter that is at the ecliptic will always recede from the

centre, and come round about to the poles by the outside of the vortex,
and from thence return by the axis to the ecliptic with a perpetual circu

lation.

COR. 1. Hence the angular motions of the parts of the fluid about the

axis of the globe are reciprocally as the squares of the distances from the

centre of the globe, and the absolute velocities are reciprocally as the same

squares applied to the distances from the axis.

COR. 2. If a globe revolve with a uniform motion about an axis of a

given position in a similar and infinite quiescent fluid with an uniform

motion, it will communicate a whirling motion to the fluid like that of a

vortex, and that motion will by degrees be propagated onward in infinitnm ;

and this motion will be increased continually in every part of the fluid, till

the periodical times of the several parts become as the squares of the dis

tances from the centre of the globe.

COR. 3. Because the inward parts of the vortex are by reason of their

greater velocity continually pressing upon and driving forward the external

parts, and by that action are perpetually communicating motion to them,
and at the same time those exterior parts communicate the same quantity
of motion to those that lie still beyond them, and by this action preserve
the quantity of their motion continually unchanged, it is plain that the

motion is perpetually transferred from the centre to the circumference of

the vortex, till it is quite swallowed up and lost in the boundless extent of

that circumference. The matter between any two spherical superficies

concentrical to the vortex will never be accelerated
;
because that matter

will be always transferring the motion it receives from the matter nearer

the centre to that matter which lies nearer the circumference.

COR. 4. Therefore, in order to continue a vortex in the same state of

motion, some active principle is required from which the globe may receive

continually the same quantity of motion which it is always communicating
to the matter of the vortex. Without such a principle it will undoubtedly
come to pass that the globe and the inward parts of the vortex, being al

ways propagating their motion to the outward parts, and not receiving any
new motion, will gradually move slower and slower, and at last be carried

round no longer.

COR. 5. If another globe should be swimming in the same vortex at a

certain distance from its centre, and in the mean time by some force revolve

constantly about an axis of a given inclination, the motion of Jiis globe

will drive the fluid round after the manner of a vortex and at first this
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new and small vortex will revolve with its globe about the centre of the

other; and in the mean time its motion will creep on farther and farther,

and by degrees be propagated in iiifinitum, after the manner of the first

vortex. And for the same reason that the globe of the new vortex wat

carried about before by the motion of the other vortex, the globe of this

other will be carried about by the motion of this new vortex, sc that the

two globes will revolve about some intermediate point, and by reason of

that circular motion mutually fly from each other, unless some force re

strains them. Afterward, if the constantly impressed forces, by which the

globes persevere in their motions, should cease, and every thing be left to

act according to the laws of mechanics, the motion of the globes will lan

guish by degrees (for the reason assigned in Cor. 3 arid 4), and the vortices

at last will quite stand still.

COR. 6. If several globes in given places should constantly revolve with

determined velocities about axes given in position, there would arise from

them as many vortices going on in infinitum. For upon the same account

that any one globe propagates its motion in itifinitum, each globe apart
will propagate its own motion in infiidtwtn also ; so that every part of the

infinite fluid will be agitated with a motion resulting from the actions of

all the globes. Therefore the vortices will not be confined by any certain

limits, but by degrees run mutually into each other
;
and by the mutual

actions of the vortices on each other, the globes will be perpetually moved
from their places, as was shewn in the last Corollary ;

neither can they

possibly keep any certain position among themselves, unless some force re

strains them. But if those forces, which are constantly impressed upon
the globes to continue these motions, should cease, the matter (for the rea

son assigned in Cor. 3 and 4) will gradually stop, and cease to move in

vortices.

COR. 7. If a similar fluid be inclosed in a spherical vessel, and, by the

uniform rotation of a globe in its centre, is driven round in a vortex
;
and

the globe and vessel revolve the same way about the same axis, and their

periodical times be as the squares of the semi-diameters
;

the parts of the

fluid will not go on in their motions without acceleration or retardation,

till their periodical times are as the squares of their distances from

the centre of the vortex. No constitution of a vortex can be permanent
but this.

COR. 8. If the vessel, the inclosed fluid, and the globe, retain this mo

tion, and revolve besides with a common angular motion about any given

axis, because the mutual attrition of the parts of the fluid is not changed

by this motion, the motions of the parts among each other will not be

changed ;
for the translations of the parts among themselves depend upon

this attrition. Any part will persevere in that motion in which its attri-
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tion on one side retards it just as much as its attrition on the other side

accelerates it.

COR. 9. Therefore if the vessel be quiescent, and the motion of the

globe be given, the motion of the fluid will be given. For conceive a plane
to pass through the axis of the globe, and to revolve with a contrary mo
tion

;
and suppose the sum of the time of this revolution and of the revolu

tion of the globe to be to the time of the revolution of the globe as the

square of the semi-diameter of the vessel.to the square of the semi-diameter

of the globe ;
and the periodic times of the parts of the fluid in respect of

this plane will be as the squares of their distances from the centre of the

globe.

COR. 10. Therefore if the vessel move about the same axis with the globe,

or with a given velocity about a different one, the motion of the fluid will

be given. For if from the whole system we take away the angular motion

of the vessel, all the motions will remain the same among themselves as

before, by Cor. 8, and those motions will be given by Cor. 9.

COR. 11. If the vessel and the fluid are quiescent, and the globe revolves

with an uniform motion, that motion will be propagated by degrees through
the whole fluid to the vessel, and the vessel will be carried round by it,

unless violently detained
;
and the fluid and the vessel will be continually

accelerated till their periodic times become equal to the periodic times of

the globe. If the vessel be either withheld by some force, or revolve with

any constant and uniform motion, the medium will come by little and

little to the state of motion defined in Cor. 8, 9, 10, nor will it ever perse

vere in any other state. But if then the forces, by which the globe and

vessel revolve with certain motions, should cease, and the whole system be

left to act according to the mechanical laws, the vessel and globe, by means

of the intervening fluid, will act upon each other, and will continue to

propagate their motions through the fluid to each other, till their periodic

times become equal among themselves, and the whole system revolves to

gether like one solid body.

SCHOLIUM.
In all these reasonings I suppose the fluid to consist of matter of uniform

density and fluidity ;
I mean, that the fluid is such, that a globe placed

any where therein may propagate with the same motion of its own, at dis

tances from itself continually equal, similar and equal motions in the fluid

in the same interval of time. The matter by its circular motion endeavours

to recede from the axis of the vortex, and therefore presses all the matter

that lies beyond. This pressure makes the attrition greater, and the

Separation of the parts more difficult
;
and by consequence diminishes

the fluidity of the matter. Again ;
if the parts of the fluid are in any one

place denser or larger than in the others, the fluidity will be less in that

[lace, because there are fewer superficies where the parts can be separated
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from each other. In these cases I suppose the defect of the fluidity to be

supplied by the smoothness or softness of the parts, or some other condi

tion
;
otherwise the matter where it is less fluid will cohere more, and be

more sluggish, and therefore will receive the motion more slowly, and pro

pagate it farther than agrees with the ratio above assigned. If the vessel

be riot spherical, the particles will move in lines not circular, but answer

ing to the figure of the vessel
;
and the periodic times will be nearly as the

squares of the mean distances from the centre. In the parts between the

centre and the circumference the motions will be slower where the spaces

are wide, and swifter where narrow
;
but yet the particles will not tend to the

circumference at all the more for their greater swiftness
;
for they then

describe arcs of less curvity, and the conatus of receding from the centre is

as much diminished by the diminution of this curvature as it is augment
ed by the increase of the velocity. As they go out of narrow into wide

spaces, they recede a little farther from the centre, but in doing so are re

tarded
;
and when they come out of wide into narrow spaces, they are again

accelerated
;
and so each particle is retarded and accelerated by turns for

ever. These things will come to pass in a rigid vessel
;
for the state of

vortices in an infinite fluid is known by Cor. 6 of this Proposition.

I have endeavoured in this Proposition to investigate the properties of

vortices, that I might find whether the celestial phenomena can be explain

ed by them; for the phenomenon is this, that the periodic times of the

planets revolving about Jupiter are in the sesquiplicate ratio of their dis

tances from Jupiter s centre
;
and the same rule obtains also among the

planets that revolve about the sun. And these rules obtain also with the

greatest accuracy, as far as has been yet discovered by astronomical obser-

tion. Therefore if those planets are carried round in vortices revolving

about Jupiter and the sun, the vortices must revolve according to that

law. But here we found the periodic times of the parts of the vortex to

be in the duplicate ratio of the distances from the centre of motion
;
and

this ratio cannot be diminished and reduced to the sesquiplicate, unless

either the matter of the vortex be more fluid the farther it is from the cen

tre, or the resistance arising from the want of lubricity in the parts of the

fluid should, as the velocity with which the parts of the fluid are separated

goes on increasing, be augmented with it in a greater ratio than that in

which the velocity increases. But neither of these suppositions seem rea

sonable. The more gross and less fluid parts will tend to the circumfer

ence, unless they are heavy towards the centre. And though, for the sake

of demonstration, I proposed, at the beginning of this Section, an Hypoth
esis that the resistance is proportional to the velocity, nevertheless, it is in

truth probable that the resistance is in a less ratio than that of the velo

city ;
which granted, the periodic times of the parts of the vortex will be

in a greater than the duplicate ratio of the distances from its centre. If,

as some think, the vortices move more swiftly near the centre, then slower
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to a certain limit, then again swifter near the circumference, certainly

neither the sesquiplicate, nor any other certain and determinate ratio, can

obtain in them. Let philosophers then see how that phenomenon of the

sesquiplicate ratio can be accounted for by vortices.

PROPOSITION LIII. THEOREM XLI.

Bodies carried about in a vortex, and returning- in the same orb, are of

the same density with the vortex, and are moved according to the

same law with the parts of the vortex, as to velocity and direction oj

motion.

For if any small part of the vortex, whose particles or physical points

preserve a given situation among each other, be supposed to be congealed,
this particle will move according to the same law as before, since no change
is made either in its density, vis insita, or figure. And again ;

if a congealed
or solid part of the vortex be of the same density with the rest of the vortex,

and be resolved into a fluid, this will move according to the same law as

before, except in so far as its particles, now become fluid, may be moved

among themselves. Neglect, therefore, the motion of the particles among
themselves as not at all concerning the progressive motion of the whole, and

the motion of the whole will be the same as before. But this motion will be

the same with the motion of other parts of the vortex at equal distances

from the centre; because the solid, now resolved into a fluid, is become

perfectly like to the other parts of the vortex. Therefore a solid, if it be

of the same density with the matter of the vortex, will move with the same

motion as the parts thereof, being relatively at rest in the matter that sur

rounds it. If it be more dense, it will endeavour more than before to re

cede from the centre
;
and therefore overcoming that force of the vortex,

by which, being, as it were, kept, in equilibrio, it was retained in its orbit,

it will recede from the centre, and in its revolution describe a spiral, re

turning no longer into the same orbit. And, by the same argument, if it

be more rare, it will approach to the centre. Therefore it can never con

tinually go round in the same orbit, unless it be of the same density with

the fluid. But we have shewn in that case that it would revolve accord

ing to the same law with those parts of the fluid that are at the same or

equal distances from the centre of the vortex.

COR. 1. Therefore a solid revolving in a vortex, and continually going
round in the same orbit, is relatively quiescent in the fluid that carries it.

COR. 2. And if the vortex be of an uniform density, the same body may
revolve at any distance from the centre of the vortex.

SCHOLIUM.
Hence it is manifest that the planets are not carried round in corporeal

vortices
; for, according to the Copernican hypothesis, the planets going
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round the sun revolve in ellipses, having the sun in their common focus
;

and by radii drawn to the sun describe

areas proportional to the times. But

now the parts of a vortex can never re

volve with such a motion. Let AD,
BE, CF, represent three orbits describ

ed about the sun S, of which let the

utmost circle CF be concentric to the

sun
;
and let the aphelia of the two in

nermost be A, B j
and their perihelia

D, E. Therefore a body revolving in

the orb CF, describing, by a radius

drawn to the sun, areas proportional to

the times, will move with an uniform motion. And, according to the laws

of astronomy, the body revolving in the orb BE will move slower in its

aphelion B, and swifter in its perihelion E ; whereas, according to the

laws of mechanics, the matter of the vortex ought to move more swiftly in

the narrow space between A and C than in the wide space between D and

F
;
that is, more swiftly in the aphelion than in the perihelion. Now these

two conclusions contradict each other. So at the beginning of the sign of

Virgo, where the aphelion of Mars is at present, the distance between the*

orbits of Mars and Venus is to the distance between the same orbits, at the

beginning of the sign of Pisces, as about 3 to 2
;
and therefore the matter

of the vortex between those orbits ought to be swifter at the beginning of

Pisces than at the beginning of Virgo in the ratio of 3 to 2
;
for the nar

rower the space is through which the same quantity of matter passes in the

same time of one revolution, the greater will be the velocity with which it

passes through it. Therefore if the earth being relatively at rest in this

celestial matter should be carried round by it, and revolve together with it

about the sun, the velocity of the earth at the beginning of Pisces

would be to its velocity at the beginning of Virgo in a sesquialteral ratio.

Therefore the sun s apparent diurnal motion at the beginning of Virgo

ought to be above 70 minutes, and at the beginning of Pisces less than 48

minutes; whereas, on the contrary, that apparent motion of the sun is

really greater at the beginning of Pisces than at the beginning of Virgo;
as experience testifies

;
and therefore the earth is swifter at the beginning

of Virgo than at the beginning of Pisces
;
so that the hypothesis of vor

tices is utterly irreconcileable with astronomical phenomena, and rather

serves to perplex than explain the heavenly motions. How these mo
tions are performed in free spaces without vortices, may be understood

by the first Book
j
and I shall now more fully treat of it in the following

Book.
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BOOK III.

IN the preceding Books I have laid down the principles of philosophy ,

principles not philosophical, but mathematical : such, to wit, as we may
build our reasonings upon in philosophical inquiries. These principles are

the laws and conditions of certain motions, and powers or forces, which

chiefly have respect to philosophy : but, lest they should have appeared of

themselves dry and barren, I have illustrated them here and there with

some philosophical scholiums, giving an account of such things as are of

more general nature, and which philosophy seems chiefly to be founded on
;

such as the density and the resistance of bodies, spaces void of all bodies,

and the motion of light and sounds. It remains that, from the same prin

ciples, I now demonstrate the frame of the System of the World. Upon
this subject I had, indeed, composed the third Book in a popular method,

that it might be read by many ;
but afterward, considering that such as

had not sufficiently entered into the principles could not easily discern the

strength of the consequences, nor lay aside the prejudices to which they had

been many years accustomed, therefore, to prevent the disputes which might

be raised upon such accounts, I chose to reduce the substance of this Book

into the form of Propositions (in the mathematical way), which should be

read by those only who had first made themselves masters of the principles

established in the preceding Books : not that I would advise any one to the

previous study of every Proposition of those Books
;
for they abound with

such as might cost too much time, even to readers of good mathematical

learning. It is enough if one carefully reads the Definitions, the Laws of

Motion, and the first three Sections of the first Book. He may then pass

on to this Book, and consult such of the remaining Propositions of the

first two Books, as the references in this, and his occasions, shall require.
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RULES OF REASONING IN PHILOSOPHY,

RULE I.

We are Io admit no more causes of natural things than such as are both

true and sufficient to explain their appearances.

To this purpose the philosophers say that Nature does nothing in vain,
and more is in vain when less will serve

;
for Nature is pleased with sim

plicity, and affects not the pomp of superfluous causes.

RULE II.

Therefore to the same natural effects we must, asfar as possible, assign
the same causes.

As to respiration in a man and in a beast; the descent of stones in Europe
and in America ; the light of our culinary fire and of the sun

;
the reflec

tion of light in the earth, and in the planets.

RULE III.

The qualities of bodies, which admit neither intension nor remission oj

degrees, and which are found to belong to all bodies within the reach

of our experiments, are to be esteemed the universal qualities of all

bodies whatsoever.

For since the qualities of bodies are only known to us by experiments, we
are to hold for universal all such as universally agree with experiments ;

nnd such as are not liable to diminution can never be quite taken away.
We are certainly not to relinquish the evidence of experiments for the sake

of dreams and vain fictions of our own devising ;
nor are we to recede from

the analogy of Nature, which uses to be simple, and always consonant to

itself. We no other way know the extension of bodies than by our senses,

nor do these reach it in all bodies; but because we perceive extension in

all that are sensible, therefore we ascribe it universally to all others also.

That abundance of bodies are hard, we learn by experience ;
and because

the hardness of the whole arises from the hardness of the parts, we therefore

justly infer the hardness of the undivided particles not only of the bodies

we feel but of all others. That all bodies are impenetrable, we gather not

from reason, but from sensation. The bodies which we handle we find im

penetrable, and thence conclude impenetrability to be an universal property
of all bodies whatsoever. That all bodies are rnoveable, and endowed with

certain powers (which we call the vires inertias] of persevering in their mo

tion, or in their rest, we only infer from the like properties observed in the
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bodies which we have seen. The extension, hardness, impenetrability, mo

bility, and vis inertia of the whole, result from the extension, hardness,

impenetrability, mobility, and vires inertia of the parts; and thence we
conclude the least particles of all bodies to be also all extended, and hard

and impenetrable, and moveable, and endowed with their proper vires inertia.

And this is the foundation of all philosophy. Moreover, that the divided

but contiguous particles of bodies may be separated from one another, is

matter of observation
; and, in the particles that remain undivided, our

minds are able to distinguish yet lesser parts, as is mathematically demon

strated. But whether the parts so distinguished, and not yet divided, may,

by the powers of Nature, be actually divided and separated from one an

other, we cannot certainly determine. Yet, had we the proof of but one

experiment that any undivided particle, in breaking a hard and solid body,

suffered a division, we might by virtue of this rule conclude that the un

divided as well as the divided particles may be divided and actually sep

arated to infinity.

Lastly, if it universally appears, by experiments and astronomical obser

vations, that all bodies about the earth gravitate towards the earth, and

that in proportion to the quantity of matter which they severally contain
;

that the moon likewise, according to the quantity of its matter, gravitates

towards the earth
; that, on the other hand, our sea gravitates towards the

moon
;
and all the planets mutually one towards another

;
and the comets

in like manner towards the sun
;
we must, in consequence of this rule, uni

versally allow that all bodies whatsoever are endowed with a principle ot

mutual gravitation. For the argument from the appearances concludes with

more force for the universal gravitation of all bodies than for their impen

etrability ;
of which, among those in the celestial regions, we have no ex

periments, nor any manner of observation. Not that I affirm gravity to be

essential to bodies : by their vis insita I mean nothing but their vis iiicrticz.

This is immutable. Their gravity is diminished as they recede from the

earth.

RULE IV.

In experimental philosophy we are to look upon propositions collected by

general induction from, phenomena as accurately or very nearly true,

notwithstanding any contrary hypotheses that may be imagined, till

such time as other phenomena occur, by which they may either be made
more accurate, or liable to exceptions.

This rule we must follow, that the argument of induction may not bf

evaded by hypotheses.
25
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PHENOMENA, OR APPEARANCES,

PHENOMENON I.

That the circumjovial planets, by radii drawn to Jupiter s centre, de

scribe areas proportional to the times of description ; and that their

periodic times, the fixed stars being at rest, are in the sesquiplicate

proportion of their distances from, its centre.

This we know from astronomical observations. For the orbits of these

planets differ but insensibly from circles concentric to Jupiter ;
and their

motions in those circles are found to be uniform. And all astronomers

agree that their periodic times are in the sesquiplicate proportion of the

semi-diameters of their orbits; and so it manifestly appears from the fol-

1

owing table.

The periodic times of the satellites of Jupiter.

H 18h
. 27 . 34&quot;. 3d

. 13h
. 13 42&quot;. 7d

. 3 1

. 42 36&quot;. 16d
. 16h

. 32 9&quot;.

The distances of the satellites from Jupiter s centre.

Mr. Pound has determined, by the help of excellent micrometers, the

diameters of Jupiter and the elongation of its satellites after the following

manner. The greatest heliocentric elongation of the fourth satellite from

Tupiter s centre was taken with a micrometer in a 15 feet telescope, and at

the mean distance of Jupiter from the earth was found about 8 16&quot;. The

elongation of the third satellite was taken with a micrometer in a telescope

of 123 feet, and at the same distance of Jupiter from the earth was found

4 42&quot;. The greatest elongations of the other satellites, at the same dis

tance of Jupiter from the earth, are found from the periodic times to be 2

56&quot; 47
&quot;,

and 1 51&quot; 6 &quot;.

The diameter of Jupiter taken with the micrometer in a 123 feet tele

scope several times, and reduced to Jupiter s mean distance from the earth,

proved always less than
40&quot;,

never less than
38&quot;, generally 39&quot;. This di

ameter in shorter telescopes is
40&quot;,

or 41&quot;;
for Jupiter s light is a little

dilated by the unequal refrangibility of the rays, and this dilatation bears

3 less ratio to the diameter of Jupiter in the longer and more perfect tele-

escopes than in those which are shorter and less perfect. The times :i
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which two satellites, the first and the third, passed over Jupiter s body, were

observed, from the beginning of the ingress to the beginning of the egress,

and from the complete ingress to the complete egress, with the long tele

scope. And from the transit of the first satellite, the diameter of Jupiter

at its mean distance from the earth came forth 37
J-&quot;.

and from the transit

of the third
371&quot;.

There was observed also the time in which the shadow

of the first satellite passed over Jupiter s body, and thence the diameter of

Jupiter at its mean distance from the earth came out about 37&quot;. Let us

suppose its diameter to be
37}&quot; very nearly, and then the greatest elonga

tions of the first, second, third, and fourth satellite will be respectively

equal to 5,965, 9,494, 15,141, and 26,63 semi-diameters of Jupiter.

PHENOMENON II.

Tkat the. circumsalurnal planets, by radii drawn, to Saturtfs centre, de

scribe areas proportional to the times of description ; and that their

periodic times, the fixed stars being at rest, are in the sesqniplicata

proportion uf their distances from its centre.

For, as Cassiui from his own observations has determined, theii distan

ces from Saturn s centre and their periodic times are as follow.

The periodic times of the satellites of Saturn.

l d . 2l h
. IS 27&quot;. 2d

. 17h
. 41 22&quot;. 4d

. 12&quot;. 25 12&quot;. 15d
. 22^. 41 14&quot;,

79 1

. 7 1

. 48 00&quot;.

The distances of the satellitesfrom Saturn s centre, in semi-diameters oj

itv ring .

From observations li-. 2f 3|. 8. 24

From the periodic times . . . 1,93. 2,47. 3,45. 8. 23.35.

The greatest elongation of the fourth satellite from Saturn s centre is

commonly determined from the observations to be eight of th-se semi-

diameters very nearly. But the greatest elongation of this satellite from

Saturn s centre, when taken with an excellent micrometer iuMr../fuygen8
&amp;gt;

telescope of 123 feet, appeared to be eight semi-diameters and T
7- of a semi-

diameter. And from this observation arid the periodic times the distances

of the satellites from Saturn s centre in serni-diameters of the ring are 2.1.

2,69. 3,75. 8,7. and 25,35. The diameter of Saturn observed in the same

telescope was found to be to the diameter of the ring as 3 to 7
;
and the

diameter of the ring, May 28-29, 1719, was found to be 43&quot;
;
and th:*nce

the diameter of the ring when Saturn is at its mean distance from the

earth is
42&quot;,

and the diameter of Saturn 18&quot;. These things appear so in

very long and excellent telescopes, because in such telescopes the apparent

magnitudes of the heavenly bodies bear a greater proportion to the dilata

tion of light in the extremities of those bodies than in shorter telescopes.
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If we, then, reject all the spurious light, the diameter of Saturn will not

amount to more than 16&quot;.

PHENOMENON III.

That the five primary planets, Mercury, Venus, Mars, Jupiter, and Sat

urn, with their several orbits, encompass the sun.

That Mercury and Venus revolve about the sun, is evident from their

moon-like appearances. When they shine out with a full face, they are, in

respect of us, beyond or above the sun
;
when they appear half full, they

are about the same height on one side or other of the sun
;
when horned,

they are below or between us and the sun
;
and they are sometimes, when

directly under, seen like spots traversing the sun s disk. That Mars sur

rounds the sun, is as plain from its full face when near its conjunction with

the sun. and from the gibbous figure which it shews in its quadratures.
And the same thing is demonstrable of Jupiter and Saturn, from their ap

pearing full in all situations
;
for the shadows of their satellites that appear

sometimes upon their disks make it plain that the light they shine with is

not their own, but borrowed from the sun.

PHENOMENON IV.

That the fixed stars being at rest, the periodic times of the five primary
planets, and (whether of the suit about the earth, or) of the earth about

the sun, are in the sesquiplicate proportion of their mean distances

from the sun.

This proportion, first observed by Kepler, is now received by all astron

omers
;
for the periodic times are the same, and the dimensions of the orbits

are the same, whether the sun revolves about the earth, or the earth about

the sun. And as to the measures of the periodic times, all astronomers are

agreed about them. But for the dimensions of the orbits, Kepler and Bul-

lialdns, above all others, have determined them from observations with the

greatest accuracy ;
and the mean distances corresponding to the periodic

times differ but insensibly from those which they have assigned, and for

the most part fall in between them
;
as we may see from the following table.

The periodic times with respect to thefixed stars, of the planets and earth

revolving about the sun. in days and decimal parts of a day.

* ^ * $ ? *

10759,275. 4332,514. 686,9785. 365,2565. 224,6176. 87,9692.

The mean distances of the planets and of the earthfrom the sun.

* V I

According to Kepler 951000. 519650. 152350.

to Bullialdus 954198. 522520. 152350.

to the periodic times .... 954006. 520096. 152369
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J ? *

According to Kepler 100000. 72400. 38806
&quot;

to Bnllialdus ... . . . 100000. 72398. 38585
&quot;

to the periodic times 100000. 72333. 38710.

As to Mercury and Venus, there can be no doubt about their distances

from the sun
;
for they are determined by the elongations of those planets

from the sun
;
and for the distances of the superior planets, all dispute is

cut off by the eclipses of the satellites of Jupiter. For by those eclipses

the position of the shadow which Jupiter projects is determined
;
whence

we have the heliocentric longitude of Jupiter. And from its helio

centric and geocentric longitudes compared together, we determine its

distance.

PHENOMENON V.

Then the primary planets, by radii drawn to the earth, describe areas no

wise proportional to the times ; but that the areas which they describe

by radii drawn to the snn are proportional to the times of descrip
tion.

For to the earth they appear sometimes direct, sometimes stationary,

nay, and sometimes retrograde. But from the sun they are always seen

direct, and to proceed with a motion nearly uniform, that is to say, a little

swifter in the perihelion and a little slower in the aphelion distances, so as

to maintain an equality in the description of the areas. This a noted

proposition among astronomers, and particularly demonstrable in Jupiter,

from the eclipses of his satellites; by the help of which eclipses, as we have

said, the heliocentric longitudes of that planet, and its distances from the

sun, are determined.

PHENOMENON VI.

That the moon, by a radius drawn to the earths centre, describes an area

proportional to the time of description.

This we gather from the apparent motion of the moon, compared with

its apparent diameter. It is true that the motion of the moon is a little

disturbed by the action of the sun : but in laying down these Phenomena
I neglect those imall and inconsiderable errors.
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PROPOSITIONS-

PROPOSITION I. THEOREM I.

That the forces by which the circumjovial planets are continually drawn

offfrom rectilinear motions, and retained in their proper orbits, tend

to Jupiter s centre ; and are reciprocally as the squares of the distances

of the places of those planets/ro?/i that centre.

The former part of this Proposition appears from Pham. I, and Prop.
II or III, Book I : the latter from Phaen. I, and Cor. 6, Prop. IV, of the same

Book.

The same thing we are to understand of the planets which encompass

Saturn, by Phaon. II.

PROPOSITION II. THEOREM II.

That the forces by which the primary planets are continually drawn off

from rectilinear motions, and retained in their proper orbits, tend to

the sun. ; and are reciprocally as the squares of the distances of the

places of those planets from the sun s centre.

The former part of the Proposition is manifest from Phasn. V, and

Prop. II, Book I
;
the latter from Phaen. IV, and Cor. 6, Prop. IV, of the

same Book. But this part of the Proposition is, with great accuracy, de

monstrable from the quiescence of the aphelion points ;
for a very small

aberration from the reciprocal duplicate proportion would (by Cor. 1, Prop.

XLV, Book I) produce a motion of the apsides sensible enough in every

single revolution, and in many of them enormously great.

PROPOSITION III. THEOREM III.

That the force by which the moon is retained in its orbit tends to the

earth ; and is reciprocally as the square of the distance of its
plac&amp;gt;&amp;gt;,

from the earths centre.

The former part of the Proposition is evident from Pha3n. VI, and Prop.

II or III, Book I
;
the latter from the very slow motion of the moon s apo

gee; which in every single revolution amounting but to 3 3 in conse-

quentia, may be neglected. For (by Cor. 1. Prop. XLV, Book I) it ap

pears, that, if the distance of the moon from the earth s centre is to the

semi-diameter of the earth as D to 1, the force, from which such a motion

will result, is reciprocally as D 2
^f 3, i. e., reciprocally as the power of D,

whose exponent is 2^^ ;
that is to say, in the proportion of the distance

something greater than reciprocally duplicate, but which comes 59f time?

nearer to the duplicate than to the triplicate proportion. But in regard

that this motion is owinsr to the action of the sun (as we shall afterwards
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shew), it is here to be neglected. The action of the sun, attracting the

moon from the earth, is nearly as the moon s distance from the earth
;
and

therefore (by what we have shewed in Cor. 2, Prop. XLV. Book I) is to the

centripetal force of the moon as 2 to 357,45, or nearly so
;
that is, as 1 to

178
f-

. And if we neglect so inconsiderable a force of the sun, the re

maining force, by which the moon is retained in its orb, will be recipro

cally as D 2
. This will yet more fully appear from comparing this force

with the force of gravity, as is done in the next Proposition.

COR. If we augment the mean centripetal force by which the moon is

retained in its orb, first in the proportion of 177%$ to 178ff, and then in

the duplicate proportion of the semi-diameter of the earth to the mean dis

tance of the centres of the moon and earth, we shall have the centripetal

force of the moon at the surface of the earth
; supposing this force, in de

scending to the earth s surface, continually to increase in the reciprocal

duplicate proportion of the height.

PROPOSITION IV. THEOREM IV.

That the moon gravitates towards the earth, and by thejorce oj gravity
is continually drawn off from a rectilinear motion, and retained in

its orbit.

The mean distance of the moon from the earth in the syzygies in semi-

diameters of the earth, is, according to Ptolemy and most astronomers,

59 : according to Vendelin and Huygens, 60
;

to Copernicus, 60
1 ;

to

Street, 60| ;
and to Tycho, 56|. But Tycho, and all that follow his ta

bles of refraction, making the refractions of the sun and moon (altogether

against the nature of light) to exceed the refractions of the fixed stars, and

that by four or five minutes near the horizon, did thereby increase the

moon s horizontal parallax by a like number of minutes, that is, by a

twelfth or fifteenth part of the whole parallax. Correct this error, and

the distance will become about 60^ semi-diameters of the earth, near to

what others have assigned. Let us assume the mean distance of 60 diam

eters in the syzygies ;
and suppose one revolution of the moon, in respect

of the fixed stars, to be completed in 27d
. 7h

. 43
,
as astronomers have de

termined
;
and the circumference of the earth to amount to 123249600

Paris feet, as the French have found by mensuration. And now if we

imagine the moon, deprived of all motion, to be let go, so as to descend

towards the earth with the impulse of all that force by which (by Cor.

Prop. Ill) it is retained in its orb, it will in the space of one minute of time,

describe in its fall 15 T^ Paris feet. This we gather by a calculus, founded

either upon Prop. XXXVI, Book
[, or (which comes to the same thing;

upon Cor. 9, Prop. IV, of the same Book. For the versed sine of that arc,

which the moon, in the space of one minute of time, would by its mean
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motion describe at the distance of 60 seini-diameters of the earth, is nearly

15^ Paris feet, or more accurately 15 feet, 1 inch, and 1 line . Where

fore, since that force, in approaching to the earth, increases in the recipro

cal duplicate proportion of the distance, and, upon that account, at the

surface of the earth, is 60 X 60 times greater than at the moon, a body
in our regions, falling with that force, ought in the space of one minute of

time, to describe 60 X 60 X 15 T
] Paris feet; and, in the space of one sec

ond of time, to describe 15 ,\ of those feet; or more accurately 15 feet, 1

inch, and 1 line f . And with this very force we actually find that bodies

here upon earth do really descend : for a pendulum oscillating seconds in

the latitude of Paris will be 3 Paris feet, and 8 lines 1 in length, as Mr.

Hu.yveus has observed. And the space which a heavy body describes

by falling in one second of time is to half the length of this pendulum in

the duplicate ratio of the circumference of a circie to its diameter (as Mr.

Htiy^ens has also shewn), and is therefore 15 Paris feet, I inch, 1 line J.

And therefore the force by which the moon is retained in its orbit becomes,

at the very surface of the earth, equal to the force of gravity which we ob

serve in heavy bodies there. And therefore (by Rule I and II) the force by

which the moon is retained in its orbit is that very same force which we

commonly call gravity ; for, were gravity another force different from that,

then bodies descending to the earth with the joint impulse of both forces

would fall with a double velocity, and in the space of one second of time

would describe 30^ Paris feet
; altogether against experience.

This calculus is founded on the hypothesis of the earth s standing still
;

for if both earth and moon move about the sun. and at the same time about

their common centre of gravity, the distance of the centres of the moon and

earth from one another will be 6(H semi-diameters of the earth
;

as may
be found by a computation from Prop. LX, Book I.

SCHOLIUM.

The demonstration of this Proposition may be more diffusely explained

after the following manner. Suppose several moons to revolve about the

earth, as in the system of Jupiter or Saturn : the periodic times of these

moons (by the argument of induction) would observe the same law which

Kepler found to obtain among the planets ;
and therefore their centripetal

forces would be reciprocally as the squares of the distances from the centre

of the earth, by Prop. I, of this Book. Now if the lowest of these were

very small, and were so near the earth as almost to touo the tops of the

highest mountains, the centripetal force thereof, retaining it in its orb,

would be very nearly equal to the weights of any terrestrial bodies that

should be found upon the tops of those mountains, as may be known by

the foregoing computation. Therefore if the same little moon should be

deserted by its centrifugal force that carries it through its orb, and so be
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lisabled from going onward therein, it would descend to the earth
;
and

that with the same velocity as heavy bodies do actually fall with upo-n the

tops of those very mountains
;
because of the equality of the forces that

oblige them both to descend. And if the force by which that lowest moon

would descend were different from gravity, and if that moon were to gravi

tate towards the earth, as we find terrestrial bodies do upon the tops of

mountains, it would then descend with twice the velocity, as being impel

led by both these forces conspiring together. Therefore since both these

forces, that is, the gravity of heavy bodies, and the centripetal forces of the

moons, respect the centre of the earth, and are similar and equal between

themselves, they will (by Rule I and II) have one and the same cause. And

therefore the force which retains the moon in its orbit is that very force

which we commonly call gravity ;
because otherwise this little moon at the

top of a mountain must either be without gravity, or fall twice as swiftly

as heavy bodies are wont to do.

PROPOSITION V. THEOREM V.

Vhat the circumjovial planets gravitate towards Jupiter ; the circnntsat-

urnal towards Saturn ; the circumsolar towards the sun ; and by t/ie

forces of their gravity are drawn off from rectilinear motions, and re

tained in curvilinear orbits.

For the revolutions of the circumjovial planets about Jupiter, of the

circumsaturnal about Saturn, and of Mercury and Venus, and the other

circumsolar planets, about the sun, are appearances of the same sort with

the revolution of the moon about the earth
;
and therefore, by Rule II,

must be owing to the same sort of causes
; especially since it has been

demonstrated, that the forces upon which those revolutions depend tend to

the centres of Jupiter, of Saturn, and of the sun
;
and that those forces, in

receding from Jupiter, from Saturn, and from the sun, decrease in the same

proportion, and according to the same law, as the force of gravity does in

receding from the earth.

COR. 1. There is, therefore, a power of gravity tending to all the plan

ets
; for, doubtless, Venus, Mercury, and the rest, are bodies of the same

sort with Jupiter and Saturn. And since all attraction (by Law III) is

mutual, Jupiter will therefore gravitate towards all his own satellites, Sat

urn towards his, the earth towards the moon, and the sun towards all the

primary planets.

COR. 2. The force of gravity which tends to any one planet is re

ciprocally as the square of the distance of places from that planet s

centre.

COR. 3. All the planets do mutually gravitate towards one another, by

Cor. 1 and 2. And hence it is that Jupiter and Saturn, when near their
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conjunction; by their mutual attractions sensibly disturb each other s ?n&amp;gt;

tions. So the sun disturbs the motions of the moon
;
and both sun ini

moon disturb our sea, as we shall hereafter explain.

SCHOLIUM.

The force which retains the celestial bodi in their orbits has been

hitherto called centripetal force; but it being now made plain that it can

be no other than a gravitating force, we shall hereafter call it gravity.

For the cause of that centripetal force which retains the moon in its orbit

will extend itself to all the planets, by Rule I, II, and IV.

PROPOSITION VI. THEOREM VI.

That all bodies gravitate towards every planet ; and that the weights of

bodies towards any the same planet, at equal distancesfrom the centre

of the planet, are proportional to the quantities of matter which they

severally contain.

It has been, now of a long time, observed by others, that all sorts of

heavy bodies (allowance being made for the inequality of retardation which

they suffer from a small power of resistance in the air) descend to the

earth from equal heights in equal times; and that equality of times we

may distinguish to a great accuracy, by the help of pendulums. I tried the

thing in gold, silver, lead, glass, sand, eommpn salt, wood, water, and wheat.

I provided two wooden boxes, round and equal : I filled the one with wood,
and suspended an equal weight of gold (as exactly as I could) in the centre

of oscillation of the other. The boxes hanging by equal threads of 11 feet

made a couple of pendulums perfectly equal in weight and figure, and

equally receiving the resistance of the air. And, placing the one by the

other, I observed them to play together forward and backward, for a long

time, wi h equal vibrations. And therefore the quantity of matte* :n the

gold (by Cor. 1 and 6, Prop. XXIV, Book II) was to the quantity ot mat

ter in the wood as the action of the motive force (or vis tnotrix) upon all

the gold to the action of the same upon all the wood
;
that is, as the weight

of the one to the weight of the other : and the like happened in the other

bodies. By these experiments, in bodies of the same weight, 1 could man

ifestly have discovered a difference of matter less than the thousandth part

of the whol^, had any such been. But, without all doubt, the nature of

gravity towards the planets is the same as towards the earth. For, should

we imagine our terrestrial bodies removed to the orb of the moon, and

there, together with the moon, deprived of all motion, to be let go, so as to

fall together towards the earth, it is certain, from what we have demonstra

ted before, that, in equal times, they would describe equal spaces with the

moon, and of consequence are to the moon, in quantity of matter, as their

weights to its weight. Moreover, since the satellites of Jupiter perform
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their revolutions in times which observe the sesquiphiate pr portion ol

their distances from Jupiter s centre, their accelerative gravities towards

Jupiter will be reciprocally as the squares of their distances from Jupiter s

centre; that is, equal, at equal distances. And, therefore, these satellites,

if supposed to fall towards Jupiter from equal heights, would describe equal

spaces in equal times, in like manner as heavy bodies do on our earth.

And, by the same argument, if the circumsolar planets were supposed to be

let fall at equal distances from the sun, they would, in their descent towards

the sun, describe equal spaces in equal times. But forces which equally

accelerate unequal bodies must be as those bodies : that is to sa_y, the weights

;f the planets towards the sun must be as their quantities of matter,

further, that the weights of Jupiter and of his satellites towards the sun

are proportional to the several quantities of their matter, appears from the

exceedingly regular motions of the satellites (by Cor. 3, Prop. LXV, Book

1).
For if some of those bodies were more strongly attracted to the sun in

proportion to their quantity of matter than others, the motions of the sat

ellites would be disturbed by that inequality of attraction (by Cor.^, Prop.

LXV, Book I). If, at equal distances from the sun, any satellite, in pro

portion to the quantity of its matter, did gravitate towards the sun with a

force greater than Jupiter in proportion to his, according to any given pro

portion, suppose of d to e ; then the distance between the centres of the sun

and of the satellite s orbit would be always greater than the distance be

tween the centres of the sun and of Jupiter nearly in the subduplicate of

that proportion : as by some computations I have found. And if the sat

ellite did gravitate towards the sun with a force, lesser in the proportion of e

to d, the distance of the centre of the satellite s orb from the sun would be

less than the distance of the centre of Jupiter from the sun in the subdu

plicate of the same proportion. Therefore if, at equal distances from the

sun, the accelerative gravity of any satellite towards the sun were greater
or less than the accelerative gravity of Jupiter towards the sun but by one T oV7

part of the whole gravity, the distance of the centre of the satellite s orbit

from the sun would be greater or less than the distance of Jupiter from the

sun by one ^oVo Part of the whole distance; that is, by a nf h part of the

distance of the utmost satellite from the centre of Jupiter ;
an eccentricity

of the orbit which would be very sensible. But the orbits of the satellites

are concentric to Jupiter, and therefore the accelerative gravities of Jupiter,

and of all its satellites towards the sun, are equal among themselves. And

by the same argument, the weights of Saturn and of his satellites towards

the sun, at equal distances from the sun, are as their several quantities of

matter
;
and the weights of the moon and of the earth towards the sun are

either none, or accurately proportional to the masses of matter which they
contain. But some they are, by Cor. 1 and 3, Prop. V.

But further
; the weights of all the parts of every planet f awards any other
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planet are one to another as the matter in the several parts; for if some

parts did gravitate more, others less, than for the quantity of their matter,

then the whole planet, according to the sort of parts with which it most

abounds, would gravitate more or less than in proportion to the quantity of

matter in the whole. Nor is it of any moment whether these parts are

external or internal
;
for if, for example, we should imagine the terrestrial

bodies with us to be raised up to the orb of the moon, to be there compared
with its body : if the weights of such bodies were to the weights of the ex

ternal parts of the moon as the quantities of matter in the one and in the

other respectively but to the weights of the internal parts in a greater or

less proportion, then likewise the weights of those bodies would be to the

weight of the whole moon in a greater or less proportion; against what

we have shewed above.

COR. 1. Hence the weights of bodies do not depend upon their forms

and textures
;
for if the weights could be altered with the forms, they

would be greater or less, according to the variety of forms, in equal matter
;

altogether against experience.

COR. 2. Universally, all bodies about the earth gravitate towards the

earth
;
and the weights of all, at equal distances from the earth s centre.

are as the quantities of matter which they severally contain. This is the

quality of all bodies within the reach of our experiments ;
and therefore

(by Rule III) to be affirmed of all bodies whatsoever. If the ather, or anj
other body, were either altogether void of gravity, or were to gravitate lesr

in proportion to its quantity of matter, then, because (according to Aris

totle, Des Carles, and others) there is no difference betwixt that and other

bodies but in mere form of matter, by a successive change from form to

form, it might be changed at last into a body of the same condition with

those which gravitate most in proportion to their quantity of matter
; and,

on the other hand, the heaviest bodies, acquiring the first form of that

body, might by degrees quite lose their gravity. And therefore the weights
would depend upon the forms of bodies, and with those forms might be

changed : contrary to what was proved in the preceding Corollary.

COR. 3. All spaces are not equally full; for if all spaces were equally

full, then the specific gravity of the fluid which fills the region of the air,

on account of the extreme density of the matter, would fall nothing short

of the specific gravity of quicksilver, or gold, or any other the most dense

body ; and, therefore, neither gold, nor any other body, could descend in

air
;
for bodies do not descend in fluids, unless they are specifically heavier

than the fluids. And if the quantity of matter in a given space can, by

any rarefaction, be diminished, what should hinder a diminution to

infinity ?

COR. 4. If all the solid particles of all bodies are of the same density,

nor can be rarefied without pores, a void, space, or -acuum must be granted
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By bodies of the same density, I mean those whose vires inertia are in the

proportion of their bulks.

COR. 5. The power of gravity is of a different nature from the power of

magnetism ;
for the magnetic attraction is not as the matter attracted.

Some bodies are attracted more by the magnet ;
others less

;
most bodies

not at all. The power of magnetism in one and the same body may be

increased and diminished
;
and is sometimes far stronger, for the quantity

of matter, than the power of gravity ;
and in receding from the magnet

decreases not in the duplicate but almost in the triplicate proportion of the

distance, as nearly as I could judge from some rude observations.

PROPOSITION VII. THEOREM VII.

That there is a power of gravity tending to all bodies, proportional to

the several quantities of matter which they contain.

That all the planets mutually gravitate one towards another, we have

proved before
;
as well as that the force of gravity towards every one of them,

considered apart, is reciprocally as the square of the distance of places from

the centre of the planet. And thence (by Prop. LXIX, Book I, and its

Corollaries) it follows, that the gravity tending towards all the planets is

proportional to the matter which they contain.

Moreover, since all the parts of any planet A gravitate towards any

other planet B ;
and the gravity of every part is to the gravity of the

whole as the matter of the part to the matter of the whole
;
and (by Law

III) to every action corresponds an equal re-action
;
therefore the planet B

will, on the other hand, gravitate towards all the parts of the planet A ;

and its gravity towards any one part will be to the gravity towards the

whole as the matter of the part to the matter of the whole. Q.E.D.

COR, 1. Therefore the force of gravity towards any whole planet arises

from, and is compounded of, the forces of gravity towards all its parts.

Magnetic and electric attractions afford us examples of this
;
for all at

traction towards the whole arises from the attractions towards the several

parts. The thing may be easily understood in gravity, if we consider a

greater planet, as formed of a number of lesser planets, meeting together in

one globe ;
for hence it would appear that the force of the whole must

arise from the forces of the component parts. If it is objected, that, ac

cording to this law, all bodies with us must mutually gravitate one to

wards another, whereas no such gravitation any where appears, I answer,

that since the gravitation towards these bodies is to the gravitation towards

the whole earth as these bodies are to the whole earth, the gravitation to

wards them must be far less than to fall under the observation of our senses.

COR. 2. The force of gravity towards the several equal particles of any

body is reciprocally as the square of the distance of places from the parti

cles
;
as appears from Cor. 3, Prop. LXXIV, Book I.
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PROPOSITION VIII. THEOREM VIII.

Tn two spheres mutually gravitating each towards the other, if tlie matter

in places on all sides round about and equi-distantfrom the centres is

similar, the weight of either sphere towards the other will be recipro

cally as the square of the distance between their centres.

After I had found that the force of gravity towards a whole planet did

arise from and was compounded of the forces of gravity towards all its

parts, and towards every one part was in the reciprocal proportion of the

squares of the distances from the part, I was yet in doubt whether that re

ciprocal duplicate proportion did accurately hold, or but nearly so, in the

total force compounded of so many partial ones; for it might be that the

proportion which accurately enough took place in greater distances should

be wide of the truth near the surface of the planet, where the distances of

the particles are unequal, and their situation dissimilar. But by the help
of Prop. LXXV and LXXVI, Book I, and their Corollaries, I was at last

satisfied of the truth of the Proposition, as it now lies before us.

COR. 1. Hence we may find and compare together the weights of bodies

towards different planets ;
for the weights of bodies revolving in circles

about planets are (by Cor. 2, Prop. IV, Book I) as the diameters of the

circles directly, and the squares of their periodic times reciprocally ;
and

their weights at the surfaces of the planets, or at any other distances from

their centres, are (by this Prop.) greater or less in the reciprocal duplicate

proportion of the distances. Thus from the periodic times of Venus, re

volving about the sun, in 224 &amp;lt;J

. 16f
h

,
of the utmost circumjovial satellite

revolving about Jupiter, in 16 . 10 -?/. ;
of the Huygenian satellite about

Saturn in 15d
. 22f

h
.

;
and of the moon about the earth in 27d

. 7h
. 43

;

compared with the mean distance of Venus from the sun, and with the

greatest heliocentric elongations of the outmost circumjovial satellite

from Jupiter s centre, 8
16&quot;;

of the Huygenian satellite from the centre

of Saturn, 3 4&quot;
;

arid of the moon from the earth, 10 33&quot; : by computa
tion I found that the weight of equal bodies, at equal distances from the

centres of the sun, of Jupiter, of Saturn, and of the earth, towards the sun,

Jupiter, Saturn, and the earth, were one to another, as 1, T ^VT&amp;gt; ^oVr? an^

___i___
respectively. Then because as the distances are increased or di

minished, the weights are diminished or increased in a duplicate ratio, the

weights of equal bodies towards the sun, Jupiter, Saturn, and the earth,

at the distances 10000, 997, 791, and 109 from their centres, that is, at their

very superficies, will be as 10000, 943, 529, and 435 respectively. How
much the weights of bodies are at the superficies of the moon, will be

shewn hereafter.

COR. 2. Hence likewise we discover the quantity of matter in the several
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planets; for their quantities of matter are as the forces of gravity at equai

distances from their centres; that is, in the sun, Jupiter, Saturn, and the

earth, as 1, TO FTJ a-oVr? anc^ TeVaja respectively. If the parallax of the

sun be taken greater or less than 10&quot; 30
&quot;,

the quantity of matter in

the earth must be augmented or diminished in the triplicate of that pro

portion.

COR. 3. Hence also we find the densities of the planets ;
for (by Prop.

LXXII, Book
I)

the weights of equal and similar bodies towards similar

spheres are, at the surfaces of those spheres, as the diameters of the spheres 5

and therefore the densities of dissimilar spheres are as those weights applied

to the diameters of the spheres. But the true diameters of the Sun, .Jupi

ter, Saturn, and the earth, were one to another as 10000, 997, 791, arid

109; and the weights towards the same as 10000, 943, 529, and 435 re

spectively ;
and therefore their densities are as 100. 94|, 67, and 400. The

density of the earth, which comes out by this computation, does not depend

upon the parallax of the sun, but is determined by the parallax of the

moon, and therefore is here truly defined. The sun, therefore, is a little

denser than Jupiter, and Jupiter than Saturn, and the earth four times

denser than the sun
;
for the sun, by its great heat, is kept in a sort of

a rarefied state. The moon is denser than the earth, as shall appear after

ward.

COR. 4. The smaller the planets are, they are, cccteris parilms, of so

much the greater density ;
for so the powers of gravity on their several

surfaces come nearer to equality. They are likewise, cccteris paribiis, of

the greater density, as they are nearer to the sun. So Jupiter is more

dense than Saturn, and the earth than Jupiter ;
for the planets were to be

placed at different distances from the sun, that, according to their degrees

of density, they might enjoy a greater or less proportion to the sun s heat.

Our water, if it were removed as far as the orb of Saturn, would be con

verted into ice, and in the orb of Mercury would quickly fly away in va

pour ;
for the light of the sun, to which its heat is proportional, is seven

times denser in the orb of Mercury than with us : and by the thermometer

I have found that a sevenfold heat of our summer sun will make water

boil. Nor are we to doubt that the matter of Mercury is adapted to its

heat, and is therefore more dense than the matter of our earth
; since, in a

denser matter, the operations of Nature require a stronger heat.

PROPOSITION IX. THEOREM IX.

That the force of gravity, considered downward from t/ie surface

of the planets decreases nearly in the proportion of the distancesfrom
their centres.

If the matter of the planet were of an uniform density, this Proposi
tion would be accurately true (by Prop. LXXIII. Book I). The error,
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therefore, can be no greater than what may arise from the inequality of

the density.

PROPOSITION X. THEOREM X.

That the motions of the planets in the heavens may subsist an exceedingly

long time.

In the Scholium of Prop. XL, Book II, I have shewed that a globe of

water frozen into ice, and moving freely in our air, in the time that it would

describe the length of its semi-diameter, would lose by the resistance of the

air 3\6 part of its motion; and the same proportion holds nearly in all

globes, how great soever, and moved with whatever velocity. But that our

globe of earth is of greater density than it would be if the whole

consisted of water only, I thus make out. If the whole consisted of

water only, whatever was of less density than water, because of its Ivss

specific gravity, would emerge and float above. And upon this account, if

a globe of terrestrial matter, covered on all sides with water, was less dense

than water, it would emerge somewhere
; and, the subsiding water falling

back, would be gathered to the opposite side. And such is the condition

of our earth, which in a great measure is covered with seas. The earth, if

it was not for its greater density, would emerge from the seas, and, accord

ing to its degree of levity, would be raised more or less above their surface,

the water of the seas flowing backward to the opposite side. By the same

argument, the spots of the sun, which float upon the lucid matter thereof.

are lighter than that matter
; and, however the planets have been formed

while they were yet in fluid masses, all the heavier matter subsided to the

centre. Since, therefore, the common matter of our earth on the surface

thereof is about twice as heavy as water, and a little lower, in mines, is

found about three, or four, or even five times more heavy, it is probable that

the quantity of the whole matter of the earth may be five or six times

greater than if it consisted all of water
; especially since I have before

shewed that the earth is about four times more dense than Jupiter. If,

therefore, Jupiter is a little more dense than water, in the space of thirty

days, in which that planet describes the length of 459 of its semi-diame

ters, it would, in a medium of the same density Avith our air, lose almost a

tenth part of its motion. But since the resistance of mediums decreases

in proportion to their weight or density, so that water, which is 13| times

lighter than quicksilver, resists less in that proportion ;
and air, which is

860 times lighter than water, resists less in the same proportion ;
therefore

in the heavens, where the weight of the medium in which the planets move

is immensely diminished, the resistance will almost vanish.

It is shewn in the Scholium of Prop. XXII, Book II, that at the height

of 200 miles above the earth the air is more rare than it is at the super

ficies of the earth in the ratio of 30 to 0,0000000000003999, or as
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75000000000000 to 1 nearly. And hence the planet Jupiter, revolving in

a medium of the same density with that superior air, would not lose by the

resistance of the medium the 1000000th part of its motion in 1000000

years. In the spaces near the earth the resistance is produced only by the

air, exhalations, and vapours. When these are carefully exhausted by the

air-pump from under the receiver, heavy bodies fall within the receiver with

perfect freedom, and without the le.ist sensible resistance: gold itself, and

the lightest down, let fall together, will descend with equal velocity; and

though they fall through a space of four, six, and eight feet, they will come

to the bottom at the same time; as appears from experiments. And there

fore the celestial regions being perfectly void of air and exhalations, the

planets and comets meeting no sensible resistance in those spaces will con

tinue their motions through them for an immense tract of time.

HYPOTHESIS I.

That the centre of the system of the world is immovable.

This is acknowledged by all, while some contend that the earth,

others that the sun, is fixed in that centre. Let us see what may from

hence follow.

PROPOSITION XL THEOREM XI.

That the common, centre of gravity of the earth, the sun, and all the

planets, is immovable.

For (by Cor. 4 of the Laws) that centre either is at rest, or moves uni

formly forward in a right line
;
but if that centre moved, the centre of the

world would move also, against the Hypothesis.

PROPOSITION XII. THEOREM XII.

That the sun is agitated by a perpetual motion, but never recedes jar
from the common, centre of gravity of all the planets.

For since (by Cor. 2, Prop. VIII) the quantity of matter in the sun is to

the quantity of matter in Jupiter as 1067 to 1
;
and the distance of Jupi

ter from the sun is to the semi-diameter of the sun in a proportion but a

small matter greater, the common centre of gravity of Jupiter and the sun

will fall upon a point a little without the surface of the sun. By the same

argument, since the quantity of matter in the sun is to the quantity of

matter in Saturn as 3021 to 1, and the distance of Saturn from the sun is

to the semi-diameter of the sun in a proportion but a small matter less,

the common centre of gravity of Saturn and the sun will fall upon a point
a little within the surface of the sun. And, pursuing the principles of this

computation, we should find that though the earth and all the planets were

placed on one side of the sun, the distance of the common centre of gravity
of all from the centre of the sun would scarcely amount to one diameter of

26
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the sun. In other cases, the distances of those centres are always less : and

therefore, since that centre of gravity is in perpetual rest, the sun, accord

ing to the various positions of the planets, must perpetually be moved every

way, but will never recede far from that centre.

Con. Hence the common centre of gravity of the earth, the sun, and all

the planets, is to be esteemed the centre of the world
;
for since the earth,

the sun, and all the planets, mutually gravitate one towards another, and

are therefore, according to their powers of gravity, in perpetual agitation,

as the Laws of Motion require, it is plain that their moveable centres can

not be taken for the immovable centre of the world. If that body were to

be placed in the centre, towards which other bodies gravitate most (accord

ing to common opinion), that privilege ought to be allowed to the sun; but

since the sun itself is moved, a fixed point is to be chosen from which the

centre of the sun recedes least, and from which it would recede yet

less if the body of the sun were denser and greater, and therefore less apt
to be moved.

PROPOSITION XIII. THEOREM XIII.

The planets move in ellipses tvhicli have their common focus in the centre

of the sini ; and, by radii drawn, to tJtat centre, they describe areas pro
portional to the times of description.

We have discoursed above of these motions from the Phenomena. Now
that we know the principles on which they depend, from those principles

we deduce the motions of the heavens a priori. Because the weights of

the planets towards the sun are reciprocally as the squares of their distan

ces from the sun s centre, if the sun was at rest, and the other planets did

not mutually act one upon another, their orbits would be ellipses, having
the sun in their common focus; and they would describe areas proportional

to the times of description, by Prop. I and XI, and Cor. 1, Prop. XIII,

Book I. But the mutual actions of the planets one upon another are so

very small, that they may be neglected ;
and by Prop. LXVI, Book I, they

less disturb the motions of the planets around the sun in motion than if

those motions were performed about the sun at rest.

It is true, that the action of Jupiter upon Saturn is not to be neglected;

for the force of gravity towards Jupiter is to the force of gravity towards

the sun (at equal distances, Cor. 2, Prop. VIII) as 1 to 1067; and therefore

in the conjunction of Jupiter and Saturn, because the distance of Saturn

from Jupiter is to the distance of Saturn from the sun almost as 4 to 9, the

gravity of Saturn towards Jupiter will be to the gravity of Saturn towards

the sun as 81 to 16 X 1067; or, as 1 to about 21 1. And hence arises a

perturbation of the orb of Saturn in every conjunction of this planet with

Tupiter, so sensible, that astronomers are puzzled with it. As the planet
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is differently situated in these conjunctions, its eccentricity is sometimes

augmented, sometimes diminished; its aphelion is sometimes carried for

ward, sometimes backward, and its mean motion is by turns accelerated and

retarded
; yet the whole error in its motion about the sun, though arising

from so great a force, may be almost avoided (except in the mean motion)

by placing the lower focus of its orbit in the common centre of gravity of

Jupiter and the sun (according to Prop. LXVII, Book I), and therefore that

error, when it is greatest, scarcely exceeds two minutes
;
and the greatest

error in the mean motion scarcely exceeds two minutes yearly. But in the

conjunction of Jupiter and Saturn, the accelerative forces of gravity of the

sun towards Saturn, of Jupiter towards Saturn, and of Jupiter towards the

sun, are almost as 16, 81, and -
~o^~~ &amp;gt;

or 156609: and therefore

the difference of the forces of gravity of the sun towards Saturn, and of

Jupiter towards Saturn, is to the force of gravity of Jupiter towards the

sun as 65 to 156609, or as 1 to 2409. But the greatest power of Saturn

to disturb the motion of Jupiter is proportional to this difference; and

therefore the perturbation of the orbit of Jupiter is much less than that of

Saturn s. The perturbations of the other orbits are yet far less, except that

the orbit of the earth is sensibly disturbed by the moon. The common
centre of gravity of the earth and moon moves in an ellipsis about the sun

in the focus thereof, and, by a radius drawn to the sun, describes areas pro

portional to the times of description. But the earth in the mean time by
a menstrual motion is revolved about this common centre.

PROPOSITION XIV. THEOREM XIV.

The aphelions and nodes of the orbits of the planets are fixed.

The aphelions are immovable by Prop. XI, Book I
;
and so are the

planes of the orbits, by Prop. I of the same Book. And if the planes are

fixed, the nodes must be so too. It is true, that some inequalities may
arise from the mutual actions of the planets and comets in their revolu

tions
;
but these will be so small, that they may be here passed by.

COR. 1. The fixed stars are immovable, seeing they keep the same posi

tion to the aphelions and nodes of the planets.

COR. 2. And since these stars are liable to no sensible parallax from the

annual motion of the earth, they can have no force, because of their im

mense distance, to produce any sensible effect in our system. Not to

mention that the fixed stars, every where promiscuously dispersed in the

heavens, by their contrary attractions destroy their mutual actions, by

Prop. LXX, Book I.

SCHOLIUM.

Since the planets near the sun (viz. Mercury, Venus, the Earth, and
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Mars) are so small that they can act with but little force upon each other,

therefore their aphelions and nodes must be fixed, excepting in so far as

they are disturbed by the actions of Jupiter and Saturn, and other higher
bodies. And hence we may find, by the theory of gravity, that their aphe
lions move a little in consequentw, in respect of the fixed stars, and that

in the sesquiplicate proportion of their several distances from the sun. So

that if the aphelion of Mars, in the space of a hundred years, is carried

33 20&quot; in consequent-la, in respect of the fixed stars, the aphelions of the

Earth, of Venus, and of Mercury, will in a hundred years be carried for

wards 17
40&quot;,

10 53
,
and 4

16&quot;, respectively. But these motions are

so inconsiderable, that we have neglected them in this Proposition,

PROPOSITION XV. PROBLEM I.

To find the principal diameters
&amp;lt;&amp;gt;f

the orbits of the planets.

They are to be taken in the sub-sesquiplicate proportion of the periodic

times, by Prop. XV, Book I, and then to be severally augmented in the

proportion of the sum of the masses of matter in the sun and each planet

to the first of two mean proportionals betwixt that sum and the quantity of

matter in the sun, by Prop. LX, Book I.

PROPOSITION XVI. PROBLEM II.

To find the eccentricities and aphelions of the planets.

This Problem is resolved by Prop. XVIII, Book I.

PROPOSITION XVII. THEOREM XV.

That the diurnal motions of the planets are uniform, and that the

libration of the moon arises from its diurnal motion.

The Proposition is proved from the first Law of Motion, and Cor. 22,

Prop. LXVI, Book I. Jupiter, with respect to the fixed stars, revolves in

9 1

. 5(5
;
Mars in 24 h

. 39
;
Venus in about 23h

.
;
the Earth in 23 1

. 56
;
the

Sun in 25 1 days, and the moon in 27 days, 7 hours, 43 . These things

appear by the Phasnomena. The spots in the sun s body return to the

same situation on the sun s disk, with respect to the earth, in 27 days ;
and

therefore with respect to the fixed stars the sun revolves in about 25|days.

But because the lunar day, arising from its uniform revolution about its

axis, is menstrual, that is, equal to the time of its periodic revolution in

its orb, therefore the same face of the moon wr
ill be always nearly turned to

the upper focus of its orb
; but, as the situation of that focus requires, will

deviate a little to one side and to the other from the earth in the lower

focus
j
and this is the libration in longitude ;

for the libration in latitude

arises from the moon s latitude, and the inclination of its axis to the plane

of the ecliptic. This theory of the libration of the moon, Mr. N. Mercato*
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in his Astronomy, published at the beginning of the year 1676. explained

more fully out of the letters I sent him. The utmost satellite of Saturn

eeems to revolve about its axis with a motion like this of the moon, respect

ing Saturn continually with the same face; for in its revolution round

Saturn, as often as it comes to the eastern part of its orbit, it is scarcel)

visible, and generally quite disappears ;
which is like to be occasioned by

some spots in that part of its body, which is then turned towards the earth,

as M. Cassini has observed. So also the utmost satellite of Jupiter seema

to revolve about its axis with a like motion, because in that part of its body
which is turned from Jupiter it has a spot, which always appears as if it

were in Jupiter s own body, whenever the satellite passes between Jupiter

and our eye.

PROPOSITION XVIII. THEOREM XVI.

That the axes of the planets are less than the diameters drawn perpen
dicular to the axes.

The equal gravitation of the parts on all sides would give a spherical

figure to the planets, if it was not for their diurnal revolution in a circle.

By that circular motion it comes to pass that the parts receding from the

axis endeavour to ascend about the equator ;
and therefore if the matter is

in a fluid state, by its ascent towards the equator it will enlarge the di

ameters there, and by its descent towards the poles it will shorten the axis.

So the diameter of Jupiter (by the concurring observations of astronomers)
is found shorter betwixt pole and pole than from east to west. And, by
the same argument, if our earth was not higher about the equator than at

the poles, the seas would subside about the poles, and, rising toward* Ikf

equator, would lay all things there under water.

PROPOSITION XIX. PROBLEM III

Tofind the proportion of the axis of a planet to the dia meter j j*,rpen-

dici/lar thereto.

Our countryman, Mr. Norwood, measuring a distance of 005751 feet of

London measure between London and YorA:, in 1635, and obs,-rvino- the

difference of latitudes to be 2 28
,
determined the measure of one degree

to be 3671 96 feet of London measure, that is 57300 Paris toises. M
Picart, measuring an arc of one degree, and 22 55&quot; of the meridian be

tween Amiens and Malvoisine, found an arc of one degree to be 57060
Paris toises. M. Cassini, the father, measured the distance upon the me
ridian from the town of Collionre in Roussillon to the Observatory of

Pari; and his son added the distance from the Observatory to the Cita

del of Dunkirk. The whole distance was 486156^ toises and the differ

ence of the latitudes of Collionre and Dunkirk was 8 degrees, and 31
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llf&quot;.
Hence an arc of one degree appears to be 57061 Paris toises.

And from these measures we conclude that the circumference of the earth

is 123249600, and its semi-diameter 19615800 Paris feet, upon the sup

position that the earth is of a spherical figure.

In the latitude of Paris a heavy body falling in a second of time de

scribes 15 Paris feet, 1 inch, 1 J line, as above, that is, 2173 lines J. The

weight of the body is diminished by the weight of the ambient air. Let

us suppose the weight lost thereby to be TT ^o-o- Par ^ ^ ^he whole weight ;

then that heavy body falling in, vacua will describe a height of 2174 lines

in one second of time.

A body in every sidereal day of 23 1

. 56 4&quot; uniformly revolving in a

circle at the distance of 19615SOO feet from the centre, in one second oi

time describes an arc of 1433,46 feet
;
the versed sine of which is 0,0523656 1

feet, or 7,54064 lines. And therefore the force with which bodies descend

in the latitude of Paris is to the centrifugal force of bodies in the equator

arising from the diurnal motion of the earth as 2174 to 7,54064.

The centrifugal force of bodies in the equator is to the centrifugal force

with which bodies recede directly from the earth in the latitude of Parin

48 50 10&quot; in the duplicate proportion of the radius to the cosine of the

latitude, that is, as 7,54064 to 3,267. Add this force to the force with

which bodies descend by their weight in the latitude of Paris, and a body,

in the latitude of Paris, falling by its whole undiminished force of gravity,

in the time of one second, will describe 2177,267 lines, or 15 Paris feet,

1 inch, and 5,267 lines. And the total force of gravity in that latitude

will be to the centrifugal force of bodies in the equator of the earth as

2177,267 to 7,54064, or as 289 to 1.

Wherefore if APBQ, represent the figure of the

earth, now no longer spherical, but generated by the

rotation of an ellipsis about its lesser axis PQ,
;
and

ACQqca a canal full of water, reaching from the pole

Qq to the centre Cc, and thence rising to the equator

Art ; the weight of the water in the leg of the canal

ACca will be to the weight of water in the other leg

QCcq as 289 to 288, because the centrifugal force arising from the circu

lar motion sustains and takes off one of the 289 parts of the weight (in the

one leg), and the weight of 288 in the other sustains the rest. But by

computation (from Cor. 2, Prop. XCI, Book I) I find, that, if the matter

of the earth was all uniform, and without any motion, and its axis PQ,

were to the diameter AB as 100 to 101, the force of gravity in the

place Q towards the earth would be to the force of gravity in the same

place Q towards a sphere described about the centre C with the radius

PC, or QC, as 126 to 125. And, by the same argument, the force of

gravity in the place A towards the spheroid generated by the rotation of
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the ellipsis APBQ, about the axis AI3 is to the force of gravity in the

same place A, towards the sphere described about the centre C with the

radius AC, as 125 to 126. But the force of gravity in the place A to

wards the earth is a mean proportional betwixt the forces of gravity to

wards the spheroid and this sphere; because the sphere, by having its di

ameter PQ, diminished in the proportion of 101 to 100, is transformed into

the figure of the earth
;
and this figure, by having a third diameter per

pendicular to the two diameters AB and PQ, diminished in the same pro

portion, is converted into the said spheroid ;
and the force of gravity in A,

in either case, is diminished nearly in the same proportion. Therefore the

force of gravity in A towards the sphere described about the centre C with

the radius AC, is to the force of gravity in A towards the earth as 126 to

1251. And the force of gravity in the place Q towards the sphere de

scribed about the centre C with the radius QC, is to the force of gravity
in the place A towards the sphere described about the centre C, with the

radius AC, in the proportion of the diameters (by Prop. LXXII, Book
I),

that is, as 100 to 101. If, therefore, we compound those three proportions

126 to 125, 126 to 125|. and 100 to 101, into one, the force of gravity in

the place Q towards the earth will be to the force of gravity in the place

A towards the earth as 126 X 126 X 100 to 125 X 125| X 101
;
or as

:&amp;gt;01 to 500.

Now since (by Cor. 3, Prop. XCI, Book I) the force of gravity in either

leg of the canal ACca, or QCcy, is as the distance of the places from the

centre of the earth, if those legs are conceived to be divided by transverse.,

parallel, and equidistant surfaces, into parts proportional to the wholes,

the weights of any number of parts in the one leg ACca will be to the

weights of the same number of parts in the other leg as their magnitudes
and the accelerative forces of their gravity conjunctly, that is, as 10 J to

100, and 500 to 501. or as 505 to 501. And therefore if the centrifugal

force of every part in the leg ACca, arising from the diurnal motion, was

to the weight of the same part as 4 to 505, so that from the weight of

every part, conceived to be divided into 505 parts, the centrifugal force

might take off four of those parts, the weights would remain equal in each

leg, and therefore the fluid would rest in an equilibrium. But the centri

fugal force of every part is to the weight of the same part as 1 to 289
;

that is, the centrifugal force, which should be T y parts of the weight, is

only |g part thereof. And, therefore, I say, by the rule of proportion,

that if the centrifugal force j^ make the height of the water in the leg

ACca to exceed the height of the water in the leg QCcq by one T | part

of its whole height, the centrifugal force -^jj will make the excess of the

height in the leg ACca only ^{^ part of the height of the water in the

other leg QCcq ; and therefore the diameter of the earth at the equator, is

to its diameter from pole to pole as 230 to 229. And since the mean semi-
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diameter of the earth, according to PicarVs mensuration, is 19615800

Paris feet, or 3923,16 miles (reckoning 5000 feet to a mile), the earth

will be higher at the equator than at the poles by 85472 feet, or 17^-
miles. And its height at the equator will be about 19658600 feet, and at

the poles 19573000 feet.

If, the density and periodic time of the diurnal revolution remaining the

same, the planet was greater or less than the earth, the proportion of the

centrifugal force to that of gravity, and therefore also of the diameter be

twixt the poles to the diameter at the equator, would likewise remain the

game. But if the diurnal motion was accelerated or retarded in any pro

portion, the centrifugal force would be augmented or diminished nearly in

the same duplicate proportion ;
and therefore the difference of the diame

ters will be increased or diminished in the same duplicate ratio very nearly.

And if the density of the planet was augmented or diminished in any pro

portion, the force of gravity tending towards it would also be augmented
or diminished in the same proportion : and the difference of the diameters

contrariwise would be diminished in proportion as the force of gravity is

augmented, and augmented in proportion as the force of gravity is dimin

ished. Wherefore, since the earth, in respect of the fixed stars, revolves in

23h
. 56

,
but Jupiter in 9h

. 56
,
and the squares of their periodic times are

as 29 to 5, and their densities as 400 to 94
,
the difference of the diameters

29 400 1

of Jupiter will be to its lesser diameter as X ^^ X
^Tm

to 1; or as 1 to

9 f, nearly. Therefore the diameter of Jupiter from east to west is to its

diameter from pole to pole nearly as 10 to 9|-. Therefore since its

greatest diameter is
37&quot;,

its lesser diameter lying between the poles will

be 33&quot; 25&quot; . Add thereto about 3 for the irregular refraction of light,

and the apparent diameters of this planet will become 40 and 36&quot; 25&quot;
;

which are to each other as 11
-j

to 10^, very nearly. These things are so

upon the supposition that the body of Jupiter is uniformly dense. But

now if its body be denser towards the plane of the equator than towards

the poles, its diameters may be to each other as 12 to 11, or 13 to 12, or

perhaps as 14 to 13.

And Cassini observed in the year 1691, that the diameter of Jupiter

reaching from east to west is greater by about a fifteenth part than the

other diameter. Mr. Pound with his 123 feet telescope, and an excellent

micrometer, measured the diameters of Jupiter in the year 1719, and found

them as follow.
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So thut the theory agrees with the phenomena ;
for the planets are more

heated by the sun s rays towards their equators, and therefore are a lit fie

more condensed by that heat than towards their poles.

Moreover, that there is a diminution of gravity occasioned by the diur

nal rotation of the earth, and therefore the earth rises higher there than it

does at the poles (supposing that its matter is uniformly dense), will ap

pear by the experiments of pendulums related under the following Propo

sition.

PROPOSITION XX. PROBLEM IV.

Tofind and compare together the weights of bodies in the different re

gions of our earth.

Because the weights of the unequal legs of the canal

of water ACQqca are equal ;
and the weights of the

parts proportional to the whole legs, and alike situated

in them, are one to another as the weights of the P|

wholes, and therefore equal betwixt themselves ; the

weights of equal parts, and alike situated in the legs,

will be reciprocally as the legs, that is, reciprocally as

230 to 229. And the case is the same in all homogeneous equal bodies alike

situated in the legs of the canal. Their weights are reciprocally as the legs,

that is, reciprocally as the distances of the bodies from the centre of the earth.

Therefore if the bodies are situated in the uppermost parts of the canals, or on

the surface of the earth, their weights will be one to another reciprocally as

their distances from the centre. And. by the same argument, the weights in

all other places round the whole surface of the earth are reciprocally as the

distances of the places from the centre
; and, therefore, in the hypothesis

of the earth s being a spheroid are given in proportion.

Whence arises this Theorem, that the increase of weight in passing from

tne equator to the poles is nearly as the versed sine of double the latitude
;

or, which comes to the same thinir, as the square of the right sine of the

latitude
;
and the arcs of the degrees of latitude in the meridian increase

nearly in the same proportion. And, therefore, since the latitude of Paris

is 48 50
,
that of places under the equator 00 00

,
and that of places

under the poles 90
;
and the versed sines of double those arcs are

11334,00000 and 20000, the radius being 10000
;
and the force of gravity

at the pole is to the force of gravity at the equator as 230 to 229
;
and

the excess of the force of gravity at the pole to the force of gravity at the

equator as 1 to 229
;
the excess of the force of gravity in the latitude of

Paris will be to the force of gravity at the equator as 1 X Htll to 229,

or as 5667 to 2290000. And therefore the whole forces of gravity in

those places will be one to the other as 2295667 to 2290000. Wherefore

since the lengths of pendulums vibrating in equal times are as the forces of
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gravity, and in the latitude of Paris, the length of a pendulum vibrating
seconds is 3 Paris feet, and S lines, or rather because of the weight of

the air, 8f lines, the length of a pendulum vibrating in the same time

arider the equator will be shorter by 1,087 lines. And by a like calculus

the following table is made.

By this table, therefore, it appears that the inequality of degrees is sc

small, that the figure of the earth, in geographical matters, may be con

sidered as spherical ; especially if the earth be a little denser towards the

plane of the equator than towards the poles.

Now several astronomers, sent into remote countries to make astronomical

observations, have found that pendulum clocks do accordingly move slower

near the equator than in our climates. And, first of all, in the year I 72,

M. Richer took notice of it in the island of Cayenne ; for when, in the

month of August, he was observing the transits of the fixed stars over the

meridian, he found his clock to go slower than it ought in respect of the

mean motion of the sun at the rate of 2 29&quot; a day. Therefore, fitting up
a simple pendulum to vibrate in seconds, which were measured by an ex

cellent clock, he observed the length of that simple pendulum ;
and this he

did over and over every week for ten months together. And upon his re

turn to France, comparing the length of that pendulum with the length
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of the pendulum at Paris (which was 3 Paris feet and 8f lines), he found

it shorter by 1 j line.

Afterwards, our friend Dr. Halley, about the year 1677, arriving at the

island of St. Helena, found his pendulum clock to go slower there than at

Isondon without marking the difference. But he shortened the rod of

his clock by more than the \ of an inch, or l line
;
and to effect this, be

cause the length of the screw at the lower end of the rod was riot sufficient,

he interposed a wooden ring betwixt the nut and the ball.

Then, in the year 1682, M. Varin and M. des Hayes found the length
of a simple pendulum vibrating in seconds at the Royal Observatory of

Paris to be 3 feet and S| lines. And by the same method in the island

of Goree, they found the length of an isochronal pendulum to be 3 feet and

6 1 lines, differing from the former by two lines. And in the same year,

going to the islands of Guadeloupe and Martinico, they found that the

length of an isochronal pendulum in those islands was 3 feet and 6^ lines.

After this, M. Couplet, the son, in the month of July 1697, at the Royal

Observatory of Paris, so fitted his pendulum clock to the mean motion of

the sun, that for a considerable time together the clock agreed with the

motion of the sun. In November following, upon his arrival at Lisbon, he

found his clock to go slower than before at the rate of 2 13&quot; in 24 hours.

And next March coming to Paraiba, he found his clock to go slower than

at Paris, and at the rate 4 12&quot; in 24 hours
;
and he affirms, that the pen

dulum vibrating in seconds was shorter at Lisbon by 2 lines, and at Pa
raiba, by 31 lines, than at Paris. He had done better to have reckoned

those differences \\ and 2f : for these differences correspond to the differ

ences of the times 2 13&quot; and 4 12&quot;. But this gentleman s observations

are so gross, that we cannot confide in them.

In the following years, 1699, and 1700, M. des Hayes, making another

voyage to America, determined that in the island of Cayenne and Granada

the length of the pendulum vibrating in seconds was a small matter less

than 3 feet and 6| lines
;
that in the island of St. Christophers it was

3 feet and 6f lines
;
and in the island of St. Domingo 3 feet and 7

lines.

And in the year 1704, P. Feuille, at Puerto Bello in America, found

that the length of the pendulum vibrating in seconds was 3 Paris feet,

and only 5--^ lines, that is, almost 3 lines shorter than at Paris ; but the

observation was faulty. For afterward, going to the island of Martinico.

he found the length of the isochronal pendulum there 3 Paris feet and

5
\ | lines.

Now the latitude of Paraiba is 6 38 south
;
that of Puerto Bello 9

33 north
;
and the latitudes of the islands Cayenne, Goree, Gaudaloupe}

Martinico, Granada, St. Christophers, and St. Domingo, are respectively

4 C 55
,
14

40&quot;,
15 00

,
14 44

,
12 06

,
17 19

,
and 19 48

,
north. An*J
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the excesses of the length of the pendulum at Paris above the lengths of

the isochronal pendulums observed in those latitudes are a little greater
than by the table of the lengths of the pendulum before computed. And
therefore the earth is a little higher under the equator than by the prece

ding calculus, and a little denser at the centre than in mines near the sur

face, unless, perhaps, the heats of the torrid zone have a little extended the

length of the pendulums.
For M. Picart has observed, that a rod of iron, which in frosty weather

in the winter season was one foot long, when heated by lire, was lengthened
into one foot and

-]-
line. Afterward M. de la Hire found that a rod of

iron, which in the like winter season was 6 feet long, when exposed to the

heat of the summer sun, was extended into 6 feet and f line. In the former

case the heat was greater than in the latter
;
but in the latter it was greater

than the heat of the external parts of a human body ;
for metals exposed

to the summer sun acquire a very considerable degree of heat. But the rod

of a pendulum clock is never exposed to the heat of the summer sun, nor

ever acquires a heat equal to that of the external parts of a human body ;

and, therefore, though the 3 feet rod of a pendulum clock will indeed be a

little longer in the summer than in the winter season, yet the difference will

scarcely amount to \ line. Therefore the total difference of the lengths of

isochronal pendulums in different climates cannot be ascribed to the differ

ence of heat
;
nor indeed to the mistakes of the French astronomers. For

although there is not a perfect agreement betwixt their observations, yet

the errors are so small that they may be neglected ;
and in this they all

agree, that isochronal pendulums are shorter under the equator than

at the Royal Observatory of Paris, by a difference not less than 1{ line,

nor greater than 2| lines. By the observations of M. Richer, in the island

of Cayenne, the difference was 1| line. That difference being corrected by
those of M. des Hayes, becomes \\ line or l line. By the less accurate

observations of others, the same was made about two lines. And this dis

agreement might arise partly from the errors of the observations, partly

from the dissimilitude of the internal parts of the earth, and the height of

mountains
; partly from the different heats of the air.

I take an iron rod of 3 feet long to be shorter by a sixth part of one line

in winter time with us here in England than in the summer. Because of

the great heats under the equator, subduct this quantity from the difference

of one line and a quarter observed by M. Richer, and there will remain one

line TV, which agrees very well with l T-oo ^ne collected, by the theory a

little before. M. Richer repeated his observations, made in the island of

Cayenne, every week for ten months together, and compared the lengths of

the pendulum which he had there noted in the iron rods with the lengths

thereof which he observed in Prance. This diligence and care seems to

have been wanting to the other observers. If this gentleman s observations
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are to be depended on, the earth is higher under the equator than at the

poles, and that by an excess of about 17 miles; as appeared above by the

theory.

PROPOSITION XXI. THEOREM XVII.

That the equinoctial points go backward, and that the axis of the earth,

by a nutation in, every annual revolution, twice vibrates towards the

ecliptic, and as often returns to its former position,.

The proposition appears from Cor. 20, Prop. LXVI, Book I
;

but

that motion of nutation must be very small, and, indeed, scarcely per

ceptible.

PROPOSITION XXII. THEOREM XVIII.

That all the motions of the ?noon, and all the inequalities of those motions,

followfrom the principles which we have laid down.

That the greater planets, while they are carried about the sun, may in

the mean time carry other lesser planets, revolving about them
;
and that

those lesser planets must move in ellipses which have their foci in the cen

tres of the greater, appears from Prop. LXV, Book I. But then their mo
tions will be several ways disturbed by the action of the sun, and they will

suffer such inequalities as are observed in our moon. Thus our moon (by
Cor. 2, 3, 4, and 5, Prop. LXVI, Book I) moves faster, and, by a radius

drawn to the earth, describes an area greater for the time, and has its orbit

less curved, and therefore approaches nearer to the earth in the syzygies
than in the quadratures, excepting in so far as these effects are hindered by
the motion of eccentricity ;

for (by Cor. 9, Prop. LXVI, Book I) the eccen

tricity is greatest when the apogeon of the moon is in the syzygies, and

least when the same is in the quadratures ;
and upon this account the pe-

rigeon moon is swifter, and nearer to us, but the apogeon moon slower,

arid farther from us, in the syzygies than in the quadratures. Moreover,
the apogee goes forward, and the nodes backward

;
and this is done not with

a regular but an unequal motion. For (by Cor. 7 and 8, Prop. LXVI,
Book I) the apogee goes more swiftly forward in its syzygies, more slowly
backward in its quadratures; and, by the excess of its progress above its

regress, advances yearly in consequentia. But, contrariwise, the nodes (by
Cor. 11, Prop. LXVI, Book I) are quiescent in their syzygies, and go fastest

back in their quadratures. Farther, the greatest latitude of the moon (by
Cor. 10, Prop. LXVI, Book I) is greater in the quadratures of the moon
than in its syzygies. And (by Cor. 6, Prop. LXVI, Book I) the mean mo
tion of the moon is slower in the perihelion of the earth than in its aphelion.
And these are the principal inequalities (of the moon) taken notice of by
astronomers.
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But there are yet other inequalities not observed by former astronomers,

by which the motions of the moon are so disturbed, that to this day we
have not been able to bring them under any certain rule. For the veloc

ities or horary motions of the apogee and nodes of the moon, and their

equations, as well as the difference betwixt the greatest eccentricity in the

syzygics, and the least eccentricity in the quadratures, and that inequality
which we call the variation, are (by Cor. 14, Prop. LXVI, Book I) in the

course of the year augmented and diminished in the triplicate proportion
of the sun s apparent diameter. And besides (by Cor. 1 and 2, Lem. 10,
and Cor. 16, Prop. LXVI, Book

I) the variation is augmented and
diminished nearly in the duplicate proportion of the time between
the quadratures. But in astronomical calculations, this inequality
is commonly thrown into and confounded with the equation of the moon s

centre.

PROPOSITION XXI1L PROBLEM V.

To derive the unequal motions of the satellites of Jupiter and Saturn

from the motions of our moon.

From the motions of our moon we deduce the corresponding motions of

the moons or satellites of Jupiter in this manner, by Cor. 16, Prop. LXVI,
Book I. The mean motion of the nodes of the outmost satellite of Jupiter
is to the mean motion of the nodes of our moon in a proportion compound
ed of the duplicate proportion of the periodic times of the earth about the

sun to the periodic times of Jupiter about the sun, and the simple propor
tion of the periodic time of the satellite about Jupiter to the periodic time

of our moon about the earth
; and, therefore, those nodes, in the space of

a hundred years, are carried 8 24 backward, or in antecedentia. The
mean motions of the nodes of the inner satellites are to the mean motion of

the nodes of the outmost as their periodic times to the periodic time of the

former, by the same Corollary, and are thence given. And the motion of

the apsis of every satellite in consequential is to the motion of its nodes in

antecedentia as the motion of the apogee of our moon to the motion of its

nodes (by the same Corollary), and is thence given. But the motions of

the apsides thus found must be diminished in the proportion of 5 to 9, or

of about 1 to 2, on account of a cause which I cannot here descend to ex

plain. The greatest equations of the nodes, and of the apsis of every satel

lite, are to the greatest equations of the nodes, and apogee of our moon re

spectively, as the motions of the nodes and apsides of the satellites, in the

time of one revolution of the former equations, to the motions of the nodes

and apogee of our moon, in the time of one revolution of the latter equa
tions. The variation of a satellite seen from Jupiter is to the variation of

our moon in tne same proportion as the whole motions of their node?
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respectively during the times in which the satellite and our moon (after

parting from) are revolved (again) to the sun, by the same Corollary ;
and

therefore in the outmost satellite the variation does not exceed 5&quot; 12 &quot;.

PROPOSITION XXIV. THEOREM XIX.

That theflax and reflux of the sea arise from the actions oj the sun

and moon.

By Cor. 19 and 20, Prop. LXVI, Book I, it appears that the waters of

the sea ought twice to rise and twice to fall every day. as well lunar as solar
;

and that the greatest height of the waters in the open and deep seas ought

to follow the appulse of the luminaries to the meridian of the place by a

less interval than 6 hours
;
as happens in all that eastern tract of the Atlantic

and jEthinpic seas between France and the Cape of Good Hope ; and on

the coasts of Chili and Pern, in the Smith Sea ; in all which shores the

ilo &amp;gt;d falls out about the second, third, or fourth hour, unless where the

motion propagated from the deep ocean is by the shallowness of the chaiir

nels, through which it passes to some particular places, retarded to the

fifth, sixth, or seventh hour, and even later. The hours I reckon from the

appulse of each luminary to the meridian of the place, as well under as

above the horizon
;
and by the hours of the lunar day I understand the

24th parts uf that time which the moon, by its apparent diurnal motion,

employs to come about again to the meridian of the place which it left the

day before. The force of the sun or moon in raising the sea is greatest in

the appulse of the luminary to the meridian of the place; but the force

impressed upon the sea at that time continues a little while after the im

pression, and is afterwards increased by a new though less force still act

ing upon it. This makes the sea rise higher and higher, till this new force

becoming too weak to raise it any more, the sea rises to its greatest height.

And this will come to pass, perhaps, in one or two hours, but more fre

quently near the shores in about three hours, or even more, where the sea

is shallow.

The two luminaries excite two motions, wrhich will not appear distinctly,

but between them will arise one mixed motion compounded out of both.

In the conjunction or opposition of the luminaries their forces will be con

joined, and bring on the greatest flood and ebb. In the quadratures the

sun will raise the waters which the moon depresses, and depress the waters

which the moon raises, and from the difference of their forces the smallest

of all tides will follow. And because (as experience tells us) the force of

the moon is greater than that of the sun, the greatest height of the waters

will happen about the third lunar hour. Out of the syzygies and quadra
tures, the greatest tide, which by the single force of the moon oujjht to fall

out at the third lunar hour, and by the single force of the sun at the third

solar hour, by the compounded forces of both must fall out in an interme-
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diate time that aproaches nearer to the third hour of the moon than tc

that of the sun. And, therefore, while the moon is passing from the syzy

gies to the quadratures, during which time the 3d hour of the sun precedes

the 3d hour of the moon, the greatest height of the waters will also precede

the 3d hour of the moon, and that, by the greatest interval, a little after

the octants of the moon; and, by like intervals, the greatest tide will fol

low the 3d lunar hour, while the moon is passing from the quadratures to

the syzygies. Thus it happens in the open sea : for in the mouths of

rivers the greater tides come liter to their heiirht.o O

But the effects of the luminaries depend upon their distances from the

earth
;
for when they are less distant, their effects are greater, and when

more distant, their effects are less, and that in the triplicate proportion of

their apparent diameter. Therefore it is that the sun, in the winter time,

being then in its perigee, has a greater effect, and makes the tides in the

syzygies something greater, and those in the quadratures something less

than in the summer season
;
and every month the moon, while in the peri

gee, raises greater tides than at the distance of 15 days before or after,

when it is in its apogee. Whence it comes to pass that two highest

tides do not follow one the other in two immediately succeeding syzygies.

The effect of either luminary doth likewise depend upon its declination

or distance from the equator ;
for if the luminary was placed at the pole,

it would constantly attract all the parts of the waters without any inten

sion or remission of its action, and could cause no reciprocation of motion.

And, therefore, as the luminaries decline from the equator towards either

pole, they will, by degrees, lose their force, and on this account will excite

lesser tides in the solstitial than in the equinoctial syzygies. But in the

solstitial quadratures they will raise greater tides than in the quadratures

about the equinoxes ;
because the force of the moon, then situated in the

equator, most exceeds the force of the sun. Therefore the greatest tides

fall out in those syzygies, and the least in those quadratures, which hap-

pen about the time of both equinoxes : and the greatest tide in the syzy

gies is always succeeded by the least tide in the quadratures, as we find

by experience. But, because the sun is less distant from the earth in

winter than in summer, it comes to pass that the greatest and least tides

more frequently appear before than after the vernal equinox, and more

frequently after than before the autumnal.

Moreover, the effects of the lumi

naries depend upon the latitudes of

places. Let AjoEP represent the

earth covered with deep waters
;
C

its centre; P, p its poles; AE the

equator ;
F any place without the

equator ; F/ the parallel of the place ;

/F~ M ^ Drl the correspondent parallel on the

K 1ST
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other side of the equator; L the place of the moon three Lours before;

H the place of the earth directly under it
;
h the opposite place ; K, k the

places at 90 degrees distance
; CH, Ch, the greatest heights of the sea

from the centre of the earth; and CK, Ck, its least heights: and if with

the axes H//, K/.*, an ellipsis is described, and by the revolution of that

ellipsis about its longer axis H/i a spheroid HPKhpk is formed, this sphe

roid will nearly represent the figure of the sea; and CF, C/, CD, Cd,

will represent the heights of the sea in the places F/, Dd. But far

ther
;
in the said revolution of the ellipsis any point N describes the circle

NM cutting the parallels F/, Dd, in any places RT, and the equator AE
in S : CN will represent the height of the sea in all those places R, S,

T, situated in this circle. Wherefore, in the diurnal revolution of any

place F, the greatest flood will be in F, at the third hour after the appulse
of the moon to the meridian above the horizon

;
and afterwards the great

est ebb in Q,, at the third hour after the setting of the moon
;
and then

the greatest flood in/, at the third hour after the appulse of the moon to

the meridian under the horizon
; and, lastly, the greatest ebb in Q,, at the

third hour after the rising of the moon
;
and the latter flood in / will be

less than the preceding flood in F. For the whole sea is divided into two

hemispherical floods, one in the hemisphere KH/J on the north side, the

other in the opposite hemisphere Khk, which we may therefore call the

northern and the southern floods. These floods, being always opposite the one

to the other, come by turns to the meridians of all places, after an interval

of 12 lunar hours. And seeing the northern countries partake more of

the northern flood, and the southern countries more of the southern flood,

thence arise tides, alternately greater and less in all places without the

equator, in which the luminaries rise and set. But the greatest tide will

happen when the moon declines towards the vertex of the place, about the

third hour after the appulse of the moon to the meridian above the hori

zon
;
and when the moon changes its declination to the other side of the

equator, that which was the greater tide will be changed into a lesser.

And the greatest difference of the floods will fall out about the times of

the solstices
; especially if the ascending node of the moon is about the

Hrst of Aries. So it is found by experience that the morning tides in

winter exceed those of the evening, and the evening tides in summer ex

ceed those of the morning ;
at Plymouth by the height of one foot, but at

Bristol by the height of 15 inches, according to the observations of Cole-

press and Sturmy.
But the motions which we have been describing suffer some alteration

from that force of reciprocation, which the waters, being once moved, retain

a little while by their vis insita. Whence it comes to pass that the tides

may continue for some time, though the actions of the luminaries should

27
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oease. This power of retaining the impressed motion lessens the difference

yf the alternate tides, and makes those tides which immediately succeed

after the syzygies greater, and those which follow next after the quadra
tures less. And hence it is that the alternate tides at Plymouth and

Bristol do not differ much more one from the other than by the height of

a foot or 15 inches, and that the greatest tides of all at those ports are not

the first but the third after the syzygies. And, besides, all the motions are

retarded in their passage through shallow channels, so that the greatest

tides of all, in some straits and mouths of rivers, are the fourth or even the

fifth after the syzygies.

Farther, it may happen that the tide may be propagated from the ocean

through different channels towards the same port, and may pass quicker

through some channels than through others
;
in which case the same tide,

divided into two or more succeeding one another, may compound new mo
tions of different kinds. Let us suppose two equal tides flowing towards

the same port from different places, the one preceding the other by 6 hours
;

and suppose the first tide to happen at the third hour of the appulse of the

moon to the meridian of the port. If the moon at the time of the appulse

to the meridian was in the equator, every 6 hours alternately there would

arise equal floods, which, meeting writh as many equal ebbs, would so bal

ance one the other, that for that day, the water would stagnate and remain

quiet. If the moon then declined from the equator, the tides in the ocean

would be alternately greater and less, as was said
;
and from thence two

greater and two lesser tides wrould be alternately propagated towards that

port. But the two greater floods would make the greatest height of the

waters to fall out in the middle time betwixt both
;
and the greater and

lesser floods would make the waters to rise to a mean height in the middle

time between them, and in the middle time between the two lesser floods the

waters would rise to their least height. Thus in the space of 24 hours the

waters would come, not twice, as commonly, but once only to their great

est, and once only to their least height ;
and their greatest height, if the

moon declined towards the elevated pole, would happen at the 6th or 30th

hour after the appulse of the moon to the meridian
;
and when the moon

changed its declination, this flood would be changed into an ebb. An ex

ample of all which Dr. Halley has given us, from the observations of sea

men in the port of Bntshnm, in the kingdom of Tunqvin, in the latitude

of 20 50 north. In that port, on the day which follows after the passage
of the moon over the equator, the waters stagnate: when the moon declines

to the north, they begin to flow and ebb. not twice, as in other ports, but

once only every day : and the flood happens at the setting, and the greatest

ebb at the rising of the moon. This tide increases with the declination of

the moon till the ?th or 8th day ;
then for the 7 or 8 days following it
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decreases at the same rate as it had increased before, and ceases when the

moon changes its declination, crossing over the equator to the south. Af
ter which the flood is immediately changed into an ebb; and thenceforth

the ebb happens at the setting and the flood at the rising of the moon : till

the moon, again passing the equator, changes its declination. There are

two inlets to this port and the neighboring channels, one from the seas of

China, between the continent and the island of Lenconia ; the other from

the Indian sea, between the continent and the island of Borneo. But

whether there be really two tides propagated through the said channels, one

from the Indian sea in the space of 12 hours, and one from the sea of

Cliina in the space of 6 hours, which therefore happening at the 3d and

9th lunar hours, by being compounded together, produce those motions : or

whether there be any other circumstances in the state of those seas. I leave

to be determined by observations on the neighbouring shores.

Thus I have explained the causes of the motions of the moon and of the

sea. Now it is fit to subjoin something concerning the quantity of those

motions.

PROPOSITION XXV. PROBLEM VI.

To find theforces with which the sun disturbs the motions of the moon.

Let S represent the sun, T the

earth, P the moon, CADB the

moon s orbit. In SP take SK
equal to ST; and let SL be to

SK in the duplicate proportion
of SK to SP: draw LM parallel

to PT
;
and if ST or SK is sup-

posed to represent the accelerated force of gravity of the earth towards the

sun, SL will represent the accelerative force of gravity of the moon towards

the sun. But that force is compounded of the parts SM and LM, of which

the force LM, and that part of SM which is represented by TM, disturb

the motion of the moon, as we have shewn in Prop. LXVI, Book I, and

its Corollaries. Forasmuch as the earth and moon are revolved about

their common centre of gravity, the motion of the earth about that centre

will be also disturbed by the like forces; but we may consider the sums

both of the forces and of the motions as in the moon, and represent the sum

of the forces by the lines TM and ML, which are analogous to them both.

The force ML (in its mean quantity) is to the centripetal force by which

the moon may be retained in its orbit revolving about the earth at rest, at

the distance P J
,
in the duplicate proportion of the periodic time of the

moon about the earth to the periodic time of the earth about the sun (by

Cor. 17, Prop. LXVI, Book I) ;
that is, in the duplicate proportion of 27 d

.

7\ 43 to 365 1

. 6&quot;. 9
;
or as 1000 to 178725

;
or as 1 to 178f J. But in the
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4ih Prop, of this Book we found, that, if both earth and moon were revolved

aoout their common centre of gravity, the mean distance of the one from

the other would be nearly 60^ mean semi-diameters of the earth : and the

force by which the moon may be kept revolving in its orbit about the earth

in rest at the distance PT of 60^ semi-diameters of the earth, is to the

force by which it may be revolved in the same time, at the distance of 60

semi-diameters, as 60| to 60 : and this force is to the force of gravity with

u,;
3 very nearly as I to 60 X 60. Therefore the mean force ML is to the

force of gravity on the surface of our earth as 1 X 60-} to 60 X 60 X 60

X l~8f, or as 1 to 638092,6 : whence by the proportion of the lines TM,
ML, the force TM is also given; and these are the forces with which the

sun disturbs the motions of the moon. Q.E.I.

PROPOSITION XXVI. PROBLEM VII.

To find the horary increment of the area which the moon, by a radius

drawn to the earth, describes in a circular orbit.

We have above

shown that the area

which the moon de

scribes by a radius

drawn to the earth

is proportional to

the time of descrip

tion, excepting in so

far as the moon s

motion is disturbed

by the action of the

sun
;

and here we

propose to investi

gate the HIequality of the moment, or horary increment of that area or

motion so disturbed. To render the calculus more easy, we shall suppose

the orbit of the moon to be circular, and neglect all inequalities but that

only which is now under consideration
; and, because of the immense dis

tance of the sun, we shall farther suppose that the lines SP and ST are

parallel. By this moans, the force LM will be always reduced to its mean

quantity TP, as well as the force TM to its mean quantity 3PK. These

forces (by Cor. 2 of the Laws of Motion) compose the force TL
;
and

this force, by letting fall the perpendicular LE upon the radius TP, is

resolved into the forces TE, EL ;
of which the force TE, acting constantly

in the direction of the radius TP, neither accelerates nor retards the de

scription of the area TPC made by that radius TP
;
but EL, acting on

the radius TP in a perpendicular direction, accelerates or retards the de

scription of the area in proportion as it accelerates -&amp;gt;r retards the moon.
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That acceleration of the moon, in its passage from the quadrature C to the

conjunction A, is in every moment of time as the generating accclerative

3PK X TK
force EL, that is, as

.5
. Let the time be represented by the

mean motion of the moon, or (which comes to the same thing) by the angle

CTP, or even by the arc CP. At right angles upon CT erect CG equal

to CT
; and, supposing the quadrantal arc AC to be divided into an infinite

number of equal parts P/?, &c., these parts may represent the like infinite

number of the equal parts of time. Let fall pic perpendicular on CT, and

draw TG meeting with KP, kp produced in F arid /; then will FK be

equal to TK, and K/v be to PK as
P/&amp;gt;

to T/?, that is, in a given propor-
3PK X TK

tion
;
and therefore FK X K&, or the area FKkf, will be as -

~^pp &amp;gt;

that is, as EL: and compounding, the whole area GCKF will be as the

sum of all the forces EL impressed upon the moon in the whole time CP
;

and therefore also as the velocity generated by that sum, that is, as the ac

celeration of the description of the area CTP, or as the increment of the

moment thereof. The force by which the moon may in its periodic time

CADB of 27 1

. 7h
. 43 be retained revolving about the earth in rest at the

distance TP, would cause a body falling in the time CT to describe the

length ^CT, and at the same time to acquire a velocity equal to that with

which the moon is moved in its orbit. This appears from Cor. 9, Prop,

IV., Book I. But since K.d, drawn perpendicular on TP, is but a third

part of EL, and equal to the half of TP, or ML, in the octants, the force

EL in the octants, where it is greatest, will exceed the force ML in the

proportion of 3 to 2
;
and therefore will be to that force by which the moon

in its periodic time may be retained revolving about the earth at rest as

100 to | X 178721, or 11915; and in the time CT will generate a ve

locity equal to yylfs parts of the velocity of the moon
;
but in the time

CPA will generate a greater velocity in the proportion of CA to CT or

TP. Let the greatest force EL in the octants be represented by the area

FK X Kk, or by the rectangle |TP X Pp, which is equal thereto; and

the velocity which that greatest force can generate in any time CP will be

to the velocity which any other lesser force EL can generate in the same

time as the rectangle |TP X CP to the area KCGF
;
but the velocities

generated in the whole time CPA will be one to the other as the rectangle

2-TP X CA to the triangle TCG, or as the quadrantal arc CA to the

radius TP
;
and therefore the latter velocity generated in the whole time

will be T T$TJ parts of the velocity of the moon. To this velocity of the

moon, which is proportional to the mean moment of the area (supposing

this mean moment to be represented by the number 11915), we add and

subtract the half of the other velocity ;
the sum 11915 + 50, or 11965,

will represent the greatest moment of the area in the syzygy A : and the
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difference 11915 50, or 11865, the least moment thereof in the quadra
tures. Therefore the areas which in equal times are described in the syzy-

gies and quadratures are one to^the other as 11965 to 11865. And if to

the least moment 11865 we add a moment which shall be to 100, the dif

ference of the two former moments, as the trapezium FKCG to the triangle

TCG, or, which comes to the same thing, as the square of the sine PK to

the square of the radius TP (that is, as Pd to TP), the sum will represent
the moment of the area when the moon is in any intermediate place P.

But these things take place only in the hypothesis that the sun and the

earth are at rest, and that the synodical revolution of the moon is finished

in 27 1

. 7 h
. 43 . But since the moon s synodical period is really 29a

. 12h
.

4 T, the increments of the moments must be enlarged in the same propor
tion as the time is, that is, in the proportion of 1080853 to 1000000.

Upon whicli account, the whole increment, which was TTITTT parts of the

mean moment, will now become TY| 3- parts thereof; and therefore the

moment of the area in the quadrature of the moon will be to the moment

thereof in the syzygy as 11023 50 to 11023 + 50; or as 10973 to

11073; and to the moment thereof, when the moon is in any intermediate

place P, as 10973 to 10973 -f Pd ; that is, supposing TP = 100.

The area, therefore, which the moon, by a radius drawn to the earth,

describes m the several little equal parts of time, is nearly as the sum of

the number 219,46, and the versed sine of the double distance of the moon

from the nearest quadrature, considered in a circle which hath unity for its

radius. Thus it is when the variation in the octants is in its mean quantity.

3ut if the variation there is greater or less, that versed sine must be aug-
nented or diminished in the same proportion.

PROPOSITION XXVIL PROBLEM VI11.

From the horary motion of the moon tofind its distance from the earth.

The area which the moon, by a radius drawn to the earth, describes in

every, moment of time, is as the horary motion of the moon and the square

of the distance of the moon from the earth conjunctly. And therefore the

distance of the moon from the earth is in a proportion compounded of the

subduplicate proportion of the area directly, and the subduplioate propor
tion of the horary motion inversely. Q.E.T.

COR. 1 . Hence the apparent diameter of the moon is given ;
for it is re

ciprocally as the distance of the moon from the earth. Let astronomers

try how accurately this rule agrees with the phenomena.
COR. 2. Hence also the orbit of the moon may be more exactly defined

from the phaenomena than hitherto could be done.



BOOK III,&quot;! OF NATURAL PHILOSOPHY. 423

PROPOSITION XXVIII. PROBLEM IX.

To find the diameters of the orbit, in which, without ec*.t itricity, the

moon would move.

The curvature of the orbit which a body describes, if attracted in lines

perpendicular to the orbit, is as the force of attraction directly, and the

square of the velocity inversely. I estimate the curvatures of lines com

pared one with another according to the evanescent proportion of the sines

or tangents of their angles of contact to equal radii, supposing those radii

to be infinitely diminished. Blit the attraction of the moon towards the

earth in the syzygies is the excess of its gravity towards the earth above

the force of the sun 2PK (see Pig. Prop. XXV) ; by which force the accel-

erative gravity of the moon towards the sun exceeds the accelerative gravity

of the earth towards the sun, or is exceeded by it. But in the quadratures

that attraction is the sum of the gravity of the moon towards the earth,

and the sun s force KT, by which the moon is attracted towards the earth.

AT + CT 178725
And these attractions, putting N for-

^
-

&amp;gt;

are nearly as T^--

and - + - or as 178725N X CT* - 2000AT*

X CT, and 17S725N X AT 2 + 1000CT 2 X AT. For if the accelera

tive gravity of the moon towards the earth be represented by the number

178725, the mean force ML, which in the quadratures is PT or TK, and

draws the moon towards the earth, will be 1000, and the mean force TM in

the syzygies will be 3000
;
from which, if we subtract the mean force ML,

there will remain 2000, the force by which the moon in the syzygies is

drawn from the earth, and which we above called 2 PIC. But the velocity

of the moon in the syzygies A and B is to its velocity in the quadratures
C and D as CT to AT, and the moment of the area, which the moon by
a radius drawn to the earth describes in the syzygies, to the moment of that

area described in the quadratures conjunctly ;
that is, as 11073CT to

10973AT. Take this ratio twice inversely, and the former ratio once di

rectly, and the curvature of the orb of the moon in the syzygies will be to

the curvature thereof in the quadratures as 120406729 X 17S725AT 2 X
CT 2 X N 120406729 X 2000AT 4 X CT to 122611329 X 178725AT 2

X CT 2 X N + 122611329 X 1000CT 4 X AT, that is, as 2151969AT
X CT X N 24081AT 3 to 2191371AT X CT X N + 12261CT 3

.

Because the figure of the moon s orbit is unknown, let us, in its stead,

assume the ellipsis DBCA, in the centre of which we suppose the earth to

be situated, and the greater axis DC to lie between the quadratures as the

lesser AB between the syzygies. But since the plane of this ellipsis is re-

rolved about the earth by an angular motion, and the orbit, whose curva

ture we now examine, should be described in a plane void of such motion
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we are to consider the figure which the moon,

while it is revolved in that ellipsis, describes iu

this plane, that is to say, the figure Cpa, the

several points p of which are found by assuming

any point P in the ellipsis, which may represent

the place of the moon, and drawing Tp equal

to TP in such manner that the angle PT/? may
be equal to the apparent motion of the sun from

the time of the last quadrature in C
;
or (which

comes to the same thing) that the angle CTp
may be to the angle CTP as the time of the

synodic revolution of the moon to the time ot

the periodic revolution thereof, or as 29 1

. 12 h
. 44 to 27d

. 7 1

. 43 . If, there

fore, in this proportion we take the angle CTa to the right angle CTA,
and make Ta of equal length with TA, we shall have a the lower and C
the upper apsis of this orbit Cpa. But, by computation, I find that the

difference betwixt the curvature of this orbit Cpa at the vertex a, and the

curvature of a circle described about the centre T with the interval TA, is

to the difference between the curvature of the ellipsis at the vertex A, and

the curvature of the same circle, in the duplicate proportion of the angle

CTP to the angle CTp ; and that the curvature of the ellipsis in A is to

the curvature of that circle in the duplicate proportion of TA to TC
;
and

the curvature of that circle to the curvature of a circle described about the

centre T with the interval TC as TC to TA
;
but that the curvature of

this last arch is to the curvature of the ellipsis in C in the duplicate pro

portion of TA to TC ; and that the difference betwixt the curvature of the

ellipsis in the vertex C* and the curvature of this List circle, is to the dif

ference betwixt the curvature of the figure Cpa, at the vertex C, and the

curvature of this same last circle, in the duplicate proportion of the angle

CTp to the angle CTP ;
all which proportions are easily drawn from the

sines of the angles of contact, and of the differences of those angles. But,

by comparing those proportions together, we find the curvature of the figure

Cpa at a to be to its curvature at C as AT 3,- rWoVoCT 2AT to CT 3
-r

_i_6_8_2_4_AT
2 X CT

;
where the number yVYVYo represents the difference

of the squares of the angles CTP and CTp, applied to the square of the

lesser angle CTP ;
or (which is all one) the difference of the squares of the

limes 27. 7h
- 43

,
and 29 1

. 12h
. 44

, applied to the square of the time27 (1

.

7h
. 43 .

Since, therefore, a represents the syzygy of the moon, and C its quadra

ture, the proportion now found must be the same with that proportion of

the curvature of the moon s orb in the syzygies to the curvature thereof in

the quadratures,
which we found above. Therefore, in order to find th
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proportion of CT to AT, let us multiply the extremes and the means, an(?

the terms which come out, applied to AT X CT, become 2062,79CT
4

2151969N x CT 3 + 368676N X AT X CT 2 + 36342 AT 2 X CT 2 -
362047N X AT 2 X CT + 2191371N X AT 3 + 4051,4AT

4 = 0.

Now if for the half sum N of the terms AT and CT we put 1, and x for

their half difference, then CT will be = 1 + x, and AT = 1 x. And

substituting those values in the equation, after resolving thereof, wr
e shall

find x = 0,00719 ;
and from thence the semi-diameter CT = 1,00719, and

the semi-diameter AT = 0,99281, which numbers are nearly as 70^, and

692V- Therefore the moon s distance from the earth in the syzygies is to

its distance in the quadratures (setting aside the consideration of eccentrici

ty) as 09 2^ to 70^ ; or, in round numbers, as 69 to 70.

PROPOSITION XXIX. PROBLEM X.

To find the variation of the moon.

This inequality is owing partly to the elliptic figure of the moon s orbit,

partly to the inequality of the moments of the area which the moon by a

radius drawn t\) the earth describes. If the moon P revolved in the ellipsis

DBCA about the earth quiescent in the centre of the ellipsis, and by the

radius TP, drawn to the earth, described the area CTP, proportional to

the time of description ; and the greatest semi-diameter CT of the ellipsis

was to the least TA as 70 to 69; the tangent of the angle CTP would be

to the tangent of the angle of the mean motion, computed from the quad
rature C, as the semi-diameter TA of the ellipsis to its semi-diameter TC,
or as 69 to 70. But the description of the area CTP, as the moon advan

ces from the quadrature to the syzygy, ought to be in such manner accel

erated, that the moment of the area in the moon s syzygy may be to the

moment thereof in its quadrature as 11073 to 10973; and that the excess

of the moment in any intermediate place P above the moment in the quad
rature may be as the square of the sine of the angle CTP ;

which we may
effect with accuracy enough, if we diminish the tangent of the angle CTP
in the subduplicate proportion of the number 10973 to the number 11073,

that is, in proportion of the number 68,6877 to the number 69. Upon
which account the tangent of the angle CTP will now be to the tangent

of the mean motion as 68,6877 to 70
;
and the angle CTP in the octants,

where the mean motion is 45, will be found 44 27
28&quot;,

which sub

tracted from 45, the angle of the mean motion, leaves the greatest varia

tion 32 32&quot;. Thus it would be, if the moon, in passing from the quad
rature to the syzygy, described an angle CTA of 90 degrees only. But

because of the motion of the earth, by which the sun is apparently trans

ferred in consequentia^ the moon, before it overtakes the sun, describes an

angle CTtf, greater than a right angle, in the proportion of the time of the

synodic revolution of the moon to the time of its periodic revolution, thai
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is, in the proportion of 29 1

. 12h
. 44 to 27 (l

. 7X 43 . Whence it comes tc

pass that all the angles about the centre T are dilated in the same pro

portion ;
and the greatest variation, which otherwise would be but 32

32&quot;,
now augmented in the said proportion, becomes 35 10&quot;.

And this is its magnitude in the mean distance of the sun from the

earth, neglecting the differences which may arise from the curvature of

the orbis magnns, and the stronger action of the sun upon the moon when

horned and new, than when gibbous and full. In other distances of the

sun from the earth, the greatest variation is in a proportion compounded
of the duplicate proportion of the time of the synodic revolution of the

moon (the time of the year being given) directly, and the triplicate pro

portion of the distance of the sun from the earth inversely. And, there

fore, in the apogee of the sun, the greatest variation is 33
14&quot;,

and in its

perigee 37
11&quot;,

if the eccentricity of the sun is to the transverse semi-di

ameter of the orbis magnus as 16} to 1000.

Hitherto we have investigated the variation in an orb not eccentric, in

which, to wit, the moon in its octants is always in its mean distance from

the earth. If the moon, on account of its eccentricity, is more or less re

moved from the earth than if placed in this orb, the variation may be

something greater, or something less, than according to this rule. But I

leave the excess or defect to the determination of astronomers from the

phenomena.
PROPOSITION XXX. PROBLEM XI.

To find the horary motion of the nodes of ihe moon in a circular orbit.

Let S represent the sun, T the earth, P the moon, NP/A the orbit, of thr

moon, Njo/? the orthographic projection of the orbit upon the plane of th

ecliptic : N. n the nodes. nTNm the line of the nodes produced indeti
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nitely ; PI, PK perpendiculars upon the lines ST, Qq ; Pp a perpendicu
lar upon the plane of the ecliptic; A, B the moon s syzygies in the plane

of the ecliptic; AZ a perpendicular let fall upon Nil, the line of the

nodes
; Q, g the quadratures of the moon in the plane of the ecliptic, and

pK a perpendicular on the line Qq lying between the quadratures. The
force of the sun to disturb the motion of the moon (by Prop. XXV) is

twofold, one proportional to the line LM, the otlier to the line MT, in the

scheme of that Proposition ;
and the moon by the former force is drawn

towards the earth, by the latter towards the sun, in a direction parallel to

the right line ST joining the earth and the sun. The former force LM
acts in the direction of the plane of the moon s orbit, and therefore makes

no change upon the situation thereof, and is upon that account to be neg
lected

;
the latter force MT, by which the plane of the moon s orbit is dis

turbed, is the same with the force 3PK or SIT. And this force (by Prop.

XXV) is to the force by which the moon may, in its periodic time, be uni

formly revolved in a circle about the earth at rest, as SIT to the radius of

the circle multiplied by the number 178,725, or as IT to the radius there

of multiplied by 59,575. But in this calculus, and all that follows. I

consider all the lines drawn frorri the moon to the sun as parallel to the

line which joins the earth and the sun
;
because what inclination there is

almost as much diminishes all effects in some cases as it augments them

in others : and we are now inquiring after the mean motions of the nodes,

neglecting such niceties as are of no moment, and would only serve to ren

der the calculus more perplexed.

Now suppose PM to represent an arc which the moon describes in the

least moment of time, and ML a little line, the half of which the moon,

by the impulse of the said force SIT, would describe in the same time
;
and

joining PL, MP, let them be produced to m and
/,
where they cut the plane

of the ecliptic, and upon Tm let fall the perpendicular PH. Now, since

the right line ML is parallel to the plane of the ecliptic, and therefore can

never meet with the right line ml which lies in that plane, and yet both

those right lines lie in one common plane LMPm/, they will be parallel,

and upon that account the triangles LMP, ImP will be similar. And

seeing MPra lies in the plane of the orbit, in which the moon did move

while in the place P, the point m will fall upon the line N//, which passes

through the nodes N, n, of that orbit. And because the force by which the

half of the little line LM is generated, if the whole had been together, and

it once impressed in the point P, would hav^ generated that whole line,

and caused the moon to move in the arc whoso chord is LP
;

t at is to say,

would have transferred the moon from the plane MPwT into the plane

LP/T; therefore th* angular motion of the nodes generated by that force

will be equal to the angle mTL But n.l is to raP as ML to MP
;
and

since ML3
,
because of the time given, is also given, ml will be as the rectan-



428 THE MATHEMATICAL PRINCIPLES [BOOK III.

gle ML X mP, that is, as the rectangle IT X mP. And if Tml is a right

ano-le, the angle mTl will be as 7^ and therefore as ^ that is (be-Tm Tm
ITxPH*

cause Tm and mP, TP and PH are proportional), as FFp~ and, there

fore, because TP is given, as IT X PH. But if the angle Tml or STN
is oblique, the angle mTl will be yet less, in proportion of the sine of the

angle STN to the radius, or AZ to AT. And therefore the velocity of

the nodes is as IT X PH X AZ, or as the solid content of the sines of the

three angles TPI, PTN, and STN.
If these are right angles, as happens when the nodes are in the quadra

tures, and the moon in the syzygy, the little line ml will be removed to

an infinite distance, and the angle mTl will become equal to the angle

mPl. But in this case the angle mPl is to the angle PTM, which the

moon in the same time by its apparent motion describes about the earth,

as 1 to 59,575. For the angle mPl is equal to the angle LPM, that is, to

the angle of the moon s deflexion from a rectilinear path; which angle, if

the gravity of the moon should have then ceased, the said force of the sun

SIT would by itself have generated in that given time : and the angle

PTM is equal to the angle of the moon s deflexion from a rectilinear path;

which angle, if the force of the sun 31T should have then ceased, the force

alone by which the moon is retained in its orbit would have generated in

the same time. And. these forces (as we have above shewn) are the one to

the other as I to 59,575. Since, therefore, the mean horary motion of the

moon (in respect of the fixed stars) is 32 56&quot; 27 &quot;

12^-
iv

. the horary motion

of the node in this case will be 33&quot; 10&quot; 33 1V
. 12V

. But in other cases the

horary motion will be to 33&quot; 10 &quot; 33 iv
. \2\ as the solid content of the sines

of the three angles TPI, PTN, and STN (or of the distances of the moon

from the quadrature, of the moon from the node, and of the node from the

sun) to the cube of the radius. And as often as the sine of any angle is

changed from positive to negative, and from negative to positive, so often

must the regressive be changed into a progressive, and the progressive into

a regressive motion. Whence it comes to pass that the nodes are pro

gressive as often as the moon happens to be placed between either quadra

ture, and the node nearest to that quadrature. In other cases they are

regressive, and by the excess of the regress above the progress, they are

monthly transferred in antecedentia.

COR. 1. Hence if from P and M, the extreme points of a least arc PM,
on the line Qq joining the quadratures we let fall the perpendiculars PK
MA&quot;,

and produce the same till they cut the line of the nodes Nw in D ana

d, the horary motion of the nodes will be as the area MPDd, and the

square of the line AZ conjunctly. For let PK, PH, and AZ, be the three

said sines, viz., PK the sine of the distance of the moon from the quadra-
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ture, PH the sine of the distance of the moon from the node, and AZ the

gi.ne of the distance of the node from the sun
;
and the velocity of the node

will be as the solid content of PK X PH X AZ. But PT is to PK as

PM to KA;; and, therefore, because PT and PM are given, Kk will be as

PK. Likewise AT is to PD as AZ to PH, and therefore PH is as the

rectangle PD X AZ
; and, by compounding those proportions, PK X PH

is as the solid content Kk X PD X AZ
;
and PK X PH X AZ as KA

X PD X AZ 2
;
that is, as the area PDrfM and AZ 3

conjunctly. Q.E.I).

COR. 2. In any given position of the nodes their mean horary motion is

half their horary motion in the moon s syzygies ;
and therefore is to 16&quot;

35 &quot; 16 iv
. 36V

. as the square of the sine of the distance of the nodes from

the syzygies to the square of the radius, or as AZ 2 to AT 2
. For if the

moon, by an uniform motion, describes the semi-circle
QA&amp;lt;/,

the sum of all

the areas PDdM, during the time of the moon s passage from Q, to M, will

make up the area QMc/E. terminating at the tangent Q,E of the circle
;

and by the time that the moon has arrived at the point //, that sum will

make up the whole area EQ,Aw described by the line PD : but when the

moon proceeds from n to q, the line PD will fall without the circle, and

describe the area nqe, terminating at the tangent qe of the circle, which

area, because the nodes were before regressive, but are now progressive,

must be subducted from the former area, and, being itself equal to the area

Q.EN, will leave the semi-circle NQAn. While, therefore, the moon de

scribes a semi-circle, the sum of all the areas PDdM will be the area of

that semi-circle
;
and while the moon describes a complete circle, the sum

of those areas will be the area of the whole circle. But the area PDc^M,
when the moon is in the syzygies, is the rectangle of the arc PM into the

radius PT
;
and the sum of all the areas, every one equal to this area, in

the time that the moon describes a complete circle, is the rectangle of the

whole circumference into the radius of the circle
;
and this rectangle, being

double the area of the circle, will be double the quantity of the former sum
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If, therefore, the nodes went on with that velocity uniformly continued

which they acquire in the moon s syzygies, they would describe a space

double of that which they describe in fact
; and, therefore, the mean motion,

by which, if Uniformly continued, they would describe the same space with

that which they do in fact describe by an unequal motion, is but one-half

of that motion which they are possessed of in the moon s syzygies. Where
fore since their greatest horary motion, if the nodes are in the quadratures,

is 33&quot; 10 &quot; 33 iv
. 12V

. their mean horary motion in this case will be 16&quot;

35 &quot; 16iv
. 36 V

. And seeing the horary motion of the nodes is every where

as AZ 2 and the area PDdM conjunctly, and. therefore, in the moon s

syzygies, the horary motion of the nodes is as AZ 2 and the area PDdM
conjunctly, that is (because the area PDdNL described in the syzygies is

given), as AZ 2
,
therefore the mean motion also will be as AZ 2

; and, there

fore, when the nodes are without the quadratures, this motion will be to

16&quot; 35 &quot; I6 v
. 36V

. as AZ 2 to AT 2
. Q.E.D.

PROPOSITION XXXI. PROBLEM XII.

To find the horary motion of the nodes of the moon in an elliptic orbit

Let Qjpmaq represent an ellipsis described with the greater axis Qy, am
the lesser axis ab : QA^B a circle circumscribed

;
T the earth in the com

mon centre of both
;
S the sun

; p the moon moving in this ellipsis ;
and
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pm an arc which it describes in the least moment of time; N and n tlw

nodes joined by the line N//, ; pK and ink perpendiculars upon the axis
Q,&amp;lt;/,

produced both ways till they meet the circle in P and M, and the line of

the nodes in D and cl. And if the moon, by a radius drawn to the earth,

describes an area proportional to the time of description, the horary motion

of the node in the ellipsis will be as the area pDdm and AZ 2

conjunctly.

For let PF touch the circle in P, and produced meet TN in F; arid pj
touch the ellipsis in p, and produced meet the same TN in /, and both

tangents concur in the axis TQ, at Y. And let ML represent the space

which the moon, by the impulse of the above-mentioned force 3IT or 3PK,
would describe with a transverse motion, in the meantime while revolving
in the circle it describes the arc PM

;
and ml denote the space which the

moon revolving in the ellipsis would describe in the same time by the im

pulse of the same force SIT or 3PK
;
and -let LP and Ip be produced till

they meet the plane of the ecliptic in G and g, and FG and
/&quot;^

be joined,

of which FG produced may cut pf, pa; and TQ, in c, e, and R respect

ively ; and/0&quot; produced may cut TQ in r. Because the force SIT or 3PK
in the circle is to the force SIT or 3/?K in the ellipsis as PK to /?K, or

as AT to T, the space ML generated by the former force will be to the

space ml generated by the latter as PK to
p&quot;K ;

that is, because of the

similar figures PYK/? and FYRc, as FR to cR. But (because of the

similar triangles PLM, PGF) ML is to FG as PL to PG. that is (on ac

count of the parallels L/r, PK, GR), as pi to pe, that is (because of the

similar triangles plm, cpe), as lm to ce ; and inversely as LM is to lm, or

as FR is to cR, so is FG to ce. And therefore if fg was to ce as/// to

cY, that is, as fr to cR (that is, as fr to FR and FR to cR conjunctly,

that is, as/T to FT, and FG to ce conjunctly), because the ratio of FG
to ce, expunged on both sides, leaves the ratiosfg to FG and/T to FT,

fg would be to FG as/T to FT; and, therefore, the angles which FG

and/- would subtend at the earth T would be equal to each other. But

these angles (by what we have shewn in the preceding Proposition) are the

motions of the nodes, while the moon describes in the circle the arc PM,
in the ellipsis the arc jt?w; and therefore the motions of the nodes in the

circle and in the ellipsis would be equal to each other. Thus, I say, it

cex /Y
would be, if fg was to cc as/Y to cY, that is, if/,

r was oqual to ^ .

But because of the similar triangles/?/?, cep, fg is to cc as//? to cp ; anJ

therefore/?- is equal to -
;
and therefore the angle whichfg sub

tends in fact is to the former angle which FG subterds. that is to say, the

motion of the nodes in tl;^ ellipsis is to the motion of the same in the

circle aa this/^ or- to the forrer/o- or ,
that is, as//? X



432 THE MATHEMATICAL PRINCIPLES [HOOK 111.

cY to/ Y X cp, or as//? to/ Y, and cY to cjo ; that is
;
if ph parallel to

TN meet FP in h, as FA to FY and FY to FP
;
that is, as Fh to FP

or DJO to DP, and therefore as the area Dpmd to the area DPMc?. And,
therefore, seeing (by Corol. 1, Prop. XXX) the latter area and AZ 2 con-

junctly are proportional to the horary motion of the nodes in the circle,

the former area and AZ 2
conjunctly will be proportional to the horary

motion of the nodes in the ellipsis. Q.E.D.

COR. Since, therefore, in any given position of the nodes, the sum of all

the areas
/&amp;gt;Drfm,

in the time while the moon is carried from the quadra
ture to any place tn, is the area mpQ&d terminated at the tangent of the

ellipsis Q,E
;
and the sum of all those areas, in o Tne entire revolution, is

the area of the whole ellipsis ;
the mean motion of the nodes in the ellip

sis will be to the mean motion of the nodes in the circle as the ellipsis to

the circle
;
that is, as Ta to TA, or 69 to 70. And, therefore, since (by

Corol 2, Prop. XXX) the mean horary motion of the nodes in the circle

is to 16&quot; 35&quot;
7 16 iv

. 36 V
. as AZ 2 to AT 2

,
if we take the angle 16&quot; 21 &quot;

3 iv
. 30V

. to the angle 16&quot; 35 &quot; 16iv
. 36V

. as 69 to 70. the mean horary mo
tion of the nodes in the ellipsis will be to 16&quot; 21 &quot; 3iv

. 30V
. as AZ 2 to

AT 2
;
that is, as the square of the sine of the distance of the node from

the sun to the square of the radius.

But the moon, by a radius drawn to the earth, describes the area in the

syzygie-s with a greater velocity than it does that in the quadratures, and

upon that account the time is contracted in the syzygies, and prolonged in

the quadratures ;
and together with the time the motion of the nodes is

likewise augmented or diminished. But the moment of the area in the

quadrature of the moon was to the moment thereof in the syzygies as

10973 to 11073
;
and therefore the mean moment in the octants is to the

excess in the syzygies. and to the defect in the quadratures, as 1 1023, the

half sum of those numbers, to their half difference
1

50. Wherefore since

the time of the moon in the several little equal parts of its orbit is recip

rocally as its velocity, the mean time in the -octants will be to the excess

of the time in the quadratures, and to the defect of the lime in the syzy

gies arising from this cause, nearly as 11023 to 50. But, reckoning from

the quadratures to the syzygies, I find that the excess of the moments of

the area, in the several places above the least moment in the quadratures,

is nearly as the square of the sine of the moon s distance from the quad

ratures : and therefore the difference betwixt the moment in any place,

and the mean moment in the octants, is as the difference betwixt the square

of the sine of the moon s distance from the quadratures, and the square

of the sine of 45 degrees, or half the square of the radius
;
and the in

crement of the time in the several places between the octants and quad

ratures, and the decrement thereof between the octants and syzygies, is in

the same proportion. But the motion of the nodes, while the moon de

scribes the several little equal parts of its orbit, is accelerated or retarded
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in the duplicate proportion of the time
;
for that motion, while the moou

describes PM, is (cceteris parilms) as ML. and ML is in the duplicate

proportion of the time. Wherefore the motion of the nodes in the syzy-

gj-es, in the time while the moon describes given little parts of its orbit,

is diminished in the duplicate proportion of the number H07. J to the num
ber 11023: and the decrement is to the remaining motion as 100 to

10973
;
but to the whole motion as 100 to 11073 nearly. But the decre

ment in the places between the octants and syzygies, and the increment in

the places between the octants and quadratures, is to this decrement nearly

as the whole motion in these places to the whole motion in the syzygies,

and the difference betwixt the square of the sine of the moon s distance

from the quadrature, and the half square of the radius, to the half square

of the radius conjunctly. Wherefore, if the nodes are in the quadratures,

and we take two places, one on one side, one on the other, equally distant

from the octant and other two distant by the same interval, one from the

syzygy, the other from the quadrature, and from the decrements of the

motions in the two places between the syzygy and octant we subtract the

increments of the motions in the two other places between the octant and

the quadrature, the remaining decrement will be equal to the decre

ment in the syzygy, as will easily appear by computation ;
and therefore

the mean decrement, which ought to be subducted from the mean motion

of the nodes, is the fourth part of the decrement in the syzygy. The
whole horary motion of the nodes in the syzygies (when the moon by a ra

dius drawn to the earth was supposed to describe an area proportional to

the time) was 32&quot; 42&quot; ?
iv

. And we have shewn that the decrement of

the motion of the nodes, in the time while the moon, now moving with

greater velocity, describes the same space, was to this motion as 100 to

1.1073; and therefore this decrement is 17 &quot; 43 iv
. 11 v

. The fourth part

of which 4 &quot; 25 iv
. 48 V

. subtracted from the mean horary motion above

found, 16&quot; 21 //; 3iv
. 30 V

. leaves 16&quot; 16 &quot; 37iv
. 42V

. their correct mean ho

rary motion.

If the nodes are without the quadratures, and two places are considered,

one on one side, one on the other, equally distant from the syzygies, the

sum of the motions of the nodes, when the moon is in those places, will be

to the sum of their motions, when the moon is in the same places and the

nodes in the quadratures, as AZ 2 to AT 2
. And the decrements of the

motions arising from the causes but now explained will be mutually as

the motions themselves, and therefore the remaining motions will be mu

tually betwixt themselves as AZ 2 to AT 2
;
and the mean motions will be

as the remaining motions. And, therefore, in any given position of the

nodes, their correct mean horary motion is to 16&quot; 16 &quot; 37iv
. 42V

. as AZ 2

to AT 2
;
that is, as the square of the sine of the distance of the nodes

from the syzygies to the square of the radius.

28
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PROPOSITION XXXII. PROBLEM XIII.

Tofind the mean motion of the nodes of the moon.

The yearly mean motion is the sum of all the mean horary motions

throughout the course of the year. Suppose that the node is in N, and

that, after every hour is elapsed, it is drawn back again to its former

place; so that, notwithstanding its proper motion, it may constantly re

main in the same situation with respect to the fixed stars; while in the

mean time the sun S, by the motion of the earth, is seen to leave the node,

and to proceed till it completes its appa
rent annual course by an uniform motion.

Let Aa represent a given least arc, which

the right line TS always drawn to the

sun, by its intersection with the circle

NA?/, describes in the least given moment

of time; and the mean horary motion

(from what we have above shewn) will be

as AZ 2
,
that is (because AZ and ZY are

proportional), as the rectangle of AZ into ZY. that is, as the area

AZYa ; and the sum of all the mean horary motions from the beginning

will be as the sum of all the areas oYZA, that is, as the area NAZ. But

the greatest AZYa is equal to the rectangle of the arc Aa into the radius

of the circle
;
and therefore the sum of all these rectangles in the whole

circle will be to the like sum of all the greatest rectangles as the area of

the whole circle to the rectangle of the whole circumference into the ra

dius, that is, as 1 to 2. But the horary motion corresponding to that

greatest rectangle was 16&quot; 16 &quot; 37iv
. 42V

. and this motion in the complete

course of the sidereal year, 365d
. 6&quot;. 9

,
amounts to 39 38 7&quot; 50&quot;

,
and

therefore the half thereof, 19 49 3&quot; 55&quot;
,
is the mean motion of the

nodes corresponding to the whole circle. And the motion of the nodes,

in the time while the sun is carried from N to A, is to 19 49 3&quot; 55&quot; as

the area NAZ to the whole circle.

Thus it would be if the node was after every hour drawn back again to

its former place, that so, after a complete revolution, the sun at the year s

end would be found again in the same node which it had left when the

year begun. But, because of the motion of the node in the mean time, the

sun must needs meet the node sooner
;
and now it remains that we compute

the abbreviation of the time Since, then, the sun, in the course of the

year, travels 360 degrees, and the node in the same time by its greatest

motion would be carried 39 &amp;gt; 38 7&quot; 50
&quot;,

or 39,6355 degrees ;
and the mean

motion of the node in any place N is to its mean motion in its quadratures

as AZ 2 to AT- the motion of the sun will be to the motion of the noda
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in N as 360AT 2 to 39,6355AZ 2

;
that is, as 9,OS27646AT 2 to AZ .

Wherefore if we suppose the circumference NA/* of the whole circle to he

divided into little equal parts, such as Aa, the time in which the sun would

describe the little arc Aa, if the circle was quiescent, will be to the time of

which it would describe the same arc, supposing the circle together with

the nodes to be revolved about the centre T, reciprocally as 9,0827646AT 2

to 9,0827646AT 2 + AZ 2

;
for the time is reciprocally as the velocity

with which the little arc is described, and this velocity is the sum of the

velocities of both sun and node. If, therefore, the sector NTA represent

the time in which the sun by itself, without the motion of the node, would

describe the arc NA, and the indefinitely small part ATa of the sector

represent the little moment of the time in which it would describe the least

arc Aa ; and (letting fall aY perpendicular upon N//) if in AZ we take

c/Z of such length that the rectangle of dZ into ZY may be to the least

part AT of the sector as AZ 2 to 9,OS27646AT
2

-f AZ 2
,
that is to

say, that dZ may be to |AZ as AT 2 to 9,0827646AT 2
-f AZ 2

;
the

rectangle of dZ into ZY will represent the decrement of the time arising

from the motion of the node, while the arc Aa is described
;
and if the

curve NdGn is the locus where the point d is always found, the curvilinear

area Ne/Z will be as the whole decrement of time while the whole arcNA
is described

;
and

; therefore, the excess of the sector NAT above the area

NrfZ will be as the whole time But because the motion of the node in a

less time is less in proportion of the time, the area AaYZ must also be di

minished in the same proportion : which may be done by taking in AZ the

line eZ of such length, that it may be to the length of AZ as AZ 2 to

9,OS27646AT 2
-f AZ 2

;
for so the rectangle of eZ into ZY will be to

the area AZYa as the decrement of the time in which the arc Aa is de

scribed to the whole time in which it would have been described, if the

node had been quiescent ; and, therefore, that rectangle will be as the de

crement of the motion of the node. And if the curve NeFn is the locus of

the point e, the whole area NeZ, which is the sum of all the decrements of

that motion, will be as the whole decrement thereof during the time in

which the arc AN is described
;
and the remaining area N Ae will be as the

remaining motion, which is the true motion of the node, during the time

in which the whole arc NA is described by the joint motions of both sun

and node. Now the area of the semi-circle is to the area of the figure

NeFn found by the method of infinite series nearly as 793 to o-\ But the

motion corresponding or proportional to the whole circle was 19 49 3&quot;

55 &quot;

;
and therefore the motion corresponding- to double the figure NeF//

is t 29 58&quot; 2
&quot;,

which taken from the former motion leaves 18 19 5&quot;

53
&quot;,

the whole motion of the node witn respect to the fixed stars in the

interval between two of its conjunction? with the sun
;
and this motion sub

ducted from the annual motion of the sun 360C

,
leaves 341 40 54&quot; 7

&quot;,



4o6 THE MATHEMATICAL PRINCIPLES [BOOK 111.

the motion of the sun in the interval between the same conjunctions. But

as this motion is to the annual motion 360, so is the motion of the node

but just now found 1S 19 5&quot; 53 &quot;

to its annual motion, which will there

fore be 19 IS I&quot; 23 &quot;

;
and this is the mean motion of the nodes in the

sidereal year. By astronomical tables, it is 19 21 21&quot; 50 &quot;. The dif

ference is less than
3- j^- part of the whole motion, and seems to arise from

the eccentricity of the moon s orbit, and its inclination to the plane of the

ecliptic. By the eccentricity of this orbit the motion of the nodes is too

much accelerated
; and, on the other hand, by the inclination of the orbit,

the motion of the nodes is something retarded, and reduced to its just

velocity.

PROPOSITION XXXIII. PROBLEM XIV.

To find the true motion, of the nodes of the moon.

In the time which is as the area

NTA NrfZ (in the preceding Fig.)

that motion is as the area NAe, and

is thence given ;
but because the cal

culus is too difficult, it will be better

to use the following construction of

the Problem. About the centre C,

with any interval CD, describe the circle BEFD
; produce DC to A so as

AB may be to AC as the mean motion to half the mean true motion when

the nodes are in their quadratures (that is, as 19 18 I&quot; 23 &quot;

to 19 49 3&quot;

55 &quot;

;
and therefore BC to AC as the difference of those motions

G Jl 2&quot;

32 &quot;

to the latter motion 19 49 3&quot; 55
&quot;,

that is, as 1 to 38 T\). Then

through the point D draw the indefinite line Gg, touching the circle in.

I)
;
and if we take the angle BCE, or BCF, equal to the double distance

of the sun from the place of the node, as found by the mean motion, and

drawing AE or AF cutting the perpendicular DG in G, we take another

angle which shall be to the whole motion of the node in the interval be

tween its syzygies (that is, to 9 IV
3&quot;)

as the tangent DG to the whole

circumference of the circle BED, and add this last angle (for which the

angle DAG may be used) to the mean motion of the nodes, while they are

passing from the quadratures to the syzygies, and subtract it from their

mean motion while they are passing from the syzygies to the quadratures,

we shall have their true motion
;
for the true motion so found will nearly

agree with the true motion which comes out from assuming the times as

the area NTA NrfZ, and the motion of the node as the area NAe
;
as

whoever will please to examine and make the computations will find : and

this is the semi -menstrual equation of the motion of the nodes. But there

is also a menstrual equation, but which is by no means necessary for find-



BOOK III.]
OF NATURAL PHILOSOPHY. 437

ing of the moon s latitude
;
for since the variation of the inclination of the

moon s orbit to the plane of the ecliptic is liable to a twofold inequality,

the one semi-menstrual, the other menstrual, the menstrual inequality of

this variation, and the menstrual equation of the nodes, so moderate and

carrect each other, that in computing the latitude of the moon both may
be neglected.

COR. From this and the preceding Prop, it appears that the nodes are

quiescent in their syzygies, but regressive in their quadratures, by an

hourly motion of 16&quot; 19 &quot; 26 iv
. : and that the equation of the motion of

the nodes in the octants is 1 30
;

all which exactly agree with the phaB-

nomena of the heavens.

SCHOLIUM.
Mr. Machin, Astron., Prof. Gresh.. and Dr. Flenry Pemberton, sepa

rately found out the motion of the nodes by a different method. Mention

has been made of this method in another place. Their several papers, both

of which I have seen, contained two Propositions, and exactly agreed with

each other in both of them. Mr. Machines paper coming first to my hands,

I shall here insert it.

OF THE MOTION OF THE MOON S NODES.
&amp;lt; PROPOSITION I.

1 The mean motion of the sir/i from the node is defined by a geometric
mean proportional between the mean motion of the sun and that mean
motion, with which the sun recedes with the greatest swiftnessfrom the

node in the quadratures.
&quot; Let T be the earth s place, Nn the line of the moon s nodes at any

aiven time, KTM a perpendicular thereto, TA a right line revolving

about the centre with the same angular velocity with which the sun and

the node recede from one another, in such sort that the angle between the

quiescent right line Nra and the revolving line TA may be always equal
to the distance of the places of the sun and node. Now if any right line

TK be divided into parts TS and SK, and thost parts be taken as the

mean horary motion of the sun to the mean horary motion of the node in

the quadratures, and there be taken the right line TH, a mean propor
tional between the part TS and the whole TK, this right line will be pro

portional to the sun s mean motion from the node.
&quot; For let there be described the circle NKnM from the centre T and

with the radius TK, and about the same centre, with the semi-axis TH



438 THE MATHEMATICAL PRINCIPLES [BOOK III

N

and TN
r
let there be described an ellipsis NHwL

;
and in the time in

which the sun recedes from the node through the arc N0, if there be drawn

the right line Tba, the area of the sector NTa will be the exponent of the

sum of the motions of the sun and node in the same time. Let, there

fore, the extremely small arc aA. be that which the right line T/w, revolv

ing according to the aforesaid law, will uniformly describe in a given

particle of time, and the extremely small sector TAa will be as the sum

of the velocities with which the sun and node are carried two different

ways in that time. Now the sun s velocity is almost uniform, its ine

quality being so small as scarcely to produce the least inequality in the

mean motion of the nodes. The other part of this sum, namely, the mean

quantity of the velocity of the node, is increased in the recess from the

gyzygies in a duplicate ratio of the sine of its distance from the sun (by

Cor. Prop. XXXI, of this Book), and, being greatest in its quadratures

with the sun in K, is in the same ratio to the sun s velocity as SK to TS.

that is, as (the difference of the squares of TK and TH, or) the rectangle

KHM to TH 2
. But the ellipsis NBH divides the sector AT, the expo

nent of the sum of these two velocities, into two parts ABba and BTb,

proportional to the velocities. For produce BT to the circle in 0, and

from the point B let fall upon the greater axis the perpendicular BG,
which being produced both ways may meet the circle in the points F and

f; and because the space ABba is to the sector TBb as the rectangle AB
to BT 2

(that rectangle being equal to the difference of the squares of TA
nnd TB, because the right line A3 is equally cut in T, and unequally in

B), therefore when the space ABba is the greatest of all in K, this ratio

will be the same as the ratio of the rectangle KHM to HT 2
. But the

greatest mean velocity of the node was shewn above to be in that very
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ratio to the velocity of the sun
;
and therefore in the quadratures the sec

tor ATa is divided into parts proportional to the velocities. And because

the rectangle KHM is to HT 2 as FB/ to BG 2
,
and the rectangle AB(3 is

equal to the rectangle FB/, therefore the little area ABba, where it is

greatest, is to the remaining sector TB6 as the rectangle AB/3 to BG 2

But the ratio of these little areas always was as the rectangle AB# to

BT 2
;
and therefore the little area ABba in the place A is less than its

correspondent little area in the quadratures in the duplicate ratio cf BG
to BT, that is, in the duplicate ratio of the sine of the sun s distance

from the node. And therefore the sum of all the little areas ABba, to

wit, the space ABN, will be as the motion of the node in the time in

which the sun hath been going over the arc NA since he left the node;
and the remaining space, namely, the elliptic sector NTB, will be as die

sun s mean motion in the same time. And because the mean annual mo
tion of the node is that motion which it performs in the time that the sun

completes one period of its course, the mean motion of the node from the

sun will be to the mean motion of the sun itself as the area of the circle

to the area of the ellipsis; that is, as the right line TK to the right line

TH, which is a mean proportional between TK and TS
; or, which comes

to the same as the mean proportional TH to the right line TS.

&amp;lt; PROPOSITION II.

u The rmean motion of t/ie -moon s nodes being given, to find their true

motion.

&quot; Let the angle A be the distance of the sun from the mean place of the

node, or the sun s mean motion from the node. Then if we take the angle

B, whose tangent is to the tangent of the angle A as TH to TK, that ia,
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in the sub-duplicate ratio of the mean horary motion of the sun to the

mean horary motion of the sun from the node, when the node is in the

quadrature, that angle B will be the distance of the sun from the node s

true place. For join FT, and, by the demonstration of the last Propor

tion, the angle FTN will be the distance of the sun from the mean place

of the node, and the angle ATN the distance from the true place, and the

tangents of these angles are between themselves as TK to TH.
&quot; COR. Hence the angle FTA is the equation of the moon s nodes

;
and

the sine of this angle, where it is greatest in the octants, is to the radius

as KH to TK + TH. But the sine of this equation in any other place

A is to the greatest sine as the sine of the sums of the angles FTN +
ATN to the radius

;
that is, nearly as the sine of double the distance of

the sun from the mean place of the node (namely, 2FTN) to the radius.

&quot;SCHOLIUM.

&quot; If the mean horary motion of the nodes in the quadratures be 16&quot;

16&quot; 37 iv
. 42 V

. that is, in a whole sidereal year, 39 38 7&quot; 50&quot;
,
TH will

be to TK in the subduplicate ratio of the number 9,0827646 to the num
ber 10,0827646, that is, as 18,6524761 to 19,6524761. And, therefore.

TH is to HK as 18,6524761 to 1
;
that is, as the motion of the sun in a

sidereal year to the mean motion of the node 19 18 1&quot; 231 &quot;.

&quot; But if the mean motion of the moon s nodes in 20 Julian years is

386 50
15&quot;,

as is collected from the observations made use of in the

theory of the moon, the mean motion of the nodes in one sidereal year will

be 19 20 31&quot; 58 &quot;. and TH will be to HK as 360 to 19 20 31&quot;

58&quot;
;
that is, as 18,61214 to 1: and from hence the mean horary motion

of the nodes in the quadratures will come out 16&quot; 18 &quot; 48 iv
. And the

greatest equation of the nodes in the octants will be 1 29 57&quot;.&quot;

PROPOSITION XXXIV. PROBLEM XV.

Tofind the horary variation of the inclination of the moon s orbit to the

plane of the ecliptic.

Let A and a represent the syzygies ;
Q and q the quadratures ;

N and

n the nodes
;
P the place of the moon in its orbit

; p the orthographic

projection of that place upon the plane of the ecliptic ;
and mTl the mo-

mentaneous motion of the nodes as above. If upon Tm we let fall *;hc

perpendicular PG, and joining pG we produce it till it meet T/ in g, and

join also Pg~, the angle PGp will be the inclination of the moon s orbit to

the plane of the ecliptic when the moon is in P
;
and the angle Pgp will

be the inclination of the same after a small moment of time is elapsed;
and therefore the angle GPg- will be the momentaneous variation of the

inclination. But this angle GPg- is to the angle GTg as TG to PG and

Pp to PG conjunctly. And, therefore, if for the moment of time we as-
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Bnme an hour, since the angle GTg* (by Prop. XXX) is to the angle 33

10 &quot; 33 iv
. as IT X PG X AZ to AT 3

,
the angle GP^ (or the horary va

riation of the inclination) will be to the angle 33&quot; 10 &quot; 33 iv
. as IT X AZ

X TG X to AT 3
. Q.E.I.

And thus it would be if the moon was uniformly revolved in a circular

orbit. But if the orbit is elliptical, the mean motion of the nodes will

be diminished in proportion of the lesser axis to the greater, as we have

shewn above
;
and the variation of the inclination will be also diminished

in the same proportion.

COR. 1. Upon N/i erect the perpendicular TF, and let pM. be the horary
motion of the moon in the plane of the ecliptic; upon Q.T let fall the

perpendiculars pK, MA*, and produce them till they meet TF in H and h
;

then IT will be to AT as Kk to Mjt? ;
and TG to Up as TZ to AT

; and,

KA* X H# x T7
therefore, IT X TG will be equal to -=

,
that is, equal to

T7
the area HpWi multiplied into the ratio ^ : and therefore the horary

variation of the inclination will be to 33&quot; 10&quot; 33iv
. as the area HpMA

TZ P
multiplied into AZ X ,T~ X ^ to AT 3

.

MJD PG
COR. 2. And, therefore, if the earth and nodes were after every hour

drawn back from their new and instantly restored to their old places, so as

their situation might continue given for a whole periodic month together,

the whole variation of the inclination durinor that month would be to 33
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10 &quot; 33 iv
. as the aggregate of all the areas H/?MA. generated in the time ot

one revolution of the point p (with due regard in summing to their proper
P

signs + -*), multiplied intoAZ X TZ X 5^ to Mjo X AT 3
;
that is, as

Pp
the whole circle QAqa multiplied into AZ X TZ X *, to Mp X AT 3

,

that is, as the circumference QAqa multiplied into AZ X TZ X -^ to

2Mj0 X AT 2
.

COR. 3. And, therefore, in a given position of the nodes, the mean ho

rary variation, from which, if uniformly continued through the whole

month, that menstrual variation might be generated, is to 33&quot; 10 &quot; 33iv
. as

PD AZ x TZ
AZ X TZ X ~~ to 2AT 2

,
or as Pp X - LT^7p

&quot;

to PG X 4AT; that
1 VJT -A. \

is (because Pp is to PG as the sine of the aforesaid incHnation to the ra-

AZ X TZ
dius, and - -- to 4AT as the sine of double the angle ATu to four

times the radius), as the sine of the same inclination multiplied into the

sine of double the distance of the nodes from the sun to four times the

square of the radius.

COR. 4. Seeing the horary variation of the inclination, when the nodes

are in the quadratures, is (by this Prop.) to the angle 33&quot; 10 &quot; 33iv
. as IT

X AZ X TG X
p

to AT 3
,
that is, as *, X j~

to 2AT, that

is, as the sine of double the distance of the moon from the quadratures

Pp
multiplied into

.y^
to twice the radius, the sum of all the horary varia

tions during the time that the moon, in this situation of the nodes, passes

from the quadrature to the syzygy (that is, in the space of 177} hours) will

be to the sum of as many angles 33&quot; 10 &quot; 33 1V
. or 5878

,
as the sum of all

the sines of double the distance of the moon from the quadratures multi-

Pp
plied into p^ to the sum of as many diameters

;
that is. as the diameter

Pp
multiplied into =~ to the circumference; that is, if the inclination be 5

1
,
as 7 X i-fU* to 22

&amp;gt;

or as 27S to 1000a And
&amp;gt;

therefore
;
*he whole

variation, composed out of the sum of all the horary variations in the

aforesaid time, is
103&quot;,

or 2 43&quot;.
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PROPOSITION XXXV. PROBLEM XVI.

To a given time to find the inclination of the moo iis orbit to the plant

of the ecliptic.

Let AD be the sine of the greatest inclination, and AB the sine of the

least. Bisect BD in C
;
and round the centre C, with the interval BC,

describe the circle BGD. In AC take CE in the same proportion to EB

B \ HA EC

as EB to twice BA. And if to the time given we set off the angle AEG
equal to double the distance of the nodes from the quadratures, and upon
AD let fall the perpendicular GH, AH will be the sine of the inclination

required.

For GE 2
is equal to GH 2 + HE 2 = BHD + HE 2 = HBD 4- HE 2

__ BH 3 = HBD + BE 2 2BH X BE= BE 2 + 2EC X BH = SEC
X AB + 2EC X BH= 2EC X AH; wherefore since 2EC is given. GE 2

will be as AH. Now let AEg- represent double the distance of the nodes

from the quadratures, in a given moment of time after, and the arc G^, on

account of the given angle GE^-, will be as the distance GE. But HA is

to GO- as GH to GC, and, therefore, HA is as the rectangle GH X G^, or

GH x GE, that is, as^ X GE 2
,
or 7^ X AH: that is, as AH and

ljr_ti

the sine of the angle AEG conjunctly. If, therefore, in any one case. AH
be the sine of inclination, it will increase by the same increments as the

bine of inclination doth, by Cor. 3 of the preceding Prop, and therefore will

always continue equal to that sine. But when the point G falls upon
Cither point B or D, AH is equal to this sine, and therefore remains always

equal thereto. Q.E.D.
In this demonstration I have supposed that the angle BEG, representing

double the distance of the nodes from the quadratures, increaseth uniform

ly ;
for I cannot descend to every minute circumstance of inequality. Now

suppose that BEG is a right angle, and that Gg is in this case the ho

rary increment of double the distance of the nodes from the sun
; then, by

Cor. 3 of the last Prop, the horary variation of the inclination in the same

case will be to 33&quot; 10&quot; 33 iv
. as the rectangle of AH, the sine of the incli

nation, into the sine of the right angle BEG, double the distance of the

nodes from the sun, to four times the square of the radius
;
that is, as AH,
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the sine of the mean inclination, to four times the radius; that is, seeing
the mean inclination is about 5 S, as its sine 896 to 40000, the quad
ruple of the radius, or as 224 to 10000. But the whole variation corres

ponding to BD, the difference of the sines, is to this horary variation as

the diameter BU to the arc G%, that is, conjunctly as the diameter BD to

the semi- circumference BGD, and as the time of 2079 T\ hours, in which
the node proceeds from the quadratures to the syzyffies, to one hour, that

is as 7 to 11, and 2079 T\ to 1. Wherefore, compounding all these pro

portions, we shall have the whole variation BD to 33&quot; 10&quot; 33iv
. as 224 X

7 X 2079 T\ to 110000, that is, as 29645 to 1000; and from thence that

variation BD will come out 16 23i&quot;.

And this is the greatest variation of the inclination, abstracting from
the situation of the moon in its orbit: for if the nodes are in the syzygies,
the inclination suffers no change from the various positions of the moon.

But if the nodes are in the quadratures, the inclination is less when the

moon is in the syzygies than when it is in the quadratures by a difference

of 2
43&quot;, as we shewed in Cor. 4 of the preceding Prop. ;

and the whole

mean variation BD, diminished by 1 21
i&quot;,

the half of this excess, becomes

15
2&quot;,

when the moon is in the quadratures: and increased by the same,
becomes 17 45&quot; when the moon is in the syzygies. If, therefore, the

moon be in the syzygies, the whole variation in the passage of the nodes

from the quadratures to the syzygies will be 17 45&quot;
; and, therefore, if the

inclination be 5 17
20&quot;,

when the nodes are in the syzygies, it will be 4

59 35&quot; when the nodes are in the quadratures and the moon in the syzy

gies. The truth of all which is confirmed by observations.

Now if the inclination of the orbit should be required when the moon is

in the syzygies, and the nodes any where between them and the quadratures,
let AB be to AD as the sine of 4 59 35&quot; to the sine of 5 17

20&quot;,
and

take the angle AEG equal to double the distance of the nodes from the

quadratures ;
and AH will be the sine of the inclination desired. To this

inclination of the orbit the inclination of the same is equal, when the moon

is 90 distant from the nodes. In other situations of the moon, this men

strual inequality, to which the variation of the inclination is obnoxious in

the calculus of the moon s latitude, is balanced, and in a manner took off,

by the menstrual inequality of the motion of the nodes (as we said

before), and therefore may be neglected in the computation of the said

latitude.

SCHOLIUM.

By these computations of the lunar motions I was willing to shew that

by the theory of gravity the motions of the moon could be calculated from

their physical causes. By the same theory I moreover found that the an

nual equation of the mean motion of the moon arises from the various
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dilatation which the orbit of the moon suffers from the action of the sun

according to Cor. 6, Prop. LXVI. Book I. The force of this action is

greater in the perigeon sun, and dilates the moon s orbit
;
in the apogeon

sun it is less, and permits the orbit to be again contracted. The moon

moves slower in the dilated and faster in the contracted orbit
;
and the

annual equation, by which this inequality is regulated, vanishes in the

apogee and perigee of the sun. In the mean distance of the sun from the

earth it arises to about 11 50&quot;
;
in other distances of the sun it is pro

portional to the equation of the sun s centre, and is added to the mean
motion of the moon, while the earth is passing .from its aphelion to its

perihelion, and subducted while the earth is in the opposite semi-circle.

Taking for the radius of the orbis niagnus 1000, and 16} for the earth s

eccentricity, this equation, when of the greatest magnitude, by the theory
of gravity comes out 11 49&quot;. But the eccentricity of the earth seems to

be something greater, and with the eccentricity this equation will be aug
mented in the same proportion. Suppose the eccentricity 16}^, and the

greatest equation will be 11 51&quot;.

Farther
;

I found that the apogee and nodes of the moon move fastei

in the perihelion of the earth, where the force of the sun s action is greater,

than in the aphelion thereof, and that in the reciprocal triplicate propor
tion of the earth s distance from the sun

;
and hence arise annual equa

tions of those motions proportional to the equation of the sun s centre.

Now the motion of the sun is in the reciprocal duplicate proportion of the

earth s distance from the sun
;
and the- greatest equation of the centre

which this inequality generates is 1 56
20&quot;, corresponding to the above-

mentioned eccentricity of the sun, 16}. But if the motion of the sun

had been in the reciprocal triplicate proportion of the distance, this ine

quality would have generated the greatest equation 2 54 30&quot;
;
and there

fore the greatest equations which the inequalities of the motions of the

moon s apogee and nodes do generate are to 2 54 30&quot; as the mean diur

nal motion of the moon s apogee and the mean diurnal motion of its

nodes are to the mean diurnal motion of the sun. Whence the greatest

equation of the mean motion of the apogee comes out 19
43&quot;,

and the

greatest equation of the mean motion of the nodes 9 24&quot;. The former

equation is added, and the latter subducted, while the earth is passing

from its perihelion to its aphelion, and contrariwise when the earth is in

the opposite semi-circle.

By the theory of gravity I likewise found that the action of the sun

upon the moon is something greater when the transverse diameter of the

moon s orbit passeth through the sun than when the same is perpendicu

lar upon the line which joins the earth and the sun
;
and therefore the

moon s orbit is something larger in the former than in the latter case.

And hence arises another equation of the moon s moan motion, depending
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upon the situation of the moon s apogee in respect of the sun, which is in

its greatest quantity when the moon s apogee is in the octants of the sun,

and vanishes when the apogee arrives at the quadratures or syzygies ;
and

it is added to the mean motion while the moon s apogee is passing from

the quadrature of the sun to the syzygy, and subducted while the apogee
is passing from the syzygy to the quadrature. This equation, which I

shall call the semi-annual, when greatest in the octants of the apogee,

arises to about 3
45&quot;,

so far as I could collect from the phenomena : and

this is its quantity in the mean distance of the sun from the earth. But

it is increased and diminished in the reciprocal triplicate proportion of

the sun s distance, and therefore is nearly 3 34&quot; when that distance is

greatest^ and 3 56&quot; when least. But when the moon s apogee is without

the octants, it becomes less, and is to its greatest quantity as the sine of

double the distance of the moon s apogee from the nearest syzygy or quad
rature to the radius.

By the same theory of gravity, the action of the sun upon the moon is

something greater when the line of the moon s nodes passes through the

sun than when it is at right angles with the line which joins the sun and

the earth
;
and hence arises another equation of the moon s mean motion,

which I shall call the second semi-annual
;
and this is greatest when the

nodes are in the octants of the sun, and vanishes when they are in the

syzygies or quadratures ;
and in other positions of the nodes is propor

tional to the sine of double the distance of either node from the nearest

syzygy or quadrature. And it is added to the mean motion of the moon,
if the sun is in antecedentia, to the node which is nearest to him, and

subducted if in consequential and in the octants, where it is of the

greatest magnitude, it arises to 47&quot; in the mean distance of the sun from

the earth, as I find from the theory of gravity. In other distances of the

sun, this equation, greatest in the octants of the nodes, is reciprocally as

the cube of the sun s distance from the earth
;
and therefore in the sun s

perigee it comes to about
49&quot;,

and in its apogee to about 45&quot;.

By the same theory of gravity, the moon s apogee goes forward at the

greatest rate when it is either in conjunction with or in opposition to the

sun, but in its quadratures with the sun it goes backward
;
and the ec

centricity comes, in the former case, to its greatest quantity ;
in the latter

to its least, by Cor. 7, 8, and 9, Prop. LXVI, Book 1. And those ine

qualities, by the Corollaries we have named, are very great, and generate

the principal which I call the semi-annual equation of the apogee ;
and

this semi-annual equation in its greatest quantity comes to about 12 18
,

as nearly as I could collect from the phenomena. Our countryman,

HorroXj was the first who advanced the theory of the moon s moving in

an ellipsis about the earth placed in its lower focus. Dr. Halley improved
the notion, by putting the centre of the ellipsis in an epicycle whose cen-
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tre is uniformly revolved about the earth
;
and from the motion in this

epicycle the mentioned inequalities in the progress and regress of the apo

gee, and in the quantity of eccentricity, do arise. Suppose the mean dis

tance of the moon from the earth to be divided into 100000 parts, and

let T represent the earth, and TC the moon s mean eccentricity of 5505

such parts. Produce TC to B, so as CB may be the sine of the greatest

semi-annual equation 12 18 to the radius TC; and the circle BOA de

scribed about the centre C, with the

( interval CB, will be the epicycle

spoken of, in which the centre of the

moon s orbit is placed, and revolved

according to the order of the letters

BDA. Set off the angle BCD equal

to twice the annual argument, or

twice the distance of the sun s true place from the place of the moon s

apogee once equated, and CTD will be the semi-annual equation of the

moon s apogee, and TO the eccentricity of its orbit, tending to the place

of the apogee now twice equated. But, having the moon s mean motion,

the place of its apogee, and its eccentricity, as well as the longer axis of

its orbit 200000, from these data the true place of the moon in its orbit,

together with its distance from the earth, may be determined by the

methods commonly known.

In the perihelion of the earth, where the force of the sun is greatest,

the centre of the moon s orbit moves faster about the centre C than in the

aphelion, and that in the reciprocal triplicate proportion of the sun s dis

tance from the earth. But, because the equation of the sun s centre is

included in the annual argument, the centre of the moon s orbit moves

faster in its epicycle BDA, in the reciprocal duplicate proportion of the

sun s distance from the earth. Therefore, that it may move yet faster in

the reciprocal simple proportion of the distance, suppose that from D, the

centre of the orbit, a right line DE is drawn, tending towards the moon s

apogee once equated, that is, parallel to TC
;
and set off the angle EDF

equal to the excess of the aforesaid annual argument above the distance

of the moon s apogee from the sun s perigee in conseqiientia ; or
;
which

comes to the same thing, take the angle CDF equal to the compleiuent of

the sun s true anomaly to 360
;
and let DF be to DC as twice the eccen

tricity of the orbis magnus to the sun s mean distance from the earth.

and the sun s mean diurnal m:tion from the moon s apogee to the sun s

mean diurnal motion from its own apogee conjunctly, that is, as 33f to

1000, and 52 27&quot; 16 &quot; to 59 8&quot; 10 &quot;

conjunctly, or as 3 to 100; and

imagine the centre of the moon s orbit placed in the point F to be revolved

in an epicycle whose centre is D, and radius DF, while the point D moves

in the circumference of the circle DABD : for by this means the centre of
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the moon s orbit comes to describe a certain curve line about the centre C
with a velocity which will be almost reciprocally as the cube of the sun s

distance from the earth, as it ought to be.

The calculus of this motion is difficult, but may be rendered more easy
by the following approximation. Assuming, as above, the moon s mean
distance from the earth of 100000 parts, and the eccentricity TC of 5505
Buch parts, the-line CB or CD will be found 1172f, and DF 35} of those

parts : and this line DF at the distance TC subtends the angle at the earth,
which the removal of the centre of the orbit from the place D to the place
P generates in the motion of this centre; and double this line DF in a

parallel position, at the distance of the upper focus of the moon s orbit from
the earth, subtends at the earth the same angle as DF did before, which
that removal generates in the motion of this upper focus

;
but at the dis

tance of the moon from the earth this double line 2DF at the upper focus,
in a parallel position to the first line DF, subtends an angle at the moon,
which the said removal generates in the motion of the moon, which angle

may be therefore called the second equation of the moon s centre
;
and this

equation, in the mean distance of the moon from the earth, is nearly as the

sine of the angle which that line DF contains with the line drawn from
the point F to the moon, and when in its greatest quantity amounts to 2

25&quot;. But the angle which the line DF contains with the line drawn from

the point F to the moon is found either by subtracting the angle EDF
from the mean anomaly of the moon, or by adding the distance of the moon
from the sun to the distance of the moon s apogee from the apogee of the

sun
;
and as the radius to the sine of the angle thus found, so is 2 25&quot; to

the second equation of the centre: to be added, if the forementioned sum
be less than a semi-circle

;
to be subducted, if greater. And from the moon s

place in its orbit thus corrected, its longitude may be found in the syzygies
of the luminaries.

The atmosphere of the earth to the height of 35 or 40 miles refracts the

sun s light. This refraction
^scatters

and spreads the light over the earth s

shadow
;
and the dissipated^ light near the limits of the shadow dilates the

shadow. Upon which account, to the diameter of the shadow, as it cornea

out by the parallax, I add 1 or 1^ minute in lunar eclipses.

But the theory of the moon ought to be examined and proved from the

phenomena, first in the syzygies, then in the quadratures, and last of all

in the octants: and whoever pleases to undertake the work will find it

not amiss to assume the following mean motions of the sun and moon at

the Royal Observatory of Greenwich, to the last day of December at noon,

anno 1700, O.S. viz. The mean motion of the sun Y5&amp;gt; 20 43
40&quot;,

and of

its apogee
s 7 44

30&quot;;
the mean motion of the moon ^ 15 21

00&quot;;

of its apogee, X 8 20
00&quot;;

and of its ascending node Si 27 24
20&quot;;

and the difference of meridians betwixt the Observatory at Greenwich and
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the Royal Observatory at Paris, Oh . 9 20 : but the mean motion &amp;gt;f the

inoon and of its apogee are not yet obtained with sufficient accuracy.

PROPOSITION XXXVI. PROBLEM XVII.

Tofind the force of the sun to move the sea.

The sun s force Ml, or PT to disturb the motions of the moon, was (by

Prop. XXV.) in the moon s quadratures, to the force of gravity with us, as

1 to 638092.6; and the force TM LM or 2PK in the moon s syzygies

is double that quantity. But, descending to the surface of the earth, these

forces are diminished in proportion of the distances from the centre of the

earth, that is, in the proportion of 60| to 1
;
and therefore the former force

on the earth s surface is to the force of gravity as 1 to 38604600
;
and by

this force the sea is depressed in such places as are 90 degrees distant from

the sun. But by the other force, which is twice as great, the sea is raised

not only in the places directly under the sun, but in those also which are

directly opposed to it
;
and the sum of these forces is to the force of gravity

as 1 to 12868200. And because the same force excites the same motion,

whether it depresses the waters in those places which are 90 degrees distant

from the sun, or raises them in the places which are directly under and di

rectly opposed to the sun, the aforesaid sum will be the total force of the

sun to disturb the sea, and will have the same effect as if the whole was

employed in raising the sea in the places directly under and directly op

posed to the sun, and did not act at all in the places which are 90 degrees

removed from the sun.

And this is the force of the sun to disturb the sea in any given place,

where the sun is at the same time both vertical, and in its mean distance

from the earth. In other positions of the sun, its force to raise the sea is

as the versel sine of double its altitude above the horizon of the place di

rectly, and the cu.be of the distance from the earth reciprocally.

COR. Since the centrifugal force of the parts of the earth, arising from

the earth s diurnal motion, which is to the force of gravity as 1 to 289,

raises the waters under the equator to a height exceeding that under the

poles by 85472 Paris feet, as above, in Prop. XIX., the force of the sun,

which we have now shewed to be to the force of gravity as 1 to 12868200,

and therefore is to that centrifugal force as 289 to 12868200, or as 1 to

44527, will be able to raise the waters in the places directly under and di

rectly opposed to the sun to a height exceeding that in the places which arc

90 degrees removed from the sun only by one Paris foot and 113 V inches
;

for this measure is to the measure of 85472 feet as 1 to 44527.

PROPOSITION XXXVII. PROBLEM XVIIL

Tofind the force of the moon to move the sea.

The force of the moon to move the sea is to be deduced from its proper-
29
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tion to the force of the sun, and this proportion is to he collected from the

proportion of the motions of the sea, which are the effects of those forces.

Before the mouth of the river Avon, three miles below Bristol, the height
of the ascent of the water in the vernal and autumnal syzygies of the lu

minaries (by the observations of Samuel Sturmy} amounts to about 45

feet, but in the quadratures to 25 only. The former of those heights ari

ses from the sum of the aforesaid forces, the latter from their difference.

If, therefore, S and L are supposed to represent respectively the forces of

the sun arid moon while they are in the equator, as well as in their mean

distances from the earth, we shall have L + S to L S as 45 to 25, or as

9 to 5.

At Plymouth (by the observations of Samuel Colepress) the tide in its

mean height rises to about 16 feet, and in the spring and autumn tlu-

height thereof in the syzygies may exceed that in the quadratures by more

than 7 or 8 feet. Suppose the greatest difference of those heights to be 9

feet, and L -f S will be to L S as 20 to ll|, or as 41 to 23; a pro

portion that agrees well enough with the former. But because of the great

tide at Bristol, we are rather to depend upon the observations of Sturmy ;

and, therefore, till we procure something that is more certain, we shall use

the proportion of 9 to 5.

But because of the reciprocal motions of the waters, the greatest tides do

not happen at the times of the syzygies of the luminaries, but, as we have

said before, are the third in order after the syzygies ;
or (reckoning from

the syzygies) follow next after the third appulse of the moon to the me
ridian of the place after the syzygies ;

or rather (as Sturmy observes) are

the third after the day of the new or full moon, or rather nearly after the

twelfth hour from the new or full moon, and therefore fall nearly upon the

forty-third hour after the new or full of the moon. But in this port they

fall out about the seventh hour after the appulse of the moon to the me
ridian of the place ;

and therefore follow next after the appulse of the

moon to the meridian, when the moon is distant from the sun, or from op

position with the sun by about IS or 19 degrees in. consequent-la. So the

summer and winter seasons come not to their height in the solstices them

selves, but when the sun is advanced beyuni the solstices by about a tenth

part of its whole course, that is, by about 36 or 37 degrees. In like man

ner, the greatest tide is raised after the appulse of the moon to the meridian

of the place, when the moon has passed by the sun, or the opposition thereof.

by .about a tenth part of the whole motion from one greatest tide to the

next following greatest tide. Suppose that distance about 18^ degrees:

and the sun s force in this distance of the moon from the syzygies and

quadratures will be of less moment to augment and diminish that part o1

the motion of the sea which proceeds from the motion of the moon than in

Ihe syzygies and quadratures themselves in the proportion of the radius tu
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the co-sine of double this distance, or of an angle of 37 degrees ;
that is- in

proportion of 10000000 to 798)355; and, therefore, in the preceding an

alogy, in place of S we must put 0,79863558.

But farther
;
the force of tne moon in the quadratures must be dimin

ished, on account of its declination from the equator ;
for the moon in

those quadratures, or rather in 18^ degrees past the quadratures, declines

from the equator by about 23 13
;
and the force of either luminary to

move the sea is diminished as it declines from the equator nearly in the

duplicate proportion of the co-sine of the declination
;
and therefore the

force of the moon in those quadratures is only 0.85703271.
;
whence we

have L+0,7986355S to 0,8570327L 0,79863558 as 9 to 5.

Farther yet ;
the diameters of the orbit in which the moon should move,

setting aside the consideration of eccentricity, are one to the other as 69

to 70
;
and therefore the moon s distance from the earth in the syzygies

is to its distance in the quadratures, c&teris paribus, as 69 to 70
;
and its

distances, when 18i degrees advanced beyond the syzygies, where the great

est tide was excited, and when 18^ degrees passed by the quadratures,

where the least tide was produced, are to its mean distance as 69,098747

and 69,97345 to 69 1. But the force of the moon to move the sea is in

the reciprocal triplicate proportion of its distance
;

and therefore its

forces, in the greatest and least of those distances, are to its force in its

mean distance ;is 0.9830427 and 1,017522 to 1. From whence we have

1,0175221, x 0,79863558. to 0,9830427 X 0,8570327L 0,79863558
as 9 to 5

;
and 8 to L as 1 to 4,4815. Wherefore since the force of the

sun is to the force of gravity as 1 to 12868200, the moon s force will be

to the force of gravity as 1 to 2871400.

COR. 1. Since the waters excited by the sun s force rise to the height of

a foot and ll^V inches, the moon s force will raise the same to the height
of 8 feet and 7/ inches

;
and the joint forces of botli will raise the same

to the height of 10^ feet
;
and when the moon is in its perigee to the

height of 12 i
feet, and more, especially when the wind sets the same way

as the tide. And a force of that quantity is abundantly sufficient to ex

cite all the motions of the sea, and agrees well with the proportion of

those motions; for in such seas as lie free and open from east to west, as-

iri the Pacific sea. and in those tracts of the Atlantic and Ethiopia seas

which lie without the tropics, the waters commonly rise to 6, 9,* 12, cr 15

feet
;
but in the Pacific sea, which is of a greater depth, as well as- of a

larger extent, the tides are said to be greater than in the Atlantic andi

Ethiopic seas
;
for to have a full tide raised, an extent of sea from east

1

to

west is required of no less than 90 degrees. In the Ethiopic sea, the waters-

rise to a less height within the tropics than in the temperate zones, be

cause of the narrowness of the sea between Africa and the southern parts
of America. In the middle of the open sea the waters cannot rise with*
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out falling together, and at the same time, upon both the eastern and west

ern shores, when, notwithstanding, in our narrow seas, they ought to fall

on those shores by alternate turns
; upon which account there is com

monly but a small flood and ebb in such islands as lie far distant from

the continent. On the contrary, in some ports, where to fill and empty
the bays alternately the waters are with great violence forced in and out

through shallow channels, the flood and ebb must be greater than ordinary ;

as at Plymouth and Chepstow Bridge in England, at the mountains of

St. Michael, and the town of Auranches, in Normandy, and at Combaia
and Pegu in the East Indies. In these places the sea is hurried in and

qjit with such violence, as sometimes to lay the shores under water, some
times to leave them dry for many miles. Nor is this force of the influx

and efflux to be broke till it has raised and depressed the waters to 30, 40,
or 50 feet and above. And a like account is to be given of long and shal

low channels or straits, such as the Mugellrniic straits, and those chan

nels which environ England. The tide in such ports and straits, by the

violence of the influx and efflux, is augmented above measure. But on

such shores as lie towards the deep and open sea with a steep descent,

where the waters may freely rise and fall without that precipitation of

influx and efflux, the proportion of the tides agrees with the forces of the

sun and moon.

COR. 2. Since the moon s force to move the sea is to the force of gravity
as 1 to 2871400, it is evident that this force is far less than to appear

sensibly in statical or hydrostatical experiments, or even in those of pen
dulums. It is in the tides only that this force shews itself by any sensi

ble effect.

COR. 3. Because the force of the moon to move the sea is to the like

force of the sun as 4,4815 to 1, and those forces (by Cor. 14, Prop. LXVI,
Book 1) are as the densities of the bodies of the sun and moon and the

cubes of their apparent diameters conjunctly, the density of the moon will

be to the density of the sun as 4,4815 to 1 directly, and the cube of the

moon s diameter to the cube of the sun s diameter inversely ;
that is (see

ing the mean apparent diameters of the moon and sun are 31
161&quot;,

and

32
12&quot;),

as 4891 to 1000. But the density of the sun was to the den

sity of the earth as 1000 to 4000; and therefore the density of the moon
is to the density of the earth as 4891 to 4000, or as 11 to 9. Therefore

the body of the moon is more dense and more earthly than the earth

itself.

COR. 4. And since the true diameter of the moon (from the observations

of astronomers) is to the true diameter of the earth as 100 to 365, the

mass of matter in the moon will be to the mass of matter in the earth as

1 to 39,788.

Cor. 5. And the accelerative gravity on the surface of the moon will be
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about three times less than the accelerative gravity on the surface of thr

earth.

COR. 6. And the distance of the moon s centre from the centre of the

earth will be to the distance of the moon s centre from the common centre

of gravity of the earth and moon as 40,783 to 39,788.

COR. 7. And the mean distance of the centre of the moon from the

centre of the earth will be (in the moon s octants) nearly 60f of the great

est semi-diameters of the earth; for the greatest semi- diameter of the

earth was 1 9658600 Paris feet, and the mean distance of the centres of

the earth and moon, consisting of 60| such semi-diameters, is equal to

1187379440 feet. And this distance (by the preceding Cor.) is to the dis

tance of the moon s centre from the common centre of gravity of the

earth and moon as 40.788 to 39,788 : which latter distance, therefore, is

1158268534 feet. And since the moon, in respect of the fixed stars, per

forms its revolution in 27d
. 7h

. 43f ,
the versed sine of that angle which

the moon in a minute of time describes is 12752341 to the radius

1000,000000,000000; and as the radius is to this versed sine, so are

1158268534 feet to 147706353 feet. The moon, therefore, falling tow

ards the earth by that force which retains it in its orbit, would in one

minute of time describe 147706353 feet
;
and if we augment this force

in the proportion of 17Sf to l?7-, we shall have the total force of

gravity at the orbit of the moon, by Cor. Prop. Ill
;
and the moon falling

by this force, in one minute of time would describe 14.8538067 feet. And
at the 60th part of the distance of the moon from the earth s centre, that

is, at the distance of 197896573 feet from the centre of the earth, a body

falling by its weight, would, in one second of time, likewise describe

14,8538067 feet. And, therefore, at the distance of 19615800, which

compose one mean serni -diameter of the earth, a heavy body would de

scribe in falling 15,11175, or 15 feet, 1 inch, and 4^ lines, in the same

time. This will be the descent of bodies in the latitude of 45 degrees.

And by the foregoing table, to be found under Prop. XX, the descent in

the latitude of Paris will be a little greater by an excess of about | parts

of a line. Therefore, by this computation, heavy bodies in the latitude of

Paris falling in vacno will describe 15 Paris feet, 1 inch, 4|f lines, very

nearly, in one second of time. And if the gravity be diminished by tak

ing away a quantity equal to the centrifugal force arising in that latitude

.&quot;rom the earth s diurnal motion, heavy bodies falling there will describe

in one second of time 15 feet, 1 inch, and l line. And with this velo

city heavy bodies do really fall in the latitude of Paris, as we have shewn

above in Prop. IV and XIX.
COR. 8. The mean distance of the centres of the earth and moon in the

syzygies of the moon is equal to 60 of the greatest semi-diameters of the

earth, subducting only about one 30th par
1

; of a semi- diameter : and in the
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moon s quadratures the mean distance of the same centres is 60f such semi-

diameters of the earth
;
for these two distances are to the mean distance oi

the moon in the octants as 69 and 70 to 69|, by Prop. XXVIII.

COR. 9. The mean distance of the centres of the earth and moon in the

syzygies of the moon is 60 mean semi-diameters of the earth, and a 10th

part of one semi-diameter; and in the moon s quadratures the mean dis

tance of the same centres is 61 mean semi- diameters of the earth, subduct

ing one 30th part of one semi-diameter.

COR. 10. In the moon s syzygies its mean horizontal parallax in the lat

itudes of 0. 30, 38, 45, 52, 60, 90 degrees is 57
20&quot;,

57
16&quot;,

57
14&quot;,

57

12&quot;,
57 10&quot;,

57
8&quot;,

57
4&quot;, respectively.

In these computations I do not consider the magnetic attraction of the

earth, whose quantity is very small and unknown : if this quantity should

ever be found out, and the measures of degrees upon the meridian, the

lengths of isochronous pendulums in different parallels, the laws of the mo
tions of the sea, and the moon s parallax, with the apparent diameters of

the sun and moon, should be more exactly determined from phenomena : wo

should then be enabled to bring this calculation to a greater accuracy.

PROPOSITION XXXVIII. PROBLEM XIX.

To find thefigure of the moon s body.

If the moon s body were fluid like our sea, the force of the earth to raise

that fluid in the nearest and remotest parts would be to the force of the

moon by which our sea is raised in the places under and opposite to the

moon as the accelerative gravity of the moon towards the earth to the ac-

celerative gravity of the earth towards the moon, and the diameter of the

moon to the diameter of the earth conjunctly ;
that is, as 39,788 to 1, and

100 to 365 conjunctly, or as 1081 to 100. Wherefore, since our sea, by
the force of the moon, is raised to Sf feet, the lunar fluid would be raised

by the force of the earth to 93 feet
;
and upon this account the figure of

the moon would be a spheroid, whose greatest diameter produced would

pass through the centre of the earth, and exceed the diameters perpendicu
lar thereto by 186 feet. Such a figure, therefore, the moon affects, and

must have put on from the beginning. Q.E.I.

COR. Hence it is that the same face of the moon always respects the

earth
;
nor can the body of the moon possibly rest in any other position,

but would return always by a libratory motion to this situation
;
but those

librations, however, must be exceedingly slow, because of the weakness of

the forces which excite them
;
so that the face of the moon, which should

be always obverted to the earth, may, for the reason assigned in Prop. XVI I.

be turned towards the other focus of the moon s orbit, without being im

mediately drawn back, and converted again towards the earth.
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LEMMA I.

If APEp represent the earth uniformly dense, marked with the centre C,

the poles P, p, and the equator AE; and if about the centre C, with

the radius CP, we suppose the sphere Pape to be described, and Q li to

denote tJie plane on which a right line, drawn from the centre of the

sun to the centre of the earth, i/isists at right angles ; and further

suppose that the several particles of the whole exterior earth PapAP^pE,
without the height of the said sphere, endeavour to recede towards t/iis

side and that side from the plane Q.R, every particle by a force pro

portional to its distancefrom that plane ; I say, in the first place, that

the wholeforce and efficacy of all the particles that are situate in AE,
the circle of the equator, and disposed uniformly without the globe,

encompassing the same after the manner of a ring, to iclieel the earth

about its centre, is to the wholeforce and efficacy of as many particles
in that point A of the equator which is at the greatest distance from
the plane Q,R, to wheel the earth about its centre with a like circular

motion, as I to 2. And that circular motion will be performed about

an axis lying in the common section of the equator and the plane Q,R.

For let there be described from the centre K, with the diameter IL, the

semi-circle INL. Suppose the semi-circumference INL to be divided

into innumerable equal parts, and from the several parts N to the diameter

Q

I K ML,
IL let fall the sines NM. Then the sums of the squares of all the sinea

NM will be equal to the sums of the squares of the sines KM, and both

sums together will be equal to the sums of the squares of as many semi-

diameters KN
;
and therefore the sum of the squares of all the sines NM

will be but half so great as the sum of the squares of as many semi-diam
eters KN.

Suppose now the circumference of the circle AE to be divided into the

like number of little equal parts, and from every such part P a perpen
dicular FG to be let fall upon the plane QK, as well as the perpendicular
AH from the point A. Then the force by which the particle F recede*
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from the plane QR will (by supposition) be as that perpendicular FG ;
and

this force multiplied by the distance CG will represent the power of the

particle F to turn the earth round its centre. And, therefore, the power
of a particle in the place F will be to the power of a particle in the place
A as FG X GO to AH X HC

;
that is, as FC 2 to AC 2

: and therefore

the whole power of all the particles F, in their proper places F, will be to

the power of the like number of particles in the place A as the sum of all

the FC 2 to the sum of all the AC 2
,
that is (by what we have demonstrated

before), as 1 to 2. Q.E.D.

And because the action of those particles is exerted in the direction of

lines perpendicularly receding from the plane QR, and that equally from

each side of this plane, they will wheel about the circumference of the circle

of the equator, together with the adherent body of the earth, round an axis

which lies as well in the plane QR as in that of the equator.

LEMMA II.

The same things still supposed, I say, in the second place, that the total

force or poiver of all the particles situated every where about the sphere
to turn the earth about the said axis is to the whole force of the like

number ofparticles, uniformly disposed round the whole circumference,

of the equator AE in the fashion of a ring, to turn the whole earth

about with the like circular motion, as 2 to 5.

For let IK be any lesser circle parallel to

the equator AE, and let L/ be any two equal

particles in this circle, situated without the

sphere Pape ;
and if upon the plane QR,

which is at right angles with a radius drawn

to the sun. we let fall the perpendiculars LM,
Im, the total forces by which these particles

recede from the plane QR will be propor
tional to the perpendiculars LM, Im. Let

the right line LZ be drawn parallel to the

plane Papc, and bisect the same in X
;
and

through the point X draw Nw parallel to the plane QR, and meeting the

perpendiculars LM, Im, in N and n and upon the plane QR let fall the

perpendicular XY. And the contrary forces of the particles L and I to

wheel about the earth contrariwise are as LM X MC, and Im X mC
;
that

is, as LN X MC + NM X MC, and In X mC nm X mG or LN X
MC + NM X MC, and LN x mC NM X mC, and LN X Mm
NM X MC&quot; 4- raC, the difference of the two, is the force of both taken

together to turn the earth round. The affirmative part of this difference

LN X MA/?,, or 2LN X NX
7
is to 2AH X HC, the force of two particles

of the same size situated in A, as LX 2 to AC 2

; and the negative part NM
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X MC T wC^or 2XY X CY, is to 2AH X HC, the force of the same

two particles situated in A, as CX 2 to AC 2
. And therefore the difference

of the parts, that is, the force of the two particles L and
/,
taken together,

to wheel the earth about, is to the force of two particles, equal to the

former and situated in the place A, to turn in like manner the earth round,

as LX 2 CX 2 to AC 2
. But if the circumference IK of the circle IK

is supposed to be divided into an infinite number of little equal parts L,

all the LX 2 will be to the like number of IX 2 as 1 to 2 (by Lem. 1) ;
and

to the same number of AC 2 as IX 2 to 2AC 2
;
and the same number ol

CX 2 to as many AC 2 as 2CX 2 to 2AC 2
. Wherefore the united forcet

of all the particles in the circumference of the circle IK are to the joint

forces of as many particles in the place A as IX 2 2CX 2 to 2AC 2
;
and

therefore (by Lem. 1) to the united forces of as many particles in the cir

cumference of the circle AE as IX 2 2CX 2 to AC 2
.

Now if Pp. the diameter of the sphere, is conceived to be divided into

an infinite number of equal parts, upon which a like number of circles

IK are supposed to insist, the matter in the circumference of every circle

K will be as IX 2
;
and therefore the force of that matter to turn the

earth about will be as IX 2 into IX 2 2CX 2
: and the force of the same

matter, if it was situated in the circumference of the circle AE, would be as

IX 2 into AC 2
. And therefore the force of all the particles of the whole

matter situated without the sphere in the circumferences of all the circle?

is to the force of the like number of particles situated in the circumfer

ence of the greatest circle AE as all the IX 2 into IX 2 2CX 2 to as

many IX 2 into AC 2
;
that is, as all the AC 2 CX 2 into AC 2 3CX 2

to as many AC 2 CX 2 into AC 2
: that is, as all the AC 4 4AC 2 x

CX 2 + 3CX 4 to as many AC 4 AC 2 X CX 2
;
that is, as the whole

fluent quantity, whose fluxion is AC 4 4AC 2 X CX 3 + 3CX 4
, to the

whole fluent quantity, whose fluxion is AC 4 AC 2 X CX 2
; and, there

fore, by the method of fluxions, as AC 4 X CX fAC 2 X CX 3 +
|CX.

5 to AC 4 X CX i-AC
2 X CX 3

;
that is, if for CX we write the

whole Cp, or AC, as T
4jAC 5 to fAC 5

;
that is, as 2 to 5. Q.E.D.

LEMMA III.

The same things still supposed, I say, in the third place, that the mo
tion of the i^hole earth about the axis above-named arisingfrom the

motions of all the particles, will be to the motion of the aforesaid ring
about the same axis in a, proportion compounded of the proportion of

the matter in the earth to the matter in the ring ; and the proportion

of three squares of the quadrantal arc of any circle to two squares

of its diameter, that is, in the proportion of the matter to the matter,

and of ttie number 925275 to the number 1000000.

the motion of a cylinder revolved about its quiescent axis is to the
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motion of the inscribed sphere revolved together with it as any four equal

squares to three circles inscribed in three of those squares ;
and the mo

tion of this cylinder is to the motion of an exceedingly thin ring sur

rounding both sphere and cylinder in their common contact as double the

matter in the cylinder to triple the matter in the
rir^j ;

and this motion
of the ring, uniformly continued about the axis of the cylinder, is to the

uniform motion of the same about its own diameter performed in the

same periodic time as the circumference of a circle to double its diameter.

HYPOTHESIS II.

If the other parts of the earth were taken away, and the remaining ring
was carried alone about the sun in, the orbit of the earth by the annual

motion, while by the diurnal motion it ivas in the mean time revolved

about its own axis inclined to the plane of t/te ecliptic by an angle

of 23i decrees, the motion of the equinoctial points would be the

same, whether the ring were fluid, or whether it consisted of a hard
and rigid matter.

PROPOSITION XXXIX. PROBLEM XX.
To Jind the precession of the equinoxes.

The middle horary motion of the moon s nodes in a circular orbit, when
the nodes are in the quadratures, was 16&quot; 35 &quot; 16iv

. 36V
.

;
the half of

which, 8&quot; 17 &quot; 38 v
. 18 V

. (for the reasons above explained) is the mean ho

rary motion of the nodes in such an orbit, which motion in a whole side

real year becomes 20 11 46&quot;. Because, therefore, the nodes of the moon
in such an orbit would be yearly transferred 20 11 46&quot; in antecederttia ;

and, if there were more moons, the motion of the nodes of every one (by

Cor. 16, Pro]). LXVI. Book 1) would be as its periodic time; if upon the

surface of the earth a moon was revolved in the time of a sidereal day,

the annual motion of the nodes of this moon would be to 20 31 46&quot; as

23h
. 56

,
the sidereal day, to 27 !

. 7h
. 43

,
the periodic time of our moon,

that is, as 1436 to 39343. And the same thing would happen to the

nodes of a ring of moons encompassing the earth, whether these moons

did not mutually touch each the other, or whether they were molten, and

formed into a continued ring, or whether that ring should become rigid

and inflexible.

Let us, then, suppose that this ring is in quantity of matter equal to

the whole exterior earth PctpAPepR, which lies without the sphere Pape

(see fig. Lem. II) ;
and because this sphere is to that exterior earth as C-

to AC 2 aC 2
,
that is (seeing PC or C the lea^t semi-diameter of the

earth is to AC the greatest semi-diameter of the same as 229 to 230), as

52441 to 459 : if this ring encompassed the earth round the equator, and

both together were revolved about the diameter of the ring, the motion of
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the ring (by Lcm. Ill) would be to the motion of the inner sphere as 459

to 52441 and 1000000 to 925275 conjunct!}, that is, as 4590 to 485223;
and therefore the motion of the ring would be to the sum of the motions

of both ring and sphere as 4590 to 489813. Wherefore if the ring ad

heres to the sphere, and communicates its motion to the sphere, by which

its nodes or equinoctial points recede, the motion remaining in the ring will

be to its former motion as 4590 to 489813; upon which account the

motion of the equinoctial points will be diminished in the same propor
tion. Wherefore the annual motion of the equinoctial points of the body,

composed of both ring and sphere, will be to the motion 20 11 46&quot; as

1436 to 39343 and 4590 to 489813 conjunctly, that is, as 100 to 292369.

But the forces by which the nodes of a number of moons (as we explained

above), and therefore by which the equinoctial points of the ring recede

(that is, the forces SIT, in
fig. Prop. XXX), are in the several particles

as the distances of those particles from the plane Q,R
;
and by these forces

the particles recede from that plane : and therefore (by Lem. II) if the

matter of the ring was spread all over the surface of the sphere, after the

fashion of the figure PupAPepl^, in order to make up that exterior part

of the earth, the total force or power of all the particles to wheel about

the earth round any diameter of the equator, and therefore to move the

equinoctial points, would become less than before in the proportion of 2 to

5. Wherefore the annual regress of the equinoxes now would be to 20

11 46&quot; as 10 to 73092
;
that is. would be 9&quot; 56 &quot; 50 iv

.

But because the plane of the equator is inclined to that of the ecliptic,

this motion is to be diminished in the proportion of the sine 91706

(which is the co-sine of 23 1 deg.) to the radius 100000
;
and the remain

ing motion will now be 9&quot; 7 &quot; 20iv
. which is the annual precession of the

equinoxes arising from the force of the sun.

But the force of the moon to move the sea was to the force of the sun

nearly as 4,4815 to 1
;
and the force of the moon to move the equinoxes

is to that of the sun in the same proportion. Whenoe the annual precession

of the equinoxes proceeding from the force of the moon comes out 40&quot;

52&quot; 521V
. and the total annual precession arising from the united forces

of both will be 50&quot; 00&quot; 12 iv
. the quantity of which motion agrees with

the phaenomena ;
for the precession of the equinoxes, by astronomical ob

servations, is about 50&quot; yearly.

If the height of the earth at the equator exceeds its height at the

poles by more than 17| miles, the matter thereof will be more rare near

the surface than at the centre
;
and the precession of the equinoxes will

be augmented by the excess of height, and diminished by the greater rarity,

And now we have described the system of the sun, the earth, moon,

and planets, it remains that we add something about the comets.
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LEMMA IV

That the comets are higher tliau tJie moon, and in the regions of the

planets.

As the comets were placed by astronomers above the moon, because they
were found to have no diurnal parallax, so their annual parallax is a con

vincing proof of their descending into the regions of the planets ;
for all

the comets which move in a direct course according to the order of the

signs, about the end of their appearance become more than ordinarily slow

or retrograde, if the earth is between them and the sun
;
and more than

ordinarily swift, if the earth is approaching to a heliocentric opposition
with them

;
whereas, on the other hand, those which move against the or

der of the signs, towards the end of their appearance appear swifter than

they ought to be, if the earth is between them and the sun
;
and slower,

and perhaps retrograde, if the earth is in the other side of its orbit. And
these appearances proceed chiefly from the diverse situations which the

earth acquires in the course of its motion, after the same manner as it hap
pens to the planets, which appear sometimes retrograde, sometimes more

slowly, and sometimes more swiftly, progressive, according as the motion of

the earth falls in with that of the planet, or is directed the contrary wav.
If the earth move the same way with the comet, but, by an angular motion
about the sun, so much swifter that right lines drawn from the earth to

the comet converge towards the parts beyond the comet, the comet seen

from the earth, because of its slower motion, will appear retrograde ;
and

even if the earth is slower than the comet, the motion of the earth being
subducted, the motion of the comet will at least appear retarded

;
but if the

earth tends the contrary way to that of the cornet, the motion of the comet
will from thence appear accelerated; and from this apparent acceleration,
or retardation, or regressive motion, the distance of the comet may be in-

F c B A ferred in this manner. Let TQA,
TQ,B, TQ,C, be three observed lon

gitudes of the comet about the time

of its first appearing, and TQ,F its

last observed longitude before its

disappearing. Draw the right line

ABC, whose parts AB, BC, inter-

cepted between the right lines QA
and Q.B, QB and Q.C, may be one to the other as the two times between

the three first observations. Produce AC to G, so as AG may be to AB
as the time between the first and last observation to the time between the

first and second
;
and join Q.G. Now if the comet did move uniformly in

a right line, and the earth either stood still, or was likewise carried for-

u ards in a right line by an uniform motion, the angle TQG would be tht
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longitude of the comet at the time of the last observation. The angle,

therefore, FQG, which is the difference of the longitude, proceeds from the

inequality of the motions of the comet and the earth
;
and this angle, if

the earth and cornet move contrary ways, is added to the angle TQ,G, and

accelerates the apparent motion of the comet
;
but if the comet move the

same way with the earth, it is subtracted, and either retards the motion ol

the comet, or perhaps renders it retrograde, as we have but now explained.

This angle, therefore, proceeding chiefly from the motion of the earth, is

justly to be esteemed the parallax of the comet; neglecting, to wit, some

little increment or decrement that may arise from the unequal motion of

the comet in its orbit : and from this parallax we thus deduce the distance

of the comet. Let S represent the sun, acT v
the orbis tnagnus, a the earth s place in the

first observatiun, c the place of the earth in

the third observation, T the place of the

earth in the last observation, and TT a right

line drawn to the beginning of Aries. Set

off the angle TTV equal to the angle TQF,
that is, equal to the longitude of the comet

at the time when the earth is in T
; join ac,

and produce it to g
1

,
so as ag may be to ac

as AG to AC
;
and g will be the place at

which the earth would have arrived in the

time of the last observation, if it had con

tinued to move uniformly in the right line

ac. Wherefore, if we draw g T parallel to TT, and make the angle T^V
equal to the angle TQ,G, this angle Tg\ will be equal to the longitude of

the comet seen from the place g, and the angle TVg- will be the parallax
which arises from the earth s being transferred from the place g into the

place T ;
and therefore V will be the place of the comet in the plane of the

ecliptic. And this place V is commonly lower than the orb of Jupiter.

The same thing may be deduced from the incurvation of the way of the

comets
;
for these bodies move almost in great circles, while their velocity

is great ;
but about the end of their course, when that part of their appa

rent motion which arises from the parallax bears a greater proportion to

their whole apparent motion, they commonly deviate from those circles, and

when the earth goes to one side, they deviate to the other : and this deflex

ion, because of its corresponding with the motion of the earth, must arise

chiefly from the parallax ;
and the quantity thereof is so considerable, as,

by my computation, to place the disappearing comets a good deal lower

than Jupiter. Whence it follows that when they approach nearer to us in

their perigees and perihelions they often descend below the orbs of Mare

and the inferior planets.
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The near approach of the comets is farther confirmed from the light of
tb.eir heads; for the light of a celestial body, illuminated by the sun, and

receding to remote parts, is diminished in the quadruplicate proportion of
the distance; to wit, in one duplicate proportion, on account of the increase
of the distance from the sun, and in another duplicate proportion, on ac
count of the decrease of the apparent diameter. Wherefore if both the

quantity of light and the apparent diameter of a comet are given, its dis

tance will be also given, by taking the distance of the comet to the distance
of ;i planet in the direct proportion of their diameters and the reciprocal

subduplicate proportion of their lights. Thus, in the comet of the year
1682, Mr. Flamsted observed with a telescope of 16 feet, and measured
with a micrometer, the least diameter of its head

;
2 00; but the nucleus

or star in the middle of the head scarcely amounted to the tenth part of

this measure; and therefore its diameter was only 11&quot; or 12&quot; but in the

light and splendor of its head it surpassed that of the comet in the year
1680

;
and might be compared with the stars of the lirst or second magni

tude. Let us suppose that Saturn with its ring was about four times more
lucid

;
and because the light of the ring was almost equal to the light of

the globe within, and the apparent diameter of the globe is about
21&quot;,

and

therefore the united light of both globe and ring would be equal to the

light of a globe whose diameter is
30&quot;,

it follows that the distance of th

comet was to the distance of Saturn as 1 to v/4 inversely, and 12&quot; to 30

directly ;
that is, as 24 to 30, or 4 to 5. Again ;

the comet in the month
of April 1665, as Hevelius informs us, excelled almost all the fixed stars

in splendor, and even Saturn itself, as being of a much more vivid colour
;

for this comet was more lucid than that other which had appeared about

the end of the preceding year, and had been compared to the stars of the

hrst magnitude. The diameter of its head was about 6
;
but the nucleus,

compared with the planets by means of a telescope, was plainly less than

Jupiter ;
and sometimes judged less, sometimes judged equal, to the globe

of Saturn within the ring. Since, then, the diameters of the heads of the

comets seldom exceed 8 or 12 ;

,
and the diameter of the nucleus or central

star is but about a tenth or perhaps fifteenth part of the diameter of the

head, it appears that these stars are generally of about the same apparent

magnitude with the planets. But in regard that their light may be often

compared with the light of Saturn, yea, and sometimes exceeds it, it is evi

dent that all comets in their perihelions must either be placed below or not

far above Saturn
;
and they are much mistaken who remove them almost

as far as the fixed stars
;
for if it was so, the comets could receive no more

light from our sun than our planets do from the fixed stars.

So far we have gone, without considering the obscuration which comets

suffer from that plenty of thick smoke which encompasseth their heads,

and through which the heads always shew dull, as through i cloud; for by
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how much the more a body is obscured by this smoke, by so much the more

near it must be allowed to come to the sun, that it may vie with the plan-

eta in the quantity of light which it reflects. Whence it is probable that

the comets descend far below the orb of Saturn, as we proved before frou

their parallax. But, above all, the thing is evinced from their tails, which

must be owing either to the sun s light reflected by a smoke arising from

them, and dispersing itself through the aether, or to the light of their own

heads. In the former case, we must shorten the distance of the comets,

lest we be obliged to allow that the smoke arising from their heads is

propagated through such a vast extent of space, and with such a velocity

and expansion as will seem altogether incredible
;
in the latter case, the

whole light of both head arid tail is to be ascribed to the central nucleus.

But. then, if we suppose all this light to be united and condensed within

the disk of the nucleus, certainly the nucleus will by far exceed Jupiter

itself in splendor, especially when it emits a very large and lucid tail If.

therefore, under a less apparent diameter, it reflects more light, it must be

much more illuminated by the sun, and therefore much nearer to it; and

the same argument will bring down the heads of comets sometimes within

the orb of Venus, viz., when, being hid under the sun s rays, they emit such

huge and splendid tails, like beams of fire, as sometimes they do
;
for if all

that light was supposed to be gathered together into one star, it would

sometimes exceed not one Venus only, but a great many such united

into one.

Lastly ;
the same thing is inferred from the light of the heads, which

increases in the recess of the cornets from the earth towards the sun, and

decreases in their return from the sun towards the earth
;
for so the comet

of the year 1665 (by the observations of Hevelius], from the time that it

was first seen, was always losing of its apparent motion, and therefore had

already passed its perigee ;
but yet the splendor of its head was daily in

creasing, till, being hid under the sun s rays, the comet ceased to appear.
The comet of the year 1683 (by the observations of the same LJevelius),
about the end of July, when it first appeared, moved at a very slow rate,

advancing only about 40 or 45 minutes in its orb in a day s time
;
but

from that time its diurnal motion was continually upon the increase, till

September 4, when it arose to about 5 degrees ;
and therefore, in all this

interval of time, the comet was approaching to the earth. Which is like

wise proved from the diameter of its head, measured with a micrometer
;

for, August 6, Hevelius found it only 6
05&quot;, including the coma, which,

September 2 he observed to be 9
07&quot;,

and therefore its head appeared far

less about, the beginning than towards the end of the motion
; though

about the beginning, because nearer to the sun, it appeared far more lucid

than towards the end, as the same Hevelius declares. Wherefore in all

this interval of time, on account of its recess from the sun, it decreases
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in splendor, notwithstanding its access towards the earth. The comet of

the year 1618, about the middle of December, and that of the year 1680,
about the end of the same month, did both move with their greatest velo

city, and were therefore then in their perigees : but the greatest splendor
of their heads was seen two weeks before, when they had just got clear of

the sun s rays ;
and the greatest splendor of their tails a little more early,

when yet nearer to the sun. The head of the former comet (according to

the observations of Cysdtus], Dece/itber 1, appeared greater than the stars

of
^
the first magnitude: and, December 16 (then in the perigee), it was

but little diminished in magnitude, but in the splendor and brightness of

its light a great deal. January 7, Kepler, being uncertain about the

head, left oif observing. December 12, the head of the latter comet was
seen and observed by Mr. Flamsted, when but 9 degrees distant from the

sun
;
which is scarcely to be done in a star of the third magnitude. De

cember 15 and 17, it appeared as a star of the third magnitude, its lustre

being diminished by the brightness of the clouds near the setting sun.

December 26, when it moved with the greatest velocity, being almost in

its perigee, it was less than the mouth of Pegasus, a star of the third

magnitude. January 3, it appeared as a star of the fourth. January 9,

as one of the fifth. January 13, it was hid by the splendor of the moon,

then in her increase. January 25, it was scarcely equal to the stars of

the seventh magnitude. If we compare equal intervals of time on one

side and on the other from the perigee, we shall find that the head of the

comet, which at both intervals of time was far, but yet equally, removed

from the earth, and should have therefore shone with equal splendor, ap

peared brightest on the side of the perigee towards the sun, and disap

peared on the other. Therefore, from the great difference of light in the

one situation and in the other, we conclude the great vicinity of the sun

and comet in the former
;
for the light of comets uses to be regular, and

to appear greatest when the heads move fastest, and are therefore in their

perigees ; excepting in so far as it is increased by their nearness to the

sun. -

COR. 1. Therefore the comets shine by the sun s light, which they reflect.

COR. 2. From what has been said, we may likewise understand why
comets are so frequently seen in that hemisphere in which the sun is, and

so seldom in the other. If they were visible in the regions far above

Saturn, they would appear more frequently in the parts opposite to the

sun
;
for such as were in those parts would be nearer to the earth, whereas

the presence of the sun must obscure and hide those that appear in the

hemisphere in which he is. Yet, looking over the history of comets, I

find that four or five times more have been seen in the hemisphere towards

the sun than in the opposite hemisphere ; besides, without doubt, not a

few, which have been hid by the light of the sun : for comets descending
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into our parts neither emit tails, nor are so well illuminated by the sun,

as to discover themselves to our naked eyes, until they are come nearer to

us than Jupiter. But the far greater part of that spherical space, which

is described about the sun with so small an interval, lies on that side of

the earth which regards the sun
;
and the comets in that greater part are

commonly more strongly illuminated, as being for the most part nearer to

the sun.

COR. 3. Hence also it is evident that the celestial spaces are void of

resistance
;
for though the comets are carried in oblique paths, and some

times contrary to the course of the planets, yet they move every way with

the greatest freedom, and preserve their motions for an exceeding long

time, even where contrary to the course of the planets. I am out in my

judgment if they are not a sort of planets revolving in orbits returning

into themselves with a perpetual motion
; for, as to what some writers

contend, that they are no other than meteors, led into this opinion by the

perpetual changes that happen to their heads, it seems to have no founda

tion
;
for the heads of comets are encompassed with huge atmospheres,

and the lowermost parts of these atmospheres must be the densest
;
and

therefore it is in the clouds only, not in the bodies of the comets them

selves, that these changes are seen. Thus the earth, if it was viewed from

the planets, would, without all doubt, shine by the light of its clouds, and

the solid body would scarcely appear through the surrounding clouds.

Thus also the belts of Jupiter are formed in the clouds of that planet,

for they change their position one to another, and the solid body of Jupiter

is hardly to be seen through them
;
and much more must the bodies of

comets be hid under their atmospheres, which are both deeper and thicker.

PROPOSITION XL. THEOREM XX.

That the comets mnve in some of the conic sections, having their foci

in the centre of the sun ; and by radii drawn to the sun describe

a reas proportional to the times.

This proposition appears from Cor. 1, Prop. XIII, Book 1, compared
vith Prop. VIII, XII, and XIII, Book HI.

COR. 1. Hence if comets are revolved in orbits returning into them

selves, those orbits will be ellipses ;
and their periodic times be to the

periodic times of the planets in the sesquiplicate proportion of their prin

cipal axes. And therefore the comets, which for the most part of their

course are higher than the planets, and upon that account describe orbits

with greater axes, will require a longer time to finish their revolutions.

Thus if the axis of a comet s orbit was four times greater than the axis

of the orbit of Saturn, the time of the revolution of the comet would be

to the time of the revolution of Saturn, that is, to 30 years, as 4 ^/ 4

(or 8) to 1, and would therefore be 240 years.
30
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COR. 2. But their orbits will be so near to parabolas, that parabolas

may be used for them without sensible error.

COR. 3. And, therefore, by Cor. 7, Prop. XVI, Book 1, the velocity of

every comet will always be to the velocity of any planet, supposed to be
revolved at the same distance in a circle about the sun, nearly in the sub-

duplicate proportion of double the distance of the planet from the centre

of the sun to the distance of the comet from the sun s centre, very nearly.
Let us suppose the radius of the orbis wagmis, or the greatest semi-

diameter of the ellipsis which the earth describes, to consist of 100000000

parts ;
and then the earth by its mean diurnal motion will describe

1720212 of those parts, and 716751 by its horary motion. And there

fore the comet, at the same mean distance of the earth from the sun, with

a velocity which is to the velocity of the earth as v/ 2 to I, would by its

diurnal motion describe 2432747 parts, and 101.3641 parts by its horary
motion. But at greater or less distances both the diurnal and horary
motion will be to this diurnal and horary motion in the reciprocal subdu-

plicate proportion of the distances, and is therefore given.

COR. 4. Wherefore if the lattis rectum of the parabola is quadruple of

the radius of the orbis maginis, and the square of that radius is sup

posed to consist of 100000000 parts, the area which the comet will daily
describe by a radius drawn to the sun will be 12163731 parts, and the

horary area will be 506821 parts. But, if the latus rectum is greater
or less in any proportion, the diurnal and horary area will be less or

greater in the subduplicate of the same proportion reciprocally.

LEMMA V.

Tofind a curve line of the parabolic kind which shall pass through any
given number of points.

Let those points be A, B, C, D, E, F, (fee., and from the same to any

right line HN, given in position, let fall as many perpendiculars AH, BI,

CK, DL, EM, FN, tfec.

b 2b 3b 45 5b

c 2c 3c 4c

d 2d 3d
H

e 2e

f
CASE 1. If HI, IK, KL, &c., the intervals of the points H, I, K, L, M

N, (fee., are equal, take b, 2b, 3b, 46, 56, (fee., the first differences of the per

pendiculars AH. BI, CK, (fee.
;
their second differences c, 2c, 3c, 4r, &amp;lt;fec. :

their third, d, 2d, 3d, (fee., that is to say, so as AH BI may be== b, 01
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CK = 2b, CK DL = 36, DL + EM = 46, EM + FN = 56,

&c.
;
then 6 2b ==

c, &c., and so on to the last difference, which is here

/*. Then, erecting any perpendicular RS, which may be considered as an

ordinate of the curve required, in order to find the length of this ordinatc,

suppose the intervals HI. IK, KL, LM, (fee., to be units, and let AH= a.

-KS=f&amp;gt;, \p into IS = q, q into + SK = r, \r into + SL = s,

\s into 4- SM = t ; proceeding, to wit, to ME, the last perpendicular but

one, and prefixing negative signs before the terms HS, IS, &c., which lie

from S towards A; and affirmative signs before the terms SK, SL, (fee..

which lie on the other side of the point S
; and, observing well the signs,

RS will be= a + bp + cq + dr + es + ft, + (fee.

CASE 2. But if HI, IK, (fee., the intervals of the points H, I, K, L, &amp;lt;fcc.,

are unequal, take 6, 26, 36, 46, 56, (fee., the first differences of the perpen
diculars AH, BI, CK, cfec., divided by the intervals between those perpen
diculars

; c, 2Cj 3c, 4c, (fee., their second differences, divided by the intervals

between every two
; c/, 2d, 3d, (fee., their third differences, divided by the

intervals between every three; e, 2e, (fee., their fourth differences, divided

by the intervals between every four
;
and so forth

;
that is, in such manner,

AH BI
*

BI CK
,

CK DL
that b may be= ---^ , 2b = --.-==

,
6b = --==- -----

, (fee., then

2b 2b 3b 36 46
(

c 2c
&c then rf - &quot;

2&amp;lt;/

2c 3c
-=

j-T7
,
(fee. And those differences being found, let AH be = a,

HS = p, p into IS = q, q into + SK = r, r into + SL =.
s, s into

-f- SM = t
; proceeding, to wit, to ME, the last perpendicular but one : .

and the ordinate RS will be= a -f- bp + cq + dr + es -f //, + tfec.

COR. Hence the areas of all curves may be nearly found
;
for if some

number of points of the curve to be squared are found, and a parabola be

supposed to be drawn through those points, the area of this parabola willi

be nearly the same with the area of the curvilinear figure proposed to be

squared : but the parabola can be always squared geometrically by methods

vulgarly known.

LEMMA VI.

Certain observed places of a comet
being&quot; given, to find the place of the

same, to any intermediate given time.

Let HI, IK, KL, LM (in the preceding Fig.), represent the times between

the observations
; HA, IB, KC, LD, ME, five observed longitudes of the

comet
;
and HS the given time between the first observation and the longi

tude required. Then if a regular curve ABODE is supposed to be drawn

through the points A, B, C, D, E, and the ordinate RS is found out by the

preceding lemma, RS will be the longitude required.
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After the same method, from five observed latitudes, we may find the

latitude to a given time.

If the differences of the observed longitudes are small, suppose of 4 or 5

degrees, three or four observations will be sufficient to find a new longitude
and latitude : but if the differences are greater, as of 10 or 20 degrees, five

observations ought to be used.

LEMMA VII.

Through a given point P to draw a right line BC, rvhose parts PB, PC,
cut off by two right lines AB, AC, given in position, may be one to the

other in. a given proportion.

P
i\ From the given point P suppose any right line

PD to be drawn to either of the right lines given,

as AB; and produce the same towards AC, the

other given right line, as far as E
;
so as PE may

be to PD in the given proportion. Let EC be

parallel to A D. Draw CPB, and PC will be to PB
as PE to PD. Q.E.F.

LEMMA VIII.

Let ABC be a parabola, having its focus in S. By the chord AC bi

sected in I cut off the segment ABCI, ivhose diameter is Ip and vertex

I . In I/i produced take pO equal to one half of I//. Join OS, and

produce it to so as S may be equal to 2SO. Now, supposing a comet

to revolve in the arc CBA, draw B, cutting AC in E
;
I say, the point

E will cut offfrom the chord AC the segment AE, nearly proportional

to the time.

For if we join EO, cutting the parabolic arc ABC in Y, and draw //X

touching the same arc in the vertex //,
and meeting EO in X, the curvi

linear area AEXjuA will be to the curvilinear area ACY//A as AE to AC
;

and. therefore, since the triangle ASE is to the triangle ASC in the same

proportion, the whole area ASEXjuA will be to the whole area ASCY/^A as
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AE to AC. But, because O is to SO as 3 to 1, and EG to XC in the same

proportion, SX will be parallel to EB
; and, therefore, joining BX, the tri

angle SEB will be equal to the
triangle

XEB. Wherefore if to the area

ASEX.uA we add the triangle EXB, and from the sum subduct the triangle

SEB, there will remain the area ASBX,wA, equal to the area ASEX/^A. and

therefore in proportion to the area ASCY//A as AE to AC. But the area

ASBYwA is nearly equal to the area ASBX//A; and this area ASBY/zA
is to the area ASCYwA as the time of description of the arc AB to the

time of description of the whole arc AC ; and, therefore, AE is to AC
nearly in the proportion of the times. Q.E.D.

COR. When the point B falls upon the vertex \i of the parabola, AE is

to AC accurately in the proportion of the times.

SCHOLIUM.

If we join // cutting AC in d, and in it take //, in proportion to ^B as

27MI to 16Mf/, and draw B/?, this Bu will cut the chord AC, in the pro

portion of the times, more accurately than before; but the point n is to be

taken beyond or on this side the point , according as the point B is

more or less distant from the principal vertex of the parabola than the

point p.

LEMMA IX.

AI 2

The right lines Ip and /zM, and the length j~-, are equal among them

selves.

For 4.S/Z is the latus rectum of the parabola belonging to the vertex ft.

LEMMA X.

Produce Su to N and P, so as ^N may be one third of //I, and SP may
be to SN as SN to S&quot; ; and in the time that a comet would describe

the arc AjuC. if it was supposed to move always forwards with the ve

locity which it hath in a height equal to SP, it would describe a length

equal to the chord AC.

For if the comet with the velocity

which it hath in \i was in the said time

supposed to move uniformly forward in

the right line which touches the parabola
in p, the area which it would describe by
a radius drawn to the point S would be

equal to the parabolic area ASC/zA ;
and

therefore the space contained under the

length described in the tangent and the

length Su would be to the space contained under the lengths AC and SM as the
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area ASC//A to the triangle A SO, that is, as SN to SM. Wherefore AC
is to the length described in the tangent as Sf* to SN. But since the ve

locity of the comet in the height SP (by Cor. 6, Prop. XVI., Book I
)

is to

the velocity of the same in the height Sfi in the reciprocal subduplicate

proportion of SP to Sft, that is, in the proportion of S/^ to SN, the length

described with this velocity will be to the length in the same time described

in the tangent as Su to SN. Wherefore since AC, and the length described

with this new velocity, are in the same proportion to the length described

in the tangent, they must be equal betwixt themselves. Q.E.D.
COR. Therefore a comet, with that velocity which it hath in the height

S/x + fI,, would in the same time describe the chord AC nearly.

LEMMA XI.

If a comet void of all motion was letfallfrom the heigJit SN, or $n +
J Ift, towards the sun, and was still impelled to the sun by the same

force uniformly continued by ivhich it was impelled at first, the same,
in, one half of that time in which it might describe the arc AC in its

own orbit, would in. descending describe a space equal to the fengift

fa

For in the same time that the comet would require to describe the para
bolic arc AC, it would (by the last Lemma), with that velocity which it

hath in the height SP, describe the chord AC: and, therefore (by Cor. 7,

Prop. XVI, Book 1), if it was in the same time supposed to revolve by the

force of its own gravity in a circle whose semi- diameter was SP. it would

describe an arc of that circle, the length of which would be to the chord

of the parabolic arc AC in the subduplicate proportion of 1 to 2. Where
fore if with that weight, which in the height SP it hath towards the sun,

it should fall from that height towards the sun, it would (by Cor. 9,

Prop. XVI, Book 1) in half the said time describe a space equal to the

square of half the said chord applied to quadruple the height SP, that is,

AI 2

it would describe the space ,^p.
But since the weight of the comet

towards the sun in the height SN is to

the weight of the same towards the

sun in the height SP as SP to S^, the

comet, by the weight which it hath in

the height SN. in falling from that

height towards the sun, would in tin:

AI 2

same time describe the space 7^-; that
4S^

is, a space equa] to the length I// OT

wM. Q.E.D
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PROPOSITION XLL PROBLEM XXI.
Prom three observations given to determine the orbit of a comet moving

in a parabola.
This being a Problem of very great difficulty, I tried many methods of

resolving it
;
and several of these Problems, the composition whereof I

have triven in the first Book, tended to this purpose. But afterwards I

contrived the following solution, which is something more simple.

Select three observations distant one from another by intervals of time

nearly equal ;
but let that interval of time in which the comet moves

more slowly be somewhat greater than the other
; so, to wit, that the dif

ference of the times may be to the sum of the times as the sum of the

A-

times to about 600 days ;
or that the point E may fall upon M nearly,

and may err therefrom rather towards 1 than towards A. If such direct

observations are not at hand, a new place of the comet must be found, by
Lem. VI.

Let S represent the sun
; T, t,

r
}
three places of the earth in the orbis

mag-mis; TA, /B, rC, three observed longitudes of the comet; V the

time between the first observation and the second
;
W the time between

the second and the third
;
X the length which in the whole time V + W

the comet might describe with that velocity which it hath in the mean
distance of the earth from the sun, which length is to be found by Cor. 3,
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Prop. XL, Book III
;
and tV a perpendicular upon the chord TT. In the

mean observed longitude tfB take at pleasure the point B, for the place of

the comet in the plane of the ecliptic ;
and from thence, towards the sun

S, draw the line BE, which may be to the perpendicular /V as the content

under SB and St 2 to the cube of the hypothenuse of the right angled tri

angle, whose sides are SB, and the tangent of the latitude of the comet in

the second observation to the radius ^B. And through the point E (by
Lemma VII) draw the right line AEC, whose parts AE and EC, terminat

ing in the right lines TA and rC. may be one to the other as the times V
and \V : then A and C will be nearly the places of the comet in the plane
of the ecliptic in the first and third observations, if B was its place

rightly assumed in the second.

Upon AC, bisected in I, erect the perpendicular li. Through B draw

the obscure line Ei parallel to AC. Join the obscure line Si, cutting AC
in A, and complete the parallelogram il AJU. Take \o equal to 3IA

;
and

through the sun S draw the obscure line&amp;lt;0 equal to 3So -f 3 fa. Then,

cancelling the letters A, E, C, I, from the point B towards the point ,

draw the new obscure line BE, which may be to the former BE in the

duplicate proportion of the distance BS to the quantity Sju + 1 fa. And

through the point E draw again the right line AEC by the same rule as

before
;
that is, so as its parts AE and EC may be one to the other as the

times V and W between the observations. Thus A and C will be the

places of the comet more accurately.

Upon AC, bisected in I, erect the perpendiculars AM, CN, IO, of which

AM and CN may be the tangents of the latitudes in the first and third ob

servations, to the radii TA and TC. Join MN, cutting IO in O. Draw the

rectangular parallelogram zlAjt/, as before. In IA produced take ID equal to

Sfi + f fa. Then in MN, towards N, take MP, which may be to the

above found length X in the subduplicate proportion of the mean distance

of the earth from the sun (or of the semi-diameter of the orbis tnagnus]
to the distance OD. If the point P fall upon the point N; A, B, and C,

&amp;lt;vill be three places of the comet, through which its orbit is to be described

in the plane of the ecliptic. But if the point P falls not upon the point

N, in the right line AC take CG equal to NP, so as the points G and P

may lie on the same side of the line NC.

By the same method as the points E, A, C, G, were found from the as

sumed point B, from other points 6 and j3 assumed at pleasure, find out the

new points e, a, c, g ; and e, a, , y. Then through G, g-,
and y, draw the

circumference of a circle G^y, cutting the right line rC in Z : and Z will

be one place of the comet in the plane of the ecliptic. And in AC, ac, OK,

making AF, a/, a&amp;lt;/&amp;gt;, equal respectively to CG, eg, KJ ; through the points P,

f, and 0, draw the circumference of a circle
Vf&amp;lt;t&amp;gt;, cutting the right line AT

in X
;
and the point X will be another place of the comet in the plane of
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the ecliptic. And at the points X and Z, erecting the tangents of the

latitudes of the comet to the radii TX and rZ, two places of the comet in

its own orbit will be determined. Lastly, if (by Prop. XIX., Book 1) to

the focus S a parabola is described passing through those two places, this

parabola will be the orbit of the comet. Q.E.L

The demonstration of this construction follows from the preceding Lem

mas, because the right line AC is cut in E in the proportion of the times,

by Lem. VI L, as it ought to be, by Lem. VIII.
;
and BE, by Lem. XL, is a

portion of the right line BS or B in the plane of the ecliptic, intercepted

between the arc ABC and the chord AEC
;
and MP (by Cor. Lem. X.) is

the length of the chord of that arc, which the comet should describe in its

proper orbit between the firs : and third observation, and therefore is equal

to MN, providing B is a true place of the comet in the plane of the

ecliptic.

But it will be convenient to assume the points B, b, (3,
not at random,

but nearly true. If the angle AQ/, at which the projection of the orbit in

the plane of the ecliptic cuts the right line B, is rudely known, at that

angle with Bt draw the obscure line AC, which may be to
-f
TT in the sub-

duplicate proportion of SQ, to S/
; and, drawing the right line SEB so as

its part EB may be equal to the length \t, the point B will be determined,

which we are to use for the first time. Then, cancelling the right line

AC, and drawing anew AC according to the preceding construction, and,

aioreover, finding the length MP, in tB take the point b, by this rule, that,

if TA and rC intersect each other in Y, the distance Y6 may be to the

distance YB in a proportion compounded of the proportion of MP to MN,
and the subduplicate proportion of SB to Sb. And by the same method

you may find the third point 18,
if you please to repeat the operation the

third time
;
but if this method is followed, two operations generally will be

sufficient ;
for if the distance Bb happens to be very small, after the points

F,/, and G, ,
are found, draw the right lines F/and G^-, and they will

cut TA and rC in the points required, X and Z.

EXAMPLE.

Let the comet of the year 1680 be proposed. The following table shews

the motion thereof, as observed by Flamsted, and calculated afterwards by
him from his observations, and corrected by Dr. Halley from the same ob

servations.
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To these you may add some observations of mine.

These observations were made by a telescope of 7 feet, with a microme
ter and threads placed in the focus of the telescope; by Avhich instruments

we determined the positions both of the fixed stars among themselves, and

of the comet in respect of the fixed stars. Let A represent the star of the

fourth magnitude in the left heel of Perseus (Bayer s
o), B the following

star of the third magnitude in the left foot (Bayer s s), C a star of the

sixth magnitude (Bayer s
11} in the heel of the same foot, and 1). E, F, G,

H, I, K. L, M, N, O, Z, a, j3, y, S, other smaller stars in the same foot;

and let p, P, Q, R, S, T, V, X, represent the places of the comet in the

observations above set down
; and, reckoning the distance AB of 80 r\ parts,

AC was 52i of those parts; BC, 5Sf ; AD, 57T\ ; BD, S2 T
&quot;

T ; CD, 23f :

AE, 29i
; CE, 57i

; DE, 49J4 ; AI, 27 T\ ; BI, 52} ; OF, 36 rV ; Dl, 53/ r ;

AK, 38| ; BK, 43; OK, 31$; FK, 29; FB, 23; FC, 36i
; AH, 1S| ;

DH, 50J; BN, 46 T\ ; ON, 31 1; BL, 45 T\; NL, 31f HO was to HI
as 7 to 6, and. produced, did pass between the stars D and E, so as the

distance of the star D from this right line was jCD. LM was to LN as

2 to 9, and, produced, did pass through the star H. Thus were the posi

tions of the fixed stars determined in respect of one another.
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*2

Mr. Pound has since observed a second time the positions of thcst fixed

stars amongst themselves, and collected their longitudes and lat&quot; /udes ac

cording to the following table-
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The positions of the comet to these fixed stars were observed to be as

follow :

Friday, February 25, O.S. at 8i h
. P. M. the distance of the comet in p

from the star E wai less than T\AE, and greater than }AE, and therefore

nearly equal to T
3
S AE; and the angle AjoE was a little obtuse, but almost

right. For from A, letting fall a perpendicular on pE, the distance of the

comet from that perpendicular was j/E.
The same night, at 9|

h
.,
the distance of the comet in P from the star E

was greater than AE, and less than AE, and therefore nearly equal

to
j^-

of AE, or /^AE. But the distance of the comet from the perpen-
^8&quot;

dicular let fall from the star A upon the right line PE was jPE.

Sunday, February 27, 8|
h

. P. M. the distance of the comet in Q, from

the star O was equal to the distance of the stars O and H and the risjht

line QO produced passed between the stars K and B. I could not, by
reason of intervening clouds, determine the position of the star to greater

accuracy.

Tuesday, March 1, ] l h
. P. M. the comet in R lay exactly in a line be

tween the stars K and C, so as the part CR of the right line CRK was a

little greater than CK, and a little less than JCK + jCR, and therefore

= iCK + A CR, or ifCK.

Wednesday, March 2, S 1

. P. M. the distance of the comet in S from the

star C was nearly FC
;
the distance of the star F from the right line OS

produced was g^FC ;
and the distance of the star B from the same right

line was five times greater than the distance of the star F
;
and the right

line NS produced passed between the stars H and I five or six times nearer

to the star H than to the star I.

Saturday, March 5. lHh
. P. M. when the comet was in T, the right line

MT was equal to ^ML, and the right line LT produced passed between B
and F four or five times nearer to F than to B, cutting off from BF a fifth

or sixth part thereof towards F : and MT produced passed on the outside

of the space BF towards the star B four times nearer to the star B than

to the star F. M was a very small star, scarcely to be seen by the tele

scope; but the star L was greater, and of about the eighth magnitude.

Monday, March 7, Qih
. P. M. the comet being in V, the right line Va

produced did pass between B and F, cutting off, from BF towards F, T\ of

BF, and was to the right line Yj3 as 5 to 4. And the distance of the comet

from the right line a(3 was |V/3.

Wednesday, March 9, S|-
h

. P. M. the comet being in X, the right line

yX was equal to
jy&amp;lt;? ;

and the perpendicular let fall from the star 6 upon
the right yX was f of yd.

The same night, at 12h
. the comet being in Y, the right line yY was
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equal to ^ of yd, or a little less, as perhaps T
5
g
of yd ;

and a perpendicular
let fall from the star 6 on the right line yY was equal to about or | yd.

But the comet being then extremely near the horizon, was scarcely discern

ible, and therefore its place could not be determined with that certainty as

in the foregoing observations.

Prom these observations, by constructions of figures and calculations, I

deduced the longitudes and latitudes of the comet
;
and Mr. Pound, by

correcting the places of the fixed stars, hath determined more correctly the

places of the comet, which correct places are set down above. Though my
micrometer was none of the best, yet the errors in longitude and latitude

(as derived from my observations) scarcely exceed one minute. The comet

(according to my observations), about the end of its motion. besraD **&amp;gt;

J;;oiine

sensibly towards the north, from the parallel which it described about the

end of February.

Now, in order to determine the orbit of the comet out of the observations

above described, I selected those three which Flamsted made, Dec. 21, Jan.

5, and Jan. 25; from which I found S^ of 9842,1 parts, and V of 455

such as the semi-diameter of the orbis magnus contains 10000. Then for

the first observation, assuming tE cf 5657 of those parts, 1 found SB 9747,
BE for the first time 412, Sji 9503, U 413, BE for the second time 421,
OD 10186, X 8528,4, PM 8450, MN 8475, NP 25; from whence, by the

second operation. I collected the distance tb 5640
;
and by this operation 1

at last deduced the distances TX 4775 and rZ 11322. From which, lim

iting the orbit, I found its descending node in 25, and ascending node in V?

1 53
;
the inclination of its plane to the plane of the ecliptic 61 20^ ,

the vertex thereof (or the perihelion of the comet) distant from the node
8 38

,
and in t 27 43

,
with latitude 7 34 south; its lotus return

236.8; and the diurnal area described by a radius drawn to the sun 93585,

supposing the square of the semi-diameter of the orbis magnus lOUOOOOOO
;

that the comet in this orbit moved directly according to the order of the

signs, and on DM. 8 (1

. OO 1

. 04 P. M was in the vertex or perihelion of its

orbit. All which I determined by scale and compass, and the chords of

angles, taken from the table of natural sines, in a pretty large figure, in

which, to wit, the radius of the orbis magnus (consisting of 10000 parts)
was equal to 16^ inches of an English foot.

Lastly, in order to discover whether the comet did truly move in the

orbit so determined, I investigated its places in this orbit partly by arith

metical operations, and partly by scale and compass, to the times of gome
of the observations, as may be seen in the following table :
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I

But afterwards Dr. Halley did determine the orbit to a greater accu

racy by an arithmetical calculus than could be done by linear descriptions :

and, retaining the place of the nodes in s and ^ 1 53
,
and the inclina

tion of the plane of the orbit to the ecliptic 61 20| ,
as well as the time

of the comet s being in perihelio, Dec. 8 (i

. OUh
. 04

,
he found the distance

of the perihelion from the ascending node measured in the comet s orbit

9 20
,
and the Ititus rectum of the parabola 2430 parts, supposing the

mean distance of the sun from the earth to be 100000 parts ;
arid from

these data, by an accurate arithmetical calculus, he computed the places

of the comet to the times of the observations as follows :

This comet also appeared in the November before, and at Coburg, in

Saxony, was observed by Mr. Gottfried Kirch, on the 4th of that month, on

the 6th and llth O. S.
;
from its positions to the nearest fixed stars observed

with sufficient accuracy, sometimes with a two feet, and sometimes with a

ten feet telescope; from the difference of longitudes of Coburg and Lon

don, 11; and from the places of the fixed stars observed by Mr. Pound,

Dr. Halley has determined the places of the comet as follows :
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Nov. 3, 17h . 2
, apparent time fit London, the comet was in 71 29 deg.

51
,
with 1 deg. 17 45&quot; latitude north.

November 5. 15h
. 58 the comet was in ^ 3 23

,
with 1 6 nortl lat.

November 10, 16 h
. 31

,
the comet was equally distant from two stars in

1, which are &amp;lt;r and T in Bayer ; but it had not quite touched the right

line that joins them, but was very little distant from it. In Flamstecfs

catalogue this star o was then in ^ 14 15
,
with 1 deg. 41 lat. north

nearly, and r in W 17 3^ with deg. 34 lat. south; and the middle

point between those stars was lr
JZ 15 39} ,

with 33i lat. north. Let

the distance of the cornet from that right line be about 10 or 12 : and

the difference of the longitude of the comet and that middle point will be

7
;

arid the difference of the latitude nearly 7\ ;
and thence it follows

that the comet was in T
02 15 32

,
with about 26 lat. north.

The first observation from the position of the comet with respect tr

certain small fixed stars had all the exactness that could be desired
;
UK

second also was accurate enough. In the third observation, which was the

least accurate, there might be an error of 6 or 7 minutes, but hardly

greater. The longitude of the comet, as found in the first and most

accurate observation, being computed in the aforesaid parabolic orbit,

comes out U 29 30
22&quot;,

its latitude north 1 25
7&quot;,

and its distance

from the sun 115546.

Moreover, Dr. Halley, observing that a remarkable comet had appeared
four times at equal intervals of 575 years (that is, in the month of Sep
tember after Julius Ccesar was killed

;
An. Chr. 531, in the consulate of

Lainpadins and Orestes; An. Chr. 1106, in the month of February ;

and at the end of the year 16SO; and that with a long and remarkable

tail, except when it was seen after C(BsaiJ
s death, at which time, by reason

of the inconvenient, situation of the earth, the tail was not so conspicuous),

set himself to find out an elliptic orbit whose greater axis should be

1382957 parts, the mean distance of the earth from the sun containing
10000 such

;
in which orbit a comet might revolve in 575 years ;

and,

placing the ascending node in 25 2 2
,
the inclination of the plane of the

orbit to the plane of the ecliptic in an angle of 61 6
48&quot;,

the perihelion

of the comet in this plane in t 22 44
25&quot;,

the equal time of the perihe

lion December 7 1

. 23h
. 9

,
the distance of the perihelion from the ascend

ing node in the plane of the ecliptic 9^ 17
35&quot;,

and its conjugate axis

18481,2, he computed the motions of the comet in this elliptic orbit. The

places of the comet, as deduced from the observations, and as arising from

computation made in this orbit, may be seen in the following table.
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The observations of this comet from the beginning to the end agree at

porfectly with the motion of the comet in the orbit just now described as

the motions of the planets do with the theories from whence they are cal

culated
;
and by this agreement plainly evince that it was one and the

same comet that appeared all that time, and also that the orbit of that

comet is here rightly defined.

In the foregoing table we have omitted the observations of Nov. 16,

18, 20. and 23, as not sufficiently accurate, for at those times several per
sons had observed the comet. Nov. 17, O. S. Ponthczns and his compan
ions, at 6 h

. in the morning at Rome (that is, 5 h
. 10 at London], by threads

directed to the fixed stars, observed the comet in === 8 30
,
with latitude

40 south. Their observations may be seen in a treatise which Ponthc&us

published concerning this comet. Celliits, who was present, and commu
nicated his observations in a letter to Cassitn

}
saw the comet at the same

hour in ^= 8 30
,
with latitude 30 south. It was likewise seen by

Galletius at the same hour at Avignon (that is, at 5h
. 42 morning at

London] in ^= 8 without latitude. But by the theory the comet was at

that time in ^ 8 16
45&quot;,

and its latitude was 53 7&quot; south.

Nov. 18, at 6h. 30 in the morning at Rome (that is, at 5h
. 40 at Lon

don), PonthcEns observed the comet in ^ 13 30
,
with latitude 1 20
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south
;
and Cellius in ^ 13 30

,
with latitude 1 00 south. But at 5 b

.

30 in the morning at Aviation, Galletius saw it in ^ 13 00
,
with lati

tude 1 00 south. In the University of La Fleche, in Prance, at 5 h
. in

the morning (that is. at 5 h
. 9 at London.}, it was seen by P. Ango, in the

middle between two small stars, one of which is the middle of the three

which lie in a right line in the southern hand of Virgo, Bayers i/&amp;gt; ;
and

the other is the outmost of the wing, Bayer s 0. Whence the comet was

then in ^ 12 46 with latitude 50 south. And I was informed by Dr.

ffalley, that on the same day at Boston in New England, in the latitude

of 42| deg. at 5 h
. in the morning (that is, at 9h

. 44 in the morning at

London), the comet was seen near === 14, with latitude 1 30 south.

Nov. 19, at 4|
h

. at Cambridge, the comet (by the observation of a

young man) was distant from Spica $ about 2 towards the north west.

Now the spike was at that time in ^ 19 23
47&quot;,

with latitude 2 1 59&quot;

south. The same day, at 5h
. in the morning, at Boston in New England,

the comet wTas distant from Spica nj? 1, with the difference of 40 in lati

tude. The same day, in the island of Jamaica, it was about 1 distant

from Spica W. The same day, Mr. Arthur Storer, at the river Patuxent,
near Hunting Creek, in Maryland, in the confines of Virginia, in lat.

38i, at 5 in the morning (that is, at 10h
. at London), saw the comet

above Spica W, and very nearly joined with it, the distance between them

being about of one deg. And from these observations compared, I con

clude, that at 9h
. 44 at London, the comet was in === 18 50

,
with about

1 25 latitude south. Now by the theory the comet was at that time in

^ 18 52
15&quot;,

with 1 26 54&quot; lat. south.

Nov. 20, Montenari, professor of astronomy at Padua, at 6h
. in the

morning at Venice (that is, 5 h
. 10 at London), saw the comet in === 23,

with latitude 1 30 south. The same day, at Boston, it was distant from

Spica W by about 4 of longitude east, and therefore was in ^ 23 24

nearly.

Nov. 21, Ponthceus and his companions, at 7|
h

. in the morning, ob

served the comet in == 27 50
,
with latitude 1 16 south

; Cellius, in ^=

28
;
P. Ango at 5 h

. in the morning, in === 27 45
;
Montenari in ^

27 51 . The same day, in the island of Jamaica, it was seen near the

beginning of ^1, and of about the same latitude with Spica u%, that is, 2

2 . The same day, at 5h
. morning, at Ballasore, in the East Indies (that

is, at ll h
. 20 of the night preceding at London), the distance of the

comet from Spica W was taken 7 35 to the east. It was in a right line

between the spike and the balance, and therefore was then in == 26 58
,

with about 1 11 lat. south; and after 5h
. 40 (that is. at 5h

. morning at

London), it was in === 28 12 . with 1 16 lat. south. Now by the theory
the comet was then in *= 28 10

36&quot;,
with 1 53 35&quot; lat. south.

Nov. 22, the comet was seen by Montenari in ^ 2 33 : hut at Boston
31
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in New England, it was found in about ^l 3, and with almost the same

latitude as before, that is, 1 30 . The same day, at 5h
. morning at

Ballasore, the comet was observed in ^l 1 50
;
and therefore at 5h. morn

ing at London, the comet was in iU 3 5 nearly. The same day, at 6^h
.

in the morning at London, Dr. Hook observed it in about nt 3 30
,
and

that in the right line which passeth through Spica ^ and Cor Leonis ;

not, indeed, exactly, but deviating a little from that line towards the

north. Montenari likewise observed, that this day, and some days after,

a right line drawn from the comet through Spica passed by the south

side of Cor Lt&amp;gt;oi\is at a very small distance therefrom. The right line

through Cor Leonis and Spica ^ did cut the ecliptic in ^ 3 46 at an

ano-le of 2 51
;
and if the comet had been in this line and in W. 3, its

latitude would have been 2 26 ; but since Hook and Montenari agree
that the comet was at some small distance from this line towards the

north, its latitude must have been something less. On the 20th, by the

observation of Montenari, its latitude was almost the same with that of

Spica ^l
7

,
that is, about 1 30 . But by the agreement of Hook, Monte-

nari, and Align, the latitude was continually increasing, and therefore

must now, on the 22ci be sensibly greater than t 30 : and, taking a

mean between the extreme limits but now stated. 2 26 and 1 30
,
the

latitude will be about 1 58 . Hook and Montenari agree that the tail

of the comet was &quot;directed towards Spica W, declining a little from that

star towards the south according to Hook, but towards the north according

to Montenari ; and, therefore, that declination was scarcely sensible
;
and

the tail, lying nearly parallel to the equator, deviated a little from the op

position of the sun towards the north.

Nov. 23, O. S. at 5 1

. morning, at Nuremberg (that is, at 4^
h

. at Lon

don), Mr. Zimmerman saw the comet in ^t 8 8
,
with 2 31 south lat.

its place being collected by taking its distances from fixed stars.

Nov. 24, before sun-rising, the comet was seen by Montenari in TCI 1?

52 on the north side of the right line through Cor Leonis and Spica W,
and therefore its latitude was something less than 2 38

;
and since the

latitude, as we said, by the concurring observations of Montenari, A/io-
,

and Hook, was continually increasing, therefore, it was now, on the 24th,

something greater than 1 58&quot; ; and, taking the mean quantity, may be

reckoned 2
18&quot;,

without any considerable error. Ponthwns and Galletins

will have it that the latitude was now decreasing ;
and Cellius, and the

observer in New England, that it continued the same, viz., of about 1,
or H. The observations of Ponthceus and Cellius are more rude, espe

cially those which were made by taking the azimuths and altitudes
;
as

are also the observations of Galletins. Those are better which were

made by taking the position of the comet to the fixed stars by Montenari^

Hook, Ango, and the observer in New England, and sometimes by
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Po ii t/tfe n.fi and Cell lus. The same day, at 5 h
. morning, at Ballasore, the

comet was observed in &quot;I 11 45
; and, therefore, at 5 h

. morning at Lon

don, was in &quot;I 13 nearly. And, by the theory, the comet was at that

time in n 13 22 42&quot;.

Nov. 25, before sunrise. Montenari observed the comet in 1Tl 17|

nearly ;
and Cellius observed at the same time that the comet was in a

right line between the bright star in the right thigh of Virgo and the

southern scale of Libra; and this right line cuts the comet s way in ^l

18 3(5 . And, by the theory, the comet was in ni 18-- nearly.

From all this it is plain that these observations agree with the theory,

so far as they agree with one another
;
and by this agreement it is made

clear that it was one and the same comet that appeared all the time from

Nov. 4 to Mar. 9. The path of this comet did twice cut the plane of the

ecliptic, and therefore was not a right line. It did cut the ecliptic not in

opposite parts of the heavens, but in the end of Virgo and beginning of

Capricorn, including an arc of about 98 : and therefore the way of the

comet did very much deviate from the path of a great circle
;
for in the

month of Nov. it declined at least 3 from the ecliptic towards the south :

and in the month of Dec. following it declined 29 from the ecliptic to

wards the north
;
the two parts of the orbit in which the comet descended

towards the sun, and ascended again from the sun, declining one from the

other by an apparent angle of above 30, as observed by Montenari. This

comet travelled over 9 signs, to wit, from the last dcg. of 1 to the begin

ning of n, beside the sign of 1, through wrhich it passed before it began
to be seen

;
and there is no other theory by which a comet can go over so

great a part of the heavens with a regular motion. The motion of this

comet was very unequable ;
for about the 20th of Nov. it described about

5 a day. Then its motion being retarded between Nov. 26 and Dec.

12, to wit, in the space of 15^ days, it described only 40 But the mo
tion thereof being afterwards accelerated, it described near 5 a day, till

its motion began to be again retarded. And the theory which justly cor

responds with a motion so unequable, and through so great a part of the

heavens, which observes the same laws with the theory of the planets, and

which accurately agrees with accurate astronomical observations, cannot

be otherwise than true.

And, thinking it would not be improper, 1 have given a true representa

tion of the orbit which this comet described, and of the tail which it

emitted in several places, in the annexed figure; protracted in the plane of

the trajectory. In this scheme ABC represents the trajectory of the comet,

D the sun DE the axis of the trajectory, DF the line of the nodes, GH
the intersection of the sphere of the orbis magnus with the plane of the

trajectory. I the place of the comet Nov. 4, Ann. 1680; K the place of the

same AT
/r. 11

;
L the place of the same Nov. 19; M its place Dec. 12; IS
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its place Dec. 21
;
O its place Dec. 29

;
P its place Jan. 5 following ;

Q,

its place Jan. 25
;
R its place Feb. 5

;
S its place Feb. 25

;
T its place

March 5
;
and V its place March 9. In determining the length of the

tail, I made the following observations.

Nov. 4 and 6, the tail did not appear ;
Nov. 1 1, the tail just begun to

shew itself, but did not appear above | deg. long through a 10 feet tele

scope ;
Nov. 17, the tail was seen by Ponthc&us more than 15 long ;

Nov.

18, in New-England, the tail appeared 30 long, and directly opposite to

the sun, expending itself to the planet Mars, which was then in njZ, 9 54
;

Nov. 19. in Manjltnd, the tail was found 15 or 20 Ions:; Dec. 10 (by
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the observation of Mr. Flamsted), the tail passed through the middle of

the distance intercepted between the tail of the Serpent of Ophiuchus and

the star 6 in the south wing of Aquila, and did terminate near the stars

A, w, l&amp;gt;,

in Bayer s tables. Therefore the end of the tail was in Y? 19|
5

;

with latitude about 34^ north
;
Dec 11, it ascended to the head of Sag-it-

ta (Bayer s a, 0), terminating in V? 26 43
,
with latitude 38 34 north;

Dec. 12, it passed through the middle of Sa^itta, nor did it reach much

farther; terminating in ~ 4, with latitude 42^ north nearly. But these

things are to be understood of the length of the brighter part of the tail;

for with a more faint light, observed, too, perhaps, in a serener sky, at

Rome, Dec. 12, 5 h
. 40

, by the observation of Pon.thcBu.Sj the tail arose to

10 above the rump of the Swan, and the side thereof towards the west

and towards the north was 45 distant from this star. But about that time

the tail was 3 broad towards the upper end
;
and therefore the middle

thereof was 2 15 distant from that star towards the south, and the upper
end was X in 22, with latitude 61 north; and thence the tail was about

70 long; Dec. 21, it extended almost to Cassiopeia s chair, equally dis

tant from j3 and from Schedir, so as its distance from either of the two

was equal to the distance of the one from the other, and therefore did ter

minate in T 24, with latitude 47^ ;
Dec. 29, it reached to a contact with

Scheal on its left, and exactly filled up the space between the two stars in

the northern foot of Andromeda, being 54 in length; and therefore ter

minated in & 19, with 35 of latitude; Jan 5, it touched the star -rr in

the breast of Andromeda on its right side, and the star \i of the girdle on

its left; and, according to our observations, was 40 long; but it was

curved, and the convex side thereof lay to the south
;

arid near the head of

the comet it made an angle of 4 with the circle which passed through the

sun and the comet s head
;
but towards the other end it was inclined to

that circle in an angle of about 10 or 11
;
and the chord of the tail con

tained with that circle an angle of 8. Jan. 13, the tail terminated be

tween Alamech and Algol, with a light that was sensible enough : but

with a faint light it ended over against the star K in Perseus s side. The
distance of the end of the tail from the circle passing through the sun and

the comet was 3 50
;
and the inclination of the chord of the tail to that

circle was S|. Jan. 25 and 26, it shone with a faint light to the length
of 6 or 7

;
and for a night or two after, when there was a very clear sky.

it extended to the length of 12. or something more, with a light that was

very faint and very hardly to be seen; but the axis thereof was exactly di

rected to the bright star in the eastern shoulder of Auriga, and therefore

deviated from the opposition of the sun towards the north by an angle of

10. Lastly, Feb. 10, with a telescope I observed the tail 2 long ;
for that

fainter light which I spoke of did not appear through the glasses. But
Ponthftiis writes, that, on Feb. 7, lie saw the tail 12 lone:. Feb. 25, the

fjrnet was without a tail, and so continued till it disappeared
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Now if one reflects upon the orbit described, and duly considers the other

appearances of this comet, he will be easily satisfied that the bodies of

comets are solid, compact, fixed, and durable, like the bodies of the planets ;

for if they were nothing else but the vapours or exhalations of the earth, of

the sun, and other planets, this comet, in its passage by the neighbourhood
of the sun, would have been immediately dissipated; for the heat of the

sun is as the density of its rays, that is, reciprocally as the square of the

distance of the places from the sun. Therefore, since on Dec. 8, when the

comet was in its perihelion, the distance thereof from the centre of the sun

was to the distance of the earth from the same as about 6 to 1000
;
the

sun s heat on the comet was at that time to the heat of the summer-sun
with us as 1000000 to 36, or as 28000 to 1. But the heat of boiling
water is about 3 times greater than the heat which dry earth acquires from

the summer-sun, as I have tried : and the heat of red-hot iron (if my con

jecture is right) is about three or four times greater than the heat of boil

ing water. And therefore the heat which dry earth on the comet, while in

its perihelion, might have conceived from the rays of the sun, was about

2000 times greater than the heat of red-hot iron. But by so fierce a heat,

vapours and exhalations, and every volatile matter, must have been imme

diately consumed and dissipated.

This comet, therefore, must have conceived an immense heat from the

sun, and retained that heat for an exceeding long- time
;
for a globe of iron

of an inch in diameter, exposed red-hot to the open air, will scarcely lose

all its heat in an hour s time; but a greater globe would retain its heat

longer in the proportion of its diameter, because the surface (in proportion
to which it is cooled by the contact of the ambient air) is in that proportion

less in respect of the quantity of the included hot matter; and therefore a

globe of red hot iron equal to our earth, that is, about 40000000 feet in

diameter, would scarcely cool in an equal number of days, or in above

50000 years. But I suspect that the duration of heat may, on account of

some latent causes, increase in a yet less proportion than that of the

diameter
;
and I should be glad that the true proportion was investigated

by experiments.

It is farther to be observed, that the comet in the month of December.

just after it had been heated by the sun, did emit a much longer tail, and

much more splendid, than in the month of November before, when it had

not yet arrived .it its perihelion; and, universally, the greatest and most

fulgent tails always arise from comets immediately , fter their passing by

the neighbourhood of the sun. Therefore the heat received by the comet

conduces to the greatness of the tail: from whence, I thiufc I may infer,

that the tail is nothing else but a very fine vapour, which the head or

nucleus of the comet emits by its heat.

Jbut we have had three several opinions about the tails of comets; for
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some will have it that they are nothing else but the beams of the sun s

light transmitted through the comets heads, which they suppose to be

transparent ; others, that they proceed from the refraction which light suf

fers in passing from the comet s head to the earth : and, lastly, others, thac

they are a sort of clouds or vapour constantly rising from the comets7

heads.

and tending towards the parts opposite to the sun. The first is the opin

ion of such as are yet unacquainted with optics : for the beams of the sun

are seen in a darkened room only in consequence of the light that is re

flected from them by the little particles of dust and smoke which are

always flying about in the air; and, for that reason, in air impregnated
with thick smoke, those beams appear with great brightness, and move the

sense vigorously ;
in a yet finer air they appear more faint, and are less

easily discerned
;
but in the heavens, where there is no matter to reflect

the light they can never be seen at all. Light is not seen as it is in the

beam, but as it is thence reflected to our eyes ;
for vision can be no other

wise produced than by rays falling upon the eyes ;
and. therefore, there

must be some reflecting matter in those parts where the tails of the comets

are seen : for otherwise, since all the celestial spaces are equally illumin

ated by the sun s light, no part of the heavens could appear with more

splendor than another. The second opinion is liable to many difficulties.

The tails of comets are never seen variegated with those colours which

commonly are inseparable from refraction
;
and the distinct transmission

of the light of the fixed stars and planets to us is a demonstration that

the aether or celestial medium is not endowed with any refractive power :

for as to what is alleged, that the fixed stars have been sometimes seen by
the Egyptians environed with a Coma or Capit/itinm, because that has

but rarely happened, it is rather to be ascribed to a casual refraction of

clouds; and so the radiation and scintillation of the fixed stars to tin

refractions both of the eyes and air
;
for upon laying a telescope to the

eye, those radiations and scintillations immediately disappear. By the trem

ulous agitation of the air and ascending vapours, it happens that the rays of

light are alternately turned aside from the narrow space of the pupil of the

eye; but no such thing can have place in the much wider aperture of the ob

ject-glass of a telescope ;
and hence it is that a scintillation is occasioned ir,

the former case, wrhich ceases in the latter
;
and this cessation in the latter

case is a demonstration of the regular transmission of light through the

heavens, without any sensible refraction. But, to obviate an objection
that may be made from the appearing of no tail in such comets as shine

but with a faint light, as if the secondary rays were then too weak to af

fect the eyes, and for that reason it is that the tails of the fixed stars do

not appear, we are to consider, that by the means of telescopes the light of

the fixed stars may be augmented above an hundred fold, and yet no tails

are seen
;
that the light of the planets is yet more copious without any
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tail
;
but that comets are seen sometimes with huge tails, when the light

of their heads is but faint and dull. For so it happened in the comet of

the year 1680, when in the month of December it was scarcely equal in

light to the stars of the second magnitude, and yet emitted a notable tail,

extending to the length of 40, 50, 60, or 70 3

,
and upwards ;

and after

wards, on the 27th and 28th of January, when the head appeared but us

a star of the 7th magnitude, yet the tail (as we said above), with a light
that was sensible enough, though faint, was stretched out to 6 or 7 degrees
in length, and with a languishing light that was more difficultly seen, even

to .12, and upwards. But on the 9th and 10th of February, when to the

naked eye the head appeared no more, through a telescope I viewed the

tail of 2 in length. But farther; if the tail was owing to the refrac

tion of the celestial matter, and did deviate from the opposition of the

sun, according to the figure of the heavens, that deviation in the same

places of the heavens should be always directed towards the same parts.

Bu n e comet of the year 1680, December 28d
. S^

h
. P. M. at London, was

seen in X 8 41
,
with la itude north 28 6

;
while the sun was in V? 18

26 . And the cornet of the year 1577, December 29d
. was in X 8 41

,

with latitude north 28 40
,
and the sin, as before, in about V^ 18 26 .

In both cases the situation of the earth was the same, and the comet ap

peared in the same place of the heavens
; yet in the former case the tail

of the comet (as well by my observations as by the observations of others)

deviated from the opposition of the sun towards the north by an angle of

4|- degrees ;
whereas in the latter there was (according to the observations

of Tychfi) a deviation of 21 degrees towards the south. The refraction,

therefore, of the heavens being thus disproved, it remains that the pha-
tiomena of the tails of comets must be derived from some reflecting matter.

And that the tails of comets do arise from their heads, and tend towards

the parts opposite to the sun, is. farther confirmed from the laws which

the tails observe. As that, lying in the planes of the comets orbits

which pass tl trough the sun, they constantly deviate from the opposition

of the sun towards the parts which the comets heads in their progress

along these orbits have left. That to a spectator, placed in those planes,

they appear in the parts directly opposite to the sun
; but, as the spectator

recedes from th &amp;gt;se planes, their deviation begins to appear, and daily be

comes greater. That the deviation, cceteris paribus, appears less when

the tail is more oblique to the orbit of the comet, as well as when the

head of the comet approaches nearer to the sun, especially if the angle of

deviation is estimated near the head of the comet. That the tails which

have no deviation appear straight, but the tails which deviate are like

wise bended into a certain curvature. That this curvature is greater when

the deviation is greater ;
and is more sensible when the tail, cceteris pari-

bus is longer ;
for in the shorter tails the curvature is hardly to be

p-jr-
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ccived. That the angle of deviation is less near the comet s head, but

greater towards the other end of the tail
;
and that because the convex

side of the tail regards the parts from which the deviation is made, and

which lie in a right line drawn out infinitely from the sun through the

comet s head. And that the tails that are long and broad, and shine with

a stronger light, appear more resplendent and more exactly defined on the

convex than on the concave side. Upon which accounts it is plain that

the phenomena of the tails of comets depend upon the motions of their

heads, and by no means upon the places of the heavens in which their

heads are seen
;
and that, therefore, the tails of comets do not proceed from

the refraction of the heavens, but from their own heads, which furnish the

matter that forms the tail. For, as in our air, the smoke of a heated body
ascends either perpendicularly if the body is at rest, or obliquely if the

body is moved obliquely, so in the heavens, where all bodies gravitate to

wards the sun, smoke and vapour must (as we have already said) ascend

from the sun, and either rise perpendicularly if the smoking body is at

rest, or obliquely if the body, in all the progress of its motion, is always

leaving those places from which the upper or higher parts of the vapour
had risen before

;
and that obliquity will be least where the vapour ascends

with most velocity, to wit, near the smoking body, when that is near the

sun. But, because the obliquity varies, the column of vapour will be in-

curvated
;
and because the vapour in the preceding sides is something more

recent, that is, has ascended something more late from the body, it will

therefore be something more dense on that side, and must on that account

reflect more light, as well as be better defined. I add nothing concerning
the sudden uncertain agitation of the tails of comets, and their irregular

figures, which authors sometimes describe, because they may arise from the

mutations of our air, and the motions of our clouds, in part obscuring
those tails

; or, perhaps, from parts of the Via Laclea, which might have

been confounded with and mistaken for parts of the tails of the comets JIB

they passed by.

But that the atmospheres of comets may furnish a supply of vapour

great enough to fill so immense spaces, we may easily understand from the

rari ty of our own air
;
for the air near the surface of our earth possesses

a space 850 times greater than water of the same weight ;
arid therefore

a cylinder of air 850 feet high is of equal weight with a cylinder of water

of the same breadth, and but one foot high. But a cylinder of air reach

ing to the top of the atmosphere is of equal weight with a cylinder of

water about 33 feet high : and, therefore, if from the whole cylinder of

air the lower part of 850 feet high is taken away, the remaining upper

part will be of equal weight with a cylinder of water 32 feet high : and

from thence (and by the hypothesis, confirmed by many experiments, that

the compression of air is as the weight of the incumbent atmosphere, and
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that the force of gravity is reciprocally as the square of the distance from

the centre of the earth) raising a calculus, by Cor. Prop. XXII, Book II,

I found, that, at the height of one semi-diameter of the earth, reckoned

from the earth s surface, the air is more rare than with us in u far greater

proportion than of the whole space within the orb of Saturn to a spherical

space of one inch in diameter
;
and therefore if a sphere of our air of but

one inch in thickness was equally rarefied with the air at the height of

one semi-diameter of the earth from the earth s surface, it would rill all

the regions of the planets to the orb of Saturn, and far beyond it. Where
fore since the air at greater distances is immensely rarefied, and the coma

or atmosphere of comets is ordinarily about ten times higher, reckoning
from their centres, than the surface of the nucleus, and the tails rise yet

higher, they must therefore be exceedingly rare
;
and though, on account

of the much thicker atmospheres of comets, and the great gravitation of

their bodies towards the sun, as well as of the particles of their air and

vapours mutually one towards another, it may happen that the air in the

celestial spaces and in the tails of comets is not so vastly rarefied, yet

from this computation it is plain that a very small quantity of air and

vapour is abundantly sufficient to produce all the appearances of the tails

of comets : for that they are, indeed, of a very notable rarity appears from

the shining of the stars through them. The atmosphere of the earth,

illuminated by the sun s light, though but of a few miles in thickness,

quite obscures and extinguishes the light not only of all the stars, but

even of the moon itself; whereas the smallest stars are seen to shine

through the immense thickness of the tails of comets, likewise illuminated

by the sun, without the least diminution of their splendor. Nor is the

brightness of the tails of most comets ordinarily greater than that of our

air, an inch or two in thickness, reflecting in a darkened room the light of

the sun-beams let in by a hole of the window-shutter.

And we may pretty nearly determine the time spent during the ascent

of the vapour from the comet s head to the extremity of the tail, by draw

ing a right line from the extremity of the tail to the sun, and marking
the place where that right line intersects the comet s orbit : for the vapour

that is now in the extremity of the tail, if it has ascended in a right line

from the sun, must have begun to rise from the head at the time when the

head was in the point of intersection. It is true, the vapour does not rise

in a right line from the sun, but, retaining the motion Avhich it had from

the comet before its ascent, and compounding that motion witli its motion

of ascent, arises obliquely ; and, therefore, the solution of the Problem will

be more exact, if we draw the line which intersects the orbit parallel to

the length of the tail
;
or rather (because of the curvilinear motion of the

comet) diverging a little from the line or length of the tail. And by

means of this principle I found that the vapour which, Ja/iutiry 25, was
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in the extremity of the tail, had begun to rise from the head before De
cember 11, and therefore had spent in its whole ascent 45 days ;

but that

the whole tail which appeared on December 10 had finished its ascent in

the space of the two days then elapsed from the time of the comet s being

in its perihelion. The vapour, therefore, about the beginning and in the

neighbourhood of the sun rose with the greatest velocity, and afterwards

continued to ascend with a motion constantly retarded by its own gravity ;

and the higher it ascended, the more it added to the length of the tail
;

and while the tail continued to be seen, it was made up of almost all that

vapour which had risen since the time of the comet s being in its perihe

lion
;
nor did that part of the vapour which had risen first, and which

funned the extremity of the tail, cease to appear, till its too great dis

tance, as well from the sun, from which it received its li^it, as from our

eyes, rendered it invisible. Whence also it is that the tails of other comets

which are short do riot rise from their heads with a swift and continued

motion, and soon after disappear, but are permanent and lasting columns

of vapours and exhalations, which, ascending from the heads with a slow-

motion of many days, and partaking of the motion of the heads which

they had from the beginning, continue to go along together with them

through the heavens. From whe-.ee again we have another argument

proving the celestial spaces to be free, and without resistance, since in

them not only the solid bodies of the planets and comets, but also the ex

tremely rare vapours of comets
1

tails, maintain their rapid motions with

great freedom, and for an exceeding long time.

Kepler ascribes the ascent of the tails of the comets to the atmospheres
of their heads : and their direction towards the parts opposite to the sun to

the action of the rays of light carrying along with them the matter of the

comets tails
;
and without any great incongruity we may suppose, that, in

so free spaces, so fine a matter as that of the aether may yield to the action

of the rays of the sun s light, though those rays are not able sensibly to

move the gross substances in our parts, which are clogged with so palpable

a resistance. Another author thinks that there may be a sort of particles

of matter endowed with a principle of levity, as well as others are with a

power of gravity ;
that the matter of the tails of comets may be of the

former sort, and that its ascent from the sun may be owing to its levity ;

but, considering that the gravity of terrestrial bodies is as the matter of

the bodies, and therefore can be neither more nor less in the same quantity
of matter, I am inclined to believe that this ascent may rather proceed from

the rarefaction of the matter of the comets tails. The ascent of smoke in

a chimney is owing to the impulse of the air with which it is entangled.

The air rarefied by heat ascends, because its specific gravity is diminished,

and in its ascent carries along with it the smoke with which it is engaged ;

ind why may not the tail of a comet rise from the sun after the same man-
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ner ? For the sun s rays do not act upon the mediums which they per
vade otherwise than by reflection and refraction

;
and those reflecting par

ticles heated by this action, heat the matter of the aether which is involved

with them. That matter is rarefied by the heat which it acquires, and be-

oause, by this rarefaction, the specific gravity with which it tended towards

the sun before is diminished, it will ascend therefrom, and carry along with

it the reflecting particles of which the tail of the comet is composed. But

the ascent of the vapours is further promoted by their circumgyration
about the sun, in consequence whereof they endeavour to recede from the

sun, while the sun s atmosphere and the other matter of the heavens are

either altogether quiescent, or are only moved with a slower circumgyra
tion derived from the rotation of the sun. And these are the causes of the

ascent of the tails of the comets in the neighbourhood of the sun, where

their orbits are bent into a greater curvature, and the comets themselves

are plunged into the denser and therefore heavier parts of the sun s atmos

phere : upon which account they do then emit tails of an huge length ;
for

the tails which then arise, retaining their own proper motion, and in the

mean time gravitating towards the sun, must be revolved in ellipses about

the sun in like manner as the heads are, and by that motion must always

accompany the heads, and freely adhere to them. For the gravitation ot

the vapours towards the sun can no more force the tails to abandon the

heads, and descend to the sun,*than the gravitation of the heads can oblige

them to fall from the tails. They must by their common gravity either

fall together towards the sun, or be retarded together in their comii&amp;gt;ori as

cent therefrom
; and, therefore (whether from the causes already described,

or from any others), the tails and heads of comets may easily acquire and

freely retain any position one to the other, without disturbance or impedi
ment from that common gravitation.

The tails, therefore, that rise in the perihelion positions of the comets

will go along with their heads into far remote parts, and together with

the heads will either return again from thence to us, after a long course of

years, or rather will be there rarefied, and by degrees quite vanish away ;

for afterwards, in the descent of the heads towards the sun, new short tails

will be emitted from the heads with a slow motion; and those tails by de

grees will be augmented immensely, especially in such comets as in their

perihelion distances descend as low as the sun s atmosphere ;
for all vapour

in those free spaces is in a perpetual state of rarefaction and dilatation
;

and from hence it is that the tails of all comets are broader at their upper

extremity than near their heads. And it is not unlikely but that the va

pour, thus perpetually rarefied and dilated, may be at last dissipated and

scattered through the whole heavens, and by little and little be attracted

towards the planets by its gravity, and mixed with their atmosphere; for

as the seas are absolutely necessary to the constitution of our earth,
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from them, the sun, by its heat, may exhale a sufficient quantity of vapours,

which, being gathered together into clouds, may drop down in rain, for

watering of the earth, and for the production and nourishment of vegeta

bles; or, being condensed with cold on the tops of mountains (as some phi

losophers with reason judge), may run down in springs and rivers; so for

the conservation of the seas, and fluids of the planets, comets seem to be

required, that, from their exhalations and vapours condensed, the wastes of

the planetary fluids spent upon vegetation and putrefaction, and converted

into dry earth, may be continually supplied and made up; for all vegeta

bles entirely derive their growths from fluids, and afterwards, in great

measure, are turned into dry earth by putrefaction : and a sort of slime is

always found to settle at the bottom of putrefied fluids; and hence it is

that the bulk of the solid earth is continually increased; and the fluids, if

they are not supplied from without, must be in a continual decrease,

and quite fail at last. I suspect, moreover, that it is chiefly from the

comets that spirit comes, which is indeed the smalles; but the most subtle

and useful part of our air, arid so much required to sustain the life of all

things with us.

The atmospheres of comets, in their descent towards the sun, by running
out into the tails, are spent and diminished, and become narrower, at least

on that side which regards the sun
;
and in receding from the sun, when

they less run out into the tails, they are again enlarged, if Hevelins has

justly marked their appearances. But they are seen least of all just after

they have been most heated by the sun, and on that account then emit the

longest and most resplendent tails; and, perhaps, at the same time, the

nuclei are environed with a denser and blacker smoke in the lowermost

parts of their atmosphere ;
for smoke that is raised by a great and intense

heat is commonly the denser and blacker. Thus the head of that cornet

which we have been describing, at equal distances both from the sun and

from the earth, appeared darker after it had passed by its perihelion than

it did before
;
for in the month of December it was commonly compared

with the stars of the third magnitude, but in November with those of the

first or second
;
and such as saw both appearances have described the first

as of another and greater comet than the second. For, November 19. this

comet appeared to a young man at Cambridge, though with a pale and

dull light, yet equal to Spica Virg-inis ; and at that time it shone with

greater brightness than it did afterwards. And Montenari, November 20,

et. vet. observed it larger than the stars of the first magnitude, its tail

being then 2 degrees long. And Mr. Storer (by letters which have come

into my hands) writes, that in the month of December, when the tail ap

peared of the greatest bulk and splendor, the head was but small, and far

less than that which was seen in the month of November before sun- rising;

and, conjecturing at the cause of the appearance, he judged it to proceed
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from there being a greater quantity of matter in the head at first, which

was afterwards gradually spent.

And, which farther makes for the same purpose, I find, that the heads of

other cornets, which did put forth tails of the greatest bulk and splendor,

have appeared but obscure and small. For in Brazil, March 5, 1 668, 7h
.

P. M.
;
St. N. P. Valentin its Esta. tcws saw a comet near the horizon, and

towards the south west, with a head so small as scarcely to be discerned,

but with a tail above measure splendid, so that the reflection thereof from

the sea was easily seen by those who stood upon the shore
;
and it looked

like a fiery beam extended 23 in length from the west to south, almost

parallel to the horizon. But this excessive splendor continued only three

days, decreasing apace afterwards
;

arid while the splendor was decreasing,

the bulk of the tail increased : whence in Portugal it is said to have taken

ap one quarter of the heavens, that is, 45 degrees, extending from west to

3ast with a very notable splendor, though the whole tail was not seen in

those parts, becar.sc the head was always hid under the horizon : and from

the increase of the hulk arid decrease of the splendor of the tail, it appears

that the head vis then in its recess from the sun, and had been very near

to it in its perihelion, as the comet of 1680 was. And we read, in the

Saxon Chronicle, of a like comet appearing in the year 1 106, the star

whereof was small and obscure (as that of 1680), but the splendour of its

tail w^s very bright, and like a hugefiery beam stretched out in a direc

tion fetween the east and north, as Hevelius has it also from Simeon, the

monk of Durham. This comet appeared in the beginning of February.
about the evening, and towards the south west part of heaven

;
frc-in

whence, and from the position of the tail, we infer that the head was near

the sun. Matthew Paris says, // was distant from the sun by about a

cubit, from, three of the clock (rather six) till nine, putting forth a long

tail. Such also was that most resplendent comet described by Aristotle,

lib. 1, Meteor. 6. The head whereof could not be seen, because it had set

before the sun, or at least was hid under the sun s rays ; but next day
it was seen, as well as might be ; for, having left the sun but a very lit

tle way, it set immediately after it. And the scattered light of the head,

obscured by the too great splendour (of the tail) did not yet appear. But

afterwards (as Aristotle says) when the splendour (of the tail) was now

diminished (the head of), the comet recovered its native brightness ; and

the splendour (of its tail) reached now to a third part of the heavens (that

is, to 60). This appearance was in the winter season (an. 4, Olymp.

101), and, rising tit Orion s girdle, it there vanished away. It is true

that the comet of 1618, which came out directly from under the sun s rays

with a very large tail, seemed to equal, if not to exceed, the stars of the

first magnitude: but, then, abundance of other comets have appeared yet

greater than this, that put forth shorter tails; some of which are said
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to have appeared as big as Jupiter, others as big as Venus, or even as

the moon.

We have said, that comets are a sort of planets revolved in very eccen

tric orbits about the sun : and as, in the planets which are without tails,

those are commonly less which are revolved in lesser orbits, and nearer to

the sun, so in comets it is probable that those which in their perihelion ap

proach nearer to the sun ate generally of less magnitude, that they may
not agitate the sun too much by their attractions. But, as to the trans

verse diameters of their orbits, and the periodic times of their revolutions,

1 leave them to be determined by comparing comets together ^hich after

long intervals of time return again in the same orbit. In the mean time,

the following Proposition may give some light in that inquiry.

PROPOSITION XLIL PROBLEM XXII.

To correct a cornet s trajectoryfound as above.

OPERATION 1. Assume that position of the plane of the trajectory which

was determined according to the preceding proposition; and select three

places of the comet, deduced from very accurate observations, and at great
distances one from the other. Then suppose A to represent the time be

tween the first observation and the second, and B the time between the

secoi.d and the third
;
but it will be convenient that in one of those times

the comet be in its perigeon, or at least not far from it. From those ap

parent places find, by trigonometric operations, the three true places of the

comet in that assumed plane of the trajectory ;
then through the places

found, and about the centre of the sun as the focus, describe a conic section

by arithmetical operations, according to Prop. XXL, Book 1. Let the

areas of this figure which are terminated by radii drawn from the sun to

the places found be D and E; to wit, I) the area between the first observa

tion and the second, and E the area between the second and third
;
and let

T represent the whole time in which the whole area D + E should be de

scribed with the velocity of the comet found by Prop. XVI., Book 1.

OPER. 2. Retaining the inclination of the plane of the trajectory to the

plane of the ecliptic, let the longitude of the nodes of the plane of the tra

jectory be increased by the addition of 20 or 30 minutes, which call P.

Then from the aforesaid three observed places of the comet let the three

true places be found (as before) in this new plane; as also the orbit passing

through those places, and the two areas of the same described between the

two observations, which call d and e ; and let t be the whole time in which

the whole area d + e should be described.

OrER. 3. Retaining the longitude of the nodes in the first operation, let

the inclination of the plane of the trajectory to the plane of the ecliptic be

increased by adding thereto 20 or 30
,
which call Q,. Then from the
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aforesaid three observed apparent places of the comet let the three true

places be found in this new plane, as well as the orbit passing through

them, and the two areas of the same described between the observation,

which call d and
;
and let r be the whole time in which the whole area

(5 -4- should be described.

Then taking C to 1 as A to B
;
and G to 1 as D to E

;
and g to 1 as

d to e; and y to 1 as cJ to c; let S be the true time between the first ob

servation and the third
; and, observing well the signs + and

,
let such

numbers m and n be found out as will make 2G 2C, = raG m
+ nG uy ;

and 2T 28 = mT - nil + nT nr. And if, in

the first operation, I represents the inclination of the plane of the trajec

tory to the plane of the ecliptic, and K the longitude of either node, then

I + 7/Q will be the true inclination of the plane of the trajectory to the

plane of the ecliptic, and K + mP the true longitude of the node. And.

lastly, if in the first, second, and third operations, the quantities R, r, and

p, represent the parameters of the trajectory, and the quantities -7&quot;, -7, -,
LA I A.

the transverse diameters of the same, then R -f mr mR + up /?R

will be the true parameter, and =
;

-
: .- =- will be the

L + inl mL + nh w.L

true transverse diameter of the trajectory which the comet describes
;
and

from the transverse diameter given the periodic time of the comet is also

given. Q.E.I. But the periodic times of the revolutions of comets, and

the transverse diameters of their orbits, cannot be accurately enough de

termined but by comparing comets together which appear at different

times. If, after equal intervals of time, several comets are found to have

described the same orbit, we may thence conclude that they are all but one

and the same comet revolved in the same orbit
;
and then from the times

of their revolutions the transverse diameters of their orbits will be given,

and from those diameters the elliptic orbits themselves will be determined.

To this purpose the trajectories of many comets ought to be computed,

supposing those trajectories to be parabolic; for such trajectories will

always nearly agree with the ph&nomena, as appears not only from the

parabolic trajectory of the comet of the year 1680, which I compared

above with the observations, but likewise from that of the notable comet

which appeared in the year 1664 and 1665, and was observed by Hevelins,

who, from his own observations, calculated the longitudes and latitudes

thereof, though with little accuracy. But from the same observations Dr.

Halley did again compute its places; and from those new places deter

mined its trajectory, finding its ascending node in n 21 13 55&quot;
;
the in

clination of the orbit to the plane of the ecliptic 21 IS 40&quot;
;
the dis

tance of its perihelion from the node, estimated in the comet s orbit, 49

27 30&quot;,-
its perihelion in P, 8 40 30&quot;, with heliocentric latitude south
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16 UT 45&quot;
;
the comet to have been in its perihelion November 21 (l

. Hi,.

52 P.M. equal time at London, or 13h
. 8 at Duiitzick, O. S.; and that

the latus rectum of the parabola was 4102S6 such parts as the sun s mean

distance from the earth is supposed to contain 100UOO. And how nearly

the places of the comet computed in this orbit agree with the observations,

will appear from the annexed table, calculated by Dr. Halley.

In February, the beginning of the year
which I shall hereafter call y, was in HP 28

1665, the first star of Aries,

30
15&quot;,

with 7 8 58&quot; north
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lat.; the second star of Aries was in w 29 IT IS
,
with 8 28 16&quot; north

lat.; and another star of the seventh magnitude, which I call A, was in

v 28 24
45&quot;,

with 8 28 33&quot; north lat,

~

The comet Feb. 7 (1

. 7h
. 30 tt

Paris (that is. Feb. 7 1

. 8 h
. 37 at Dantzick] O. S. made a triangle with

those stars y and A. which was right-angled in y; and the distance of the

comet from the star y was equal to the distance of the stars y and A, that

is, 1 19 46 of a great circle
;
and therefore in the parallel of the lati

tude of the star y it was 1 20 26&quot;. Therefore if from the longitude of

the star y there be subducted the longitude 1 20 26&quot;. there will remain

the longitude of the comet T 27 9 49&quot;. M. Auzout, from this observa

tion of his, placed the comet in 1P 27
, nearly ; and, by the scheme in

which Dr. Hooke delineated its motion, it was then in T 26 59 24 . 1

place it in CP 27 4 46
, taking the middle between the two extremes.

From the same observations, M. Anzont made the latitude of the cornet

at that time 7 and 4 or 5 to the north
;
but he had done better to have

made it 7 3
29&quot;,

the difference of the latitudes of the comet and the star

y being equal to the difference of the longitude of the stars y and A.

Ftbmury 22 (i

. 7 1

. 30 at London, that is, February 22 . 8 h
. 46 at

Dantzick, the distance of the comet from the star A, according to Dr.

JJooke s observation, as was delineated by himself in a scheme, and also

by the observations of M. Auzout, delineated in like manner by M. Petit,

was a fifth part of the distance between the star A and the first star of

Aries, or 15 57&quot;
;
and the distance of the comet from a right line joining

the star A and the first of Aries was a fourth part of the same iifth part,

that is, 4
;
and therefore the comet was in T 28 29

46&quot;,
with 8 12

36&quot; north lat.

March 1, 7h
. at Londou, that is, March 1, 8h

. 16 at Dantzick, the

comet was observed near the second star in Aries, the distance between

them being to the distance between the first and second stars in Aries, that

is, to 1 33
,
as 4 to 45 according to Dr. Hooke, or as 2 to 23 according

to M. Gottiguies. And, therefore, the distance of the comet from the

second star in Aries was 8 16&quot; according to Dr. Hooke, or 8 5&quot; according

to M. Gottignies ; or, taking a mean between both, 8 10&quot;. But, accord

ing to M. Gottignies, the comet had gone beyond the second star of Aries

about a fourth or a fifth part of the space that it commonly went over in

a day, to wit, about 1 35&quot; (in which he agrees very well with M. Auzo-nf] ;

or, according to Dr. Hooke, not quite so much, as perhaps only .1 . Where

fore if to the longitude of the first star in Aries we add 1
,
and 8 10&quot; to

its latitude, we shall have the longitude of the comet T 29 IS
,
with S

36 26&quot; north lat.

March 7, 7h
. 30 at Paris (that is, March 7, 8h

. 37 at Dantzick),

from the observations of M. Auzout, the distance of the comet from the

second star in Aries was equal to the distance of that star from the star
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A, that is, 52/29&quot; ;
and the difference of the longitude of the comet and

the second star in Aries was 45 or 46
, or, taking a mean quantity, 45

30&quot;
;
and therefore the comet was in tf 2 48&quot;. From the scheme of

the observations of M. Auzout, constructed by M. Petit, Hevelius collected

the latitude of the comet 8 D 54 . But the engraver did not rightly trace

the curvature of the comet s way towards the end of the motion
;
and

Hevdius, in the scheme of M. Auzoiifs observations which he constructed

himself, corrected this irregular curvature, and so made the latitude of the

comet 8 55 30&quot;. And, by farther correcting this irregularity, the lati

tude may become 8 56
,
or 8 57 .

This comet was also seen March 9, and at that time its place must have

been in 8 18 . with 9 3f north lat. nearly.

This comet appeared three months together, in which space of time it

travelled over almost six signs, and in one of the days thereof described

almost 20 deg. Its course did very much deviate from a great circle, bend

ing towatds the north, and its motion towards the end from retrograde be

came direct
; and, notwithstanding its course was so uncommon, yet by the

table it appears that the theory, from beginning to end, agrees with the

observations no less accurately than the theories of the planets usually do

with the observations of them : but we are to subduct about 2 when the

comet was swiftest, which we may effect by taking off 12&quot; from the angle

between the ascending node and the perihelion, or by making that angle
49 3 27 18&quot;. The annual parallax of both these comets (this and the

preceding) was very conspicuous, and by its quantity demonstrates the an

nual motion of the earth in the orbis magnus.
This theory is likewise confirmed by the motion of that comet, which

in the year 1683 appeared retrograde, in an orbit whose plane contained

almost a right angle with the plane of the ecliptic, and whose ascending
node (by the computation of Dr. Halley) was in ng 23 23

;
the inclina

tion of its orbit to the ecliptic 83 11
;

its perihelion in. n 25 29 30&quot;

its perihelion distance from the sun 56020 of such parts as the radius of

the orbis maguiis contains 100000
;
and the time of its perihelion July

2 1

. 3 h
. 50 . And the places thereof, computed by Dr. Halley in this orbit,

are compared with the places of the same observed by Mr. Flamsted. iD

the following table :
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This theory is yet farther confirmed by the motion of that retrograde

comet which appeared in the year 1682. The ascending node of this (by

Dr. Halleifs computation) was in & 21 16 30&quot;
;
the inclination of its

orbit to the plane of the ecliptic 17 56 00&quot;
;

its perihelion in z, 2 52

50
;

its perihelion distance from the sun 5S32S parts, of which the radius

of the orbift matrnus contains 100000
;

the equal time of the comet s

being in its perihelion Sept. 4 1

. 7h
. 39 . And its places, collected from

Mr. Flamsted s observations, are compared with its places computed from

our theory in the following table :

This theory is also confirmed by the retrograde motion of the comet that

appeared in the year 1723. The ascending node of this comet (according

to the computation of Mr. Bradley, Savilian Professor of Astronomy at

Oxford) was in T 14 16 . The inclination of the orbit to the plane of

the ecliptic 49 59 . Its perihelion was in 8 12 15 20&quot;. Its perihelion

distance from the sim 998651 parts, of which the radius of the orbis mag*
nits contains 1000000, and the equal time of its perihelion September 16 1
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16h
. 10 . The places of this comet computed in this orbit by Mr. Bradley,

and compared with the places observed by himself, his uncle Mr. Pound,

and Dr. Halley, may be seen in the following table.

From these examples it is abundantly evident that the motions of com

ets are no less accurately represented by our theory than the motions of the

planets commonly are by the theories of them
; and, therefore, by means of

this theory, we may enumerate the orbits of comets, and so discover the

periodic time of a comet s revolution in any orbit
; whence, at last, we

shall have the transverse diameters of their elliptic orbits and their aphe
lion distances.

That retrograde comet which appeared in the year 1607 described an

orbit whose ascending; node (according to Dr. Halley s computation) was in

b 20 2V
;

arid the inclination of the plane of the orbit to the plane of

the ecliptic 17 2
;, whose perihelion was in ox 2 16

;
and its perihelion

distance from the sun 58680 of such parts as the radius of the orbis mag--
nns contains 100000; and the comet was in its perihelion October 16 (l

. 3&quot;.

50 : which orbit agrees very nearly with the orbit of the comet which WHS

seen in 1682. If these were not two cliiferent comets, but one and the

same, that comet will finish one revolution in the space of 75 years ;
and

the greater axis of its orbit will be to the greater axis of the nrbis magims
as v/

3 75 X 75 to 1, or as 1778 to 100, nearly. And the aphelion dis

tance of this comet from the sun will be to the mean distance of the earth

from the sun as about 35 to 1
;
from which data it will be no hard matter

to determine the elliptic orbit of this comet. But these things are to be

supposed on condition, that, after the space of 75 years, the same comet

shall return again in the same orbit. The other comets seem to ascend to

greater heights, and to require a longer time to perform their revolutions.

But. because of the great number of comets, of the great distance of their
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aphelions from the sun, and of the slowness of their motions in the aphe

lions, they will, by their mutual gravitations, disturb each other
;
so that

their eccentricities arid the times of their revolutions will be sometimes a

little increased, and sometimes diminished. Therefore we are not to ex

pect that the same comet will return exactly in the same orbit, and in the

same periodic times : it will be sufficient if we find the changes no greater

than may arise from the causes just spoken of.

And hense a reason may be assigned why comets are not comprehend-ed

within the limits of a zodiac, as the planets are; but, being confined to no

bounds, are with various motions dispersed all over the heavens; namely,

to this purpose, that in their aphelions, where their motions are exceedingly

slow, receding to greater distances one from another, they may suffer less

disturbance from their mutual gravitations: and hence it is that the comets

which descend the lowest, and therefore move the slowest in their aphelions,

ought also to ascend the highest.

The comet which appeared in the year 1GSO was in its perihelion less

distant from the sun than by a sixth part of the sun s diameter; and be

cause of its extreme velocity in that proximity to the sun, and some density

of the sun s atmosphere, it must have suffered some resistance and retarda

tion
;
and therefore, being attracted something nearer to the sun in evry

revolution, will at last fall down upon the body of the sun. Nay. in its

aphelion, where it moves the slowest, it may sometimes happen to be yet

farther retarded by the attractions of other comets, and in consequence of

this retardation descend to the sun. So fixed stars, that have been gradu

ally wasted by the light and vapours emitted from them for a long time,

may be recruited by comets that fall upon them
;
and from tlrs fresh sup

ply of new fuel those old stars, acquiring new splendor, may pass for new

stars. Of this kind are such fixed stars as appear on a sudden, and shine

with a wonderful brightness at first, and afterwards vanish by little and

little. Such was that star which appeared in Cassiopeia s chair
;
which

Cornelius Gemma did not see upon the 8th of November, 1572, though

he was observing that part of the heavens upon that very night, and the

sky was perfectly serene; but the next night (November 9) he saw it

shining much brighter than any of the fixed stars, and scarcely inferior to

Venus in splendor. Tycho Brake saw it upon the llth of the same month,

when it shone with the greatest lustre; and from that time he observed it

to decay by little and little
;
and in 16 months time it entirely disap

peared. In the month of November, when it first appeared, its light was

equal to that of Venus. In the month of December its light was a littie

diminished, and was now become equal to that of Jupiter. In January

1573 it was less than Jupiter, and greater than Siriits ; and about the

end of February and the beginning of March became equal to that star.

In the months of April and May it was equal to a star of the second mag-
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uitude; in June, July, and August, to a star of the third magnitude; in

September, October, and November, to those of the fourth magnitude; in

December and January 1574 to those of the fifth
;
in February to those

of the sixth magnitude; and in March it entirely vanished. Its colour at

the beginning was clear, bright, and inclining to white; afterwards il

turned a little yellow; and in March 1573 it became ruddy, like Mars or

Alclebaran : in May it turned to a kind of dusky whiteness, like that we

observe in Saturn ; and that colour it retained ever after, but growing al

ways more and more obscure. Such also was the star in the right foot oi

Serpentarius, which Kepler s scholars first observed September 30, O.S.

1604, with a light exceeding that of Jupiter, though the night before it

was not to be seen; and from that time it decreased by little and little,

and in 15 or 16 months entirely disappeared. Such a new star appearing
with an unusual splendor is said to have moved Hipparchus to observe,

and make a catalogue of, the fixed stars. As to those fixed stars that ap

pear and disappear by turns, and increase slowly and by degrees, and

scarcely ever exceed the stars of the third magnitude, they seem to be of

another kind, which revolve about their axes, and, having a light and a

dark side, shew those two different sides by turns. The vapours which

arise from the sun, the fixed stars, and the tails of the comets, may meet

at last with, and fall into, the atmospheres of the planets by their gravity,

and there be condensed and turned into water and humid spirits; and from

thence, by a slow heat, pass gradually into the form of salts, and sulphurs,

and tinctures, and mud, and clay, and sand, and stones, and coral, and other

terrestrial substances.

GENERAL SCHOLIUM.

The hypothesis of vortices is pressed with many difficulties. That every

planet by a radius drawn to the sun may describe areas proportional to the

times of description, the periodic times of the several parts of the vortices

should observe the duplicate proportion of their distances from the sun
;

but that the periodic times of the planets may obtain the sesquiplicate pro

portion of their distances from the sun
;
the periodic times of the parts of

the vortex ought to be in the sesquiplicate proportion of their distances.

That the smaller vortices may maintain their lesser revolutions about

Saturn, Jupiter, and other planets, and swim quietly and undisturbed in

the greater vortex of the sun, the periodic times of the parts of the sun s

vortex should be equal ;
but the rotation of the sun and planets about their

axes, which ought to correspond with the motions of their vortices, recede

far from all these proportions. The motions of the comets are exceedingly

regular, are governed by the same laws with the motions of the planets,

and can by no means be accounted for by the hypothesis of vortices ; for

comets are carried with very eccentric motions through all parts of the
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heavens indifferently, with a freedom that is incompatible with the notion

of a vortex.

Bodies projected in our air suffer no resistance but from the air. With
draw the air, as is done in Mr. Boyle s vacuum, and the resistance ceases

;

for in this void a bit of tine down and a piece of solid gold descend with

equal velocity. Ajid the parity of reason must take place in the celestial

spaces above the earth s atmosphere; in which spaces, where there is no

air to resist their motions, all bodies will move with the greatest freedom;
and the planets and comets will constantly pursue their revolutions in or

bits given in kind and position, according to the laws above explained ;
but

though these bodies may, indeed, persevere in their orbits by the mere laws

of gravity, yet they could by no means have at first derived the regular

position of the orbits themselves from those laws.

The six primary planets are revolved about the sun in circles concentric

with the sun, and with motions directed towards the same parts, and al

most in the same plane. Ten moons are revolved about the earth, Jupiter
and Saturn, in circles concentric with them, wi h the same direction of

motion, and nearly in the planes of the orbits of those planets ;
but it is

not to be conceived that mere mechanical causes could give birth to so

many regular motions, since the comets range over all parts of the heavens

in very eccentric orbits
;
for by that kind of motion they pass easily through

the orbs of the planets, and with great rapidity ;
and in their aphelions,

where they move the slowest, and are detained the longest, they recede to

the greatest distances from each other, and thence suffer the least disturb

ance from their mutual attractions. This most beautiful system of the sun,

planets, and comets, could only proceed from the counsel and dominion of an

intelligent and powerful Being. And if the fixed stars are the centres of oth

er like systems, these, being formed by the like wise counsel, must be all sub

ject to the dominion of One
; especially since the light of the fixed stars is

of the same nature with the light of the sun, and from every system light

passes into all the other systems : and lest the systems of the fixed stars

should, by their gravity, fall on each other mutually, he hath placed those

systems at immense distances one from another.

This Being governs all things, not as the soul of the world, but as Lord

over all
;
and on account of his dominion he is wont to be called Lord God

-rra TOKpaTup, or Universal Rider ; for God is a relative word, and has a

respect to servants
;
and Deity is the dominion of God not over his own

body, as those imagine who fancy God to be the soul of the world, but over

servants. The Supreme God is a Being eternal, infinite, absolutely per

fect
;
but a being, however perfect, without dominion, cannot be said to be

Lord God
;
for we say, my God, your God, the God of Israel, the God of

Gods, and Lord of Lords
;
but we do not say, my Eternal, your Eternal.

the Eternal of Israd
}
the Eternal of Gods; we do not say, my Infinite, o?
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my Perfect : these are titles which have no respect to servants. The word

God* usually signifies Lord ; but every lord is not a God. It is the do

minion of a spiritual being which constitutes a God: a true, supreme, or

imaginary dominion makes a true, supreme, or imaginary God And from

his true dominion it follows that the true God is a living, intelligent, and

powerful Being ; and, from his other perfections, that he is supreme, or

most perfect. He is eternal and infinite, omnipotent and omniscient
;

that

is, his duration reaches from eternity to eternity; his presence from infinity

to infinity; he governs all things, and knows all things that are or can be

done. He is not eternity or infinity, but eternal and infinite; he is not

duration or space, but he endures and is present. He endures for ever, and

is every where present ;
and by existing always and every where, he consti

tutes duration and space. Since every particle of space is always, and

every indivisible moment of duration is every where, certainly the Maker
and Lord of all things cannot be never and no where. Every soul that

has perception is, though in different times and in different organs of sense

and motion, still the same indivisible person. There are given successive

parts in duration, co-existent parts in space, but neither the one nor the

other in the person of a man, or his thinking principle ;
and much less

can they be found in the thinking substance of God. Every man, so far

as he is a thing that has perception, is one and the same man during his

whole life, in all and each of his organs of sense. God is the same God,

always and every where. He is omnipresent not virtually only, but also

substantially ; for virtue cannot subsist without substance. In himf are

all things contained and moved; yet neither affects the other: God suffers

nothing from the motion of bodies
;
bodies find no resistance from the om

nipresence of God. It is allowed by all that the Supreme God exists

necessarily ;
and by the same necessity he exists always and every where.

Whence also he is all similar, all eye, all ear, all brain, all arm, all power
to perceive, to understand, and to act

;
but in a manner not at all human,

in a manner not at all corporeal, in a manner utterly unknown to us. As
a blind mail has no idea of colours, so have we no idea of the manner by

* Dr. Pocock derives the Latin word Deus from the Arabic du (in the oblique case
tit).

which signifies Lord. And in this sense princes are called gods, Psal. Ixxxii. ver. 6; and

John x. ver. 35. And Moses is called a god to his brother Aaron, and a god to Pharaoh,

(Exod. iv. ver. 16 ; and vii. ver. 1). And in the same sense the souls of dead princes were

formerly, by the Heathens, culled gods, but falsely, because of their want of dominion.

t This was the opinion of the Ancients. So Pythagoras, in Cicer. de Nat. Deor. lib. i

Thafes, Anaxagoras, Virgil, Georg. lib. iv. ver. 220; and ^Eneid, lib. vi. ver. 721. Philo

Allegor, at the beginning of lib. i. Aratu$, in his Phaenom. at the beginning. So also the

sacred writers ; as St. Paul, Acts, xvii. ver 27, 28. St. John s Gosp. chap. xiv. ver. 2. Mo
tet, in Dent. iv. ver. 39; and x ver. 14. David, Psal. cxxxix. ver. 7, 8, 9. Solomon, 1

Kings, viii. ver. 27. Job, xxii. ver. 12, 13, 14. Jeremiah, xxiii. ver. 23, 24. The Idolaters

supposed the sun, moon, and stars, the souls of men, and other parts of the world, to be

parts of the Supreme God, and therefore to be worshipped ; but erroneously.
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which the all-wise God perceives and understands all things. He is ut

terly void of all body and bodily figure, and can therefore neither l^e seen,

nor heard, nor touched
;
nor ought he to be worshipped under the repre

sentation of any corporeal thing. We have ideas of his attributes, but

what the real substance of any thing is we know not. In bodies, we see

only their figures and colours, we hear only the sounds, we touch only their

outward surfaces, we smell only the smells, and taste the savours
;
but their

inward substances are not to be known either by our senses, or by any

reflex act of our minds : much less, then, have we any idea of the sub

stance of God. We know him only by his most wise and excellent con

trivances of things, and final causes
;
we admire him for his perfections ;

but we reverence and adore him on account of his dominion : for we adore

him as his servants
;
and a god without dominion, providence, and final

causes, is nothing else but Fate and Nature. Blind metaphysical neces

sity, which is certainly the same always and every where, could produce

no variety of things. All that diversity of natural things which we find

suited to different times and places could arise from nothing but the ideas

and will of a Being necessarily existing. But, by way of allegory, God

is said to see, to speak, to laugh, to love, to hate, to desire, to give, to re

ceive, to rejoice, to be angry, to fight, to frame, to work, to build
;
for all

our notions of God are taken from the ways of mankind by a certain

similitude, which, though not perfect, has some likeness, however. And
thus much concerning God

;
to discourse of whom from the appearances

of things, does certainly belong to Natural Philosophy.
Hitherto we have explained the phenomena of the heavens and of our

sea by the power of gravity, but have not yet assigned the cause of this

power. This is certain, that it must proceed from a cause that penetrates

to the very centres of the sun and planets, without suffering the least

diminution of its force; that operates not according to the quantity of

the surfaces of the particles upon which it acts (as mechanical causes use

to do), but according to the quantity of the solid matter which they con

tain,, and propagates its virtue on all sides to immense distances, decreasing

always in the duplicate proportion of the distances. Gravitation towards

the sun is made up out of the gravitations towards the several particles

of which the body of the sun is composed ;
and in receding from the sun

decreases accurately in the duplicate proportion of the distances MS far as

the orb of Saturn, as evidently appears from the quiescence of the aphe
lions of the planets ; nay, and even to the remotest aphelions of the comets,

if those aphelions are also quiescent. But hitherto I have not been able

to discover the cause of those properties of gravity from phenomena, and

I frame no hypotheses ;
for whatever is not deduced from the phenomena

is to be called an hypothesis ;
and hypotheses, whether metaphysical 01

physical, whether of occult qualities or mechanical, have no place in ex
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perimental philosophy. In this philosophy particular propositions are

inferred from the phenomena, and afterwards rendered general by induc

tion. Thus it was that the impenetrability, the mobility, and the impul
sive force of bodies, and the laws of motion and of gravitation, were

discovered. And to us it is enough that gravity does really exist, and act

according to the laws which we have explained, and abundantly serves to

account for all the motions of the celestial bodies, and of our sea.

And now we might add something concerning a certain most subtle

Spirit which pervades and lies hid in all gross bodies
; by the force and

action of which Spirit the particles of bodies mutually attract one another

at near distances, and cohere, if contiguous ;
and electric bodies operate to

greater distances, as well repelling as attracting the neighbouring corpus

cles
;
and light is emitted, reflected, refracted, inflected, and heats bodies

;

and all sensation is excited, and the members of animal bodies move at the

command of the will, namely, by the vibrations of this Spirit, mutually

propagated along the solid filaments of the nerves, from the outward or

gans of sense to the brain, and from the brain into the muscles. But these

are things that cannot be explained in few words, nor are we furnished

with that sufficiency of experiments which is required to an accurate deter

mination and demonstration of the laws by which this electric and elastic

Spirit operates.

END OP THE MATHEMATICAL P&LNCIPLE8.
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SYSTEM OF THE WORLD

It. was the ancient opinion of not a few, in the earliest ages of philoso

phy, that the fixed stars stood immoveable in the highest parts of the world
;

that, under the fixed stars the planets were carried about the sun
;
that the

earth, us one of the planets, described an annual course about the sun, while

by a diurnal motion it was in the mean time revolved about its own axis;

and that the sun, as the common fire which served to warm the whole, was

fixed in the centre of the universe.

This was the philosophy taught of old by Philolans, Aristarchus of

Santos, Plato in his riper years, and the whole sect of the Pythagoreans ;

and this was the judgment of Anaximander, more ancient than any of

them
;
and of that wise Iring of the Rovnans, Numa Pompilins, who, as

a symbol of the figure of the world with the sun in the centre, erected a

temple in honour of Vesta, of .% i^und form, and ordained perpetual fire to

be kept in the middle of it.

The Egyptians were early observers of the heavens
;
and from them.,

probably, this philosophy was spread abroad among other nations
;
for from

them it was, and the nations about them, that the Greeks, a people of

themselves more addicted to the study of philology than of nature, derived

their first, as well as soundest, notions of philosophy ;
and in the vestal

ceremonies we may yet trace the ancient spirit of the Egyptians ; for it

was their way to deliver their mysteries, that is, their philosophy of things

above the vulgar way of thinking, under the veil of religious rites and

hieroglyphic symbols.

It is not to be denied but that Anaxa&oras, Democritus, and others,

did now and then start up, who would have it that the earth possessed the

centre of the world, and that the stars of all sorts were revolved towards

the west about the earth quiescent in tk^ centre, some at a swifter, others

at a slower rate.

However, it was agreed on both sides that the motions of the celestial

bodies were performed in spaces altogether free and void of resistance. The
whim of solid orbs was of a later date, introduced by Eudoxus, Calippus,
and Aristotle; when the ancient philosophy began to decline, and to give

nlace to the new prevailing fictions of the Greeks.

But. above all things, the phenomena of comets can by no means consist



612 THE SYSTEM OF THE WORLD.

with the notion of solid orbs. The Chaldeans, the most learned astrono

mers of their time, looked upon the comets (which of ancient times before

had been numbered among the celestial bodies) as a particular sort of plan

ets, which, describing very eccentric orbits, presented themselves to our view

only by turns, viz., once in a revolution, when they descended into the

lower parts of their orbits.

And as it was the unavoidable consequence of the hypothesis of solid

orbs, while it prevailed, that the comets should be thrust down below the

moon, so no sooner had the late observations of astronomers restored the

comets to their ancient places in the higher heavens, but these celestial spaces

were at once cleared of the incurnbrance of solid orbs, which by these ob

servations were broke into pieces, and discarded for ever.

Whence it was that the planets came to be retained within any certain

bounds in these free spaces, and to be drawn off from the rectilinear courses,

which, left to themselves, they should have pursued, into regular revolu

tions in curvilinear orbits, are questions which we do not know how the

ancients explained ;
and probably it was to give some sort of satisfaction

to this difficulty that solid orbs were introduced.

The later philosophers pretend to account for it either by the action of

certain vortices, as Kepler and Des Cartes ; or by some other principle of

impulse or attraction, as Borelli, Honke, and others of our nation
; for,

from the laws of motion, it is most certain that these effects must proceed

from the action of some force or other.

But our purpose is only to trace out the quantity and properties of this

force from the phenomena (p. 218), and to apply what we discover in some

simple cases as principles, by which, in a mathematical way, we may esti

mate the effects thereof in more involved cases : for it would be endless and

impossible to bring every particular to direct and immediate observation.

We said, in a mathematical way, to avoid all questions about the na

ture or quality of this force, which we would not be understood to deter

mine by any hypothesis; and therefore call it by the general name of a

centripetal force, as it is a force which is directed towards some centre
;

and as it regards more particularly a body in that centre, we call it circum

solar, circum-terrestrial, circum-jovial ;
and in like manner in respect of

other central bodies.

That by means of centripetal forces the planets may be retained in cer

tain orbits, we may easily understand, if we consider the motions of pro

jectiles (p. 75, 76, 77) ;
for a stone projected is by the pressure of its own

weight forced out of the rectilinear path, which by the projection alone it

should have pursued, and made to describe a curve line in the air
;
and

through that crooked way is at last brought down to the ground ;
and the

greater the velocity is with which it is projected, the farther it goes before

it falls to the earth. We may therefore suppose the velocity to be so in
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creased, that it would describe an arc of 1, 2, 5, 10, 100. 1000 miles before

it arrived at the earth, till at last, exceeding the limits of the earth, it

should pass quite by without touching it.

Let AFB represent the surface of the earth, C its centre, VD, VE, VF,
the curve lines which a body would describe, if projected in an horizontal

direction from the top of an high mountain successively &quot;with more and

more velocity (p. 400) ; and, because the celestial motions are scarcely re

tarded by the little or no resistance of the spaces in which they are per

formed, to keep up the parity of cases, let us suppose either that there is

no air about the earth, or at least that it is endowed with little or no power
of resisting ;

and for the same reason tl a*: the body projected with a less

velocity describes the lesser arc VD, and with a greater velocity the greater

arc VE. and, augmenting the velocity, it goes farther and farther to F and

G, if the velocity was still more and more augmented, it would reach at

last quite beyond the circumference of the earth, and return to the moun
tain from which it was projected.

And since the areas which by this motion it describes by a radius drawn

to the centre of the earth are (by Prop. 1, Book 1, Princip. Math.} propor
tional to the times in which they are described, its velocity, when it returns

*o the mountain, will be no less than it was at first; and, retaining the

*ame velocity, it will describe the same curve over and over, by the same law
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But if we now imagine bodies to be projected in the directions of lines

parallel to the horizon from greater heights, as of 5, 10, 100, 1000, or more

miles, or rather as many semi-diameters of the earth, those bodies, accord

ing to their different velocity, and the different force of gravity in different

heights, will describe arcs either concentric with the earth, or variously

eccentric, and go on revolving through the heavens in those trajectories,

just as the planets do in their orbs.

As when a stone is projected obliquely, that is, any way but in the per

pendicular direction, the perpetual deflection thereof towards the earth

from the right line in which it was projected is a proof of its gravitation

to the earth, no less certain than its direct descent when only suffered to

fall freely from rest
;
so the deviation of bodies moving in free spaces from

rectilinear paths, and perpetual deflection therefrom towards any place, is

a sure indication of the existence of some force which from all quarters

impels those bodies towards that place.

And as, from the supposed existence of gravity, it necessarily follows

that all bodies about the earth must press downwards, and therefore must

either descend directly to the earth, if they are let fall from rest, or at

least perpetually deviate from right lines towards the earth, if they arc

projected obliquely ;
so from the supposed existence of a force directed to

any centre, it will follow, by the like necessity, that all bodies upon which

this force acts mast either descend directly to that centre, or at least devi

ate perpetually towards it from right lines, if otherwise they should have

moved obliquely in these right lines.

And how from the motions given we may infer the forces, or from the

forces given we may determine the motions, is shewn in the two first Books

of our Principles of Philosophy.
If the earth is supposed to stand still, and the fixed stars to be revolved

in free spaces in the space of 24 hours, it is certain the forces by which

the fixed stars are retained in their orbs are not directed to the earth, but

to the centres of the several orbs, that is, of the several parallel circles,

which the fixed stars, declining to one side and the other from the equator,

describe daily ;
also that by radii drawn to the centres of those orbs tht

fixed stars describe areas exactly proportional to the times of description.

Then, because the periodic times are equal (by Cor. Ill, Prop. IV, Book 1),

it follows that the centripetal forces are as the radii of the several orbs,

and that they will perpetually revolve in the same orbs. And the like

consequences may be drawn from the supposed diurnal motion of the

planets.

That forces should be directed to no body on which they physically de

pend, but to innumerable imaginary points in the axis of the earth, is an

hypothesis too incongruous. It is more incongruous still that those forces

should increase exactly in proportion of the distances from this axis ; for
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this is an indi ation of an increase to immensity, or rather to infinity ;

whereas the forces of natural things commonly decrease in receding from

the fountain from which they flow. But, what is yet more absurd, neither

are the areas described by the same star proportional to the times, nor are

its revolutions performed in the same orb
;
for as the star recedes from the

neighbouring pole, both areas and orb increase; and from the increase of

the urea it is demonstrated that the forces are not directed to the axis of

the earth. And this difficulty (Cor. 1, Prop. II) arises from the twofold

motion that is observed in the fixed stars, one diurnal round the axis of

the earth, the other exceedingly slow round the axis of the ecliptic. And

the explication thereof requires a composition of forces so perplexed and

so variable, that it is hardly to be reconciled with any physical theory.

That there are centripetal forces actually directed to the bodies of the

sun, of the earth, and other planets, I thus infer.

The moon revolves about our earth, and by radii drawn to its centre

(p. 390) describes areas nearly proportional to the times in which they are

described, as is evident from its velocity compared with its apparent diame

ter
;
for its motion is slower when its diameter is less (and therefore its

distance greater), and its motion is swifter when its diameter is greater.

The revolutions of the satellites of Jupiter about that planet are more

regular (p. 386) : for they describe circles concentric with Jupiter by equa
ble motions, as exactly as our senses can distinguish.

And so the satellites of Saturn are revolved about this planet with mo
tions nearly (p. 387) circular and equable, scarcely disturbed by any eccen

tricity hitherto observed.

That Venus and Mercury are revolved about the sun, is demonstrable

from their moon-like appearances (p. 388) . when they shine with a full

face, they are in those parts of their orbs which in respect of the earth lie

beyond the sun
;
when they appear half full, they are in those parts whicli

Ire over against the sun
;
when horned, in those parts which lie between

the earth and the sun
;
and sometimes they pass over the sun s disk, when

directly interposed between the eirth and the sun.

And Venus, with a motion almost uniform, describes an orb nearly cir

cular and concentric with the sun.

But Mercury, with a more eccentric motion, makes remarkable ap

proaches to the sun, and goes off again by turns
;
but it is always swifter

as it is near to the sun, and therefore by a radius drawn to the sun still

describes areas proportional to the times.

Lastly, that the earth describes about the sun, or the sun about the

earth, by a radius from the one to the other, areas exactly proportional to

the times, is demonstrable from the apparent diameter of the sun com

pared with its apparent motion.

These are astronomical experiments ;
from which it follows, by Prop. I,



516 THE SYSTEM OF THE WORLD.

11, III, in the first Book of our Pn /triples, and their Corollaries (p.

213, 214). that there are centripetal forces actually directed (either accu

rately or without considerable error) to the centres of the earth, of Jupi
ter, of S.iturn, and of the sun. In Mercury, Venus, Mars, and the lesser

planets, wheie experiments are wanting, the arguments from analogy must
be allowed in their place.

That those forces (p. 212, 213, 214) decrease in the duplicate propor
tion of the distances from the centre of every planet, appears by Cor. VI,

Prop. IV, Book 1
;
for the periodic times of the satellites of Jupiter are

one to another (p. 386, 387) in the sesquiplicate proportion of their dis

tances from the centre of this planet.

This proportion has been long ago observed in those satellites
;
and Mr.

Flamsted, who had often measured their distances from Jupiter by the

micrometer, and by the eclipses of the satellites, wrote to me, that it holds

to all the accuracy that possibly can be discerned by our senses. And he

sent me the dimensions of their orbits taken by the micrometer, a*nd re

duced to the mean distance of Jupiter from the earth, or from the sun,

together with the times of their revolutions, as follows :

Wherce the sesquiplicate proportion may be easily seen. For example ;

the 16 (f 18h
. 05 13&quot; is to the time l

d
. 18h

. 28 36&quot; as 493i&quot; x V 493i&quot;

to 108 X V 108&quot;, neglecting those small fractions which, in observing,

cannot ./e certainly determined.

Befo e the invention of the micrometer, the same distances vrere deter

mined 7 \ semi-diameters of Jupiter thus :

After the invention of the micrometer :
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And the periodic times of those satellites, by the observations of Mr.

Flamsted, are l d
. 18h

. 28 36&quot;
|

3(l
. 13&quot;. 17 54&quot;

|
7(1

. 3h
. 59 36&quot;

|

16&quot;.

IS 11

. 5 13&quot;. as above.

And the distances thence computed are 5,578
|
8,878 | 14,168 | 24,968,

accurately agreeing with the distances by observation.

Cassini assures us (p. 388, 389) that the same proportion is observed

in the circum-saturnal planets. But a longer course of observations is

required before we can have a certain and accurate theory of those planets.

In the circum-solar planets, Mercury and Venus, the same proportion

holds with great accuracy, according to the dimensions of their orbs, as

determined by the observations of the best astronomers.

That Mars is revolved about the sun is demonstrated from the phases

which it shews, and the proportion of its apparent diameters (p. 388, 389,

and 390) ;
for from its appearing fall near conjunction with the sun, and

gibbous in its quadratures, it is certain that it surrounds the sun.

And since its diameter appears about five times greater when in opposi

tion to the sun than when in conjunction therewith, and its distance from

the earth is reciprocally as its apparent diameter, that distance will be

about five times less when in opposition to than when in conjunction with

the sun; but in both cases its distance from the sun will be nearly about

the same with the distance which is inferred from its gibbous appearance

in the quadratures. And as it encompasses the sun at almost equal dist n-

ces, but in respect of the earth is very unequally distant, so by radii drawn

to the sun it describes areas nearly uniform
;
but by radii drawn to the

earth, it is sometimes swift, sometimes stationary, and sometimes retrograde.

That Jupiter, in a higher orb than Mars, is likewise revolved about the

sun, with a motion nearly equable, as well in distance as in the areas des

cribed, 1 infer thus.

Mr. Flamsted assured me, by letters, that all the eclipses of the inner

most satellite which hitherto have been well observed do agree with his

theory so nearly, as never to differ therefrom by two minutes of time
;

that in the outmost the error is little greater ;
in the outmost but one,

scarcely three times greater ;
that in the innermost but one the difference

is indeed much greater, yet so as to agree as nearly with his computation?
as the moon does with the common tables

;
and that he computes those

eclipses only from the mean motions corrected by the equation of light dis

covered and introduced by Mr. Rower. Supposing, then, that the theory

differs by a less error than that of 2 from the motion of the outmost sat

ellite as hitherto described, and taking as the periodic time 16 1

. 18h
. 5 13&quot;

to 2 in time, so is the whole circle or 360 to the arc 1
48&quot;,

the error ol

Mr. Flamsted s computation, reduced to the satellite s orbit, will be less

than 1 48&quot;
;
that is, the longitude of the satellite, as seen from tlie centre

of Jupiter;
will be determined with a less error than 1 48&quot;. But when
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the satellite is in the middle of the shadow, that longitude is the same with

the heliocentric longitude of Jupiter ; and, therefore, the hypothesis which

Mr. Flamsted follows, viz., the Copernican, as improved by Kepler, and

fas to the motion of Jupiter) lately corrected by himself, rightly represents

that longitude within a less error than 1 48&quot;
;
but by this longitude, to

gether with the geocentric longitude, which is always easily found, the dis

tance of Jupiter from the sun is determined
;
which must, therefore, be the

very same with that which the hypothesis exhibits. For that greatest error

of I 48&quot; that can happen in the heliocentric longitude is almost insensi

ble, and quite to be neglected, and perhaps may arise from some yet undis

covered eccentricity of the satellite : but since both longitude and distance

are rightly determined, it follows of necessity that Jupiter, by radii drawn

to the sun. describes areas so conditioned as the hypothesis requires, that is.

proportional to the times.

And the same thing may be concluded of Saturn from his satellite, by
the observations of Mr. Huygens and Dr. Halley ; though a longer series

of observations is yet wanting to confirm the thing, and to bring it under

a sufficiently exact computation.
For if Jupiter was viewed from the sun, it would never appear retro

grade nor stationary, as it is seen sometimes from the earth, but always to

go forward with a motion nearly uniform (p. 389). And from the very

great inequality of its apparent geocentric motion, we infer (by Prop. Ill

Cor. IV) that the force by which Jupiter is turned out of a rectilinear course,

and made to revolve in an orb, is not directed to the centre of the earth.

And the same argument holds good in Mars and in Saturn. Another centre

of these forces is therefore to be looked for (by Prop. II and III, and the

Corollaries of the latter), about which the areas described by radii inter

vening may be equable ;
and that this is the sun, we have proved already

in Mars and Saturn nearly, but accurately enough in Jupiter. It may be

alledged that the sun and planets are impelled by some other force equally

and in the direction of parallel lines
;
but by such a force (by Cor. VI of

the Laws of Motion) no change would happen in the situation of the

planets one to another, nor any sensible eifect follow : but our business is

with the causes of sensible effects. Let us, therefore, neglect every such

force as imaginary and precarious, and of no use in the phenomena of the

heavens
;
and the whole remaining force by which Jupiter is impelled will

be directed (by Prop. Ill, Cor. I) to the centre of the sun.

The distances of the planets from the sun come out the same, whether,

with Tycho, we place the earth in the centre of the system, or the sun with

Copernicus : and we have already proved that these distances are true ir.

Jupiter.

Kepler and Bullialdiis have, with great care (p. 388), determined the

listances of the planets from the sun
;
and hence it is that their table.-?
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agree best with the heavens. And in all the planets, in Jupiter and Mars,

in Saturn and the earth, as well as in Venus and Mercury, the cubes of their

distances are as the squares of their periodic times
;
and therefore (by Cor.

VI, Prop. IV) the centripetal circum-solar force throughout all the plane

tary regions decreases in the duplicate proportion of the distances from the

sun. In examining this proportion, we are to use the mean distances, or

the transverse semi-axes of the orbits (by Prop. XV). arid to neglect those

little fractions, which, in denning the orbits, may have arisen from the in

sensible errors of observation, or may be ascribed to other causes which we

shall afterwards explain. And thus we shall always find the said propor
tion to hold exactly; for the distances of Saturn, Jupiter, Mars, the Earth,

Venus, and Mercury, from the sun, drawn from the observations of as

tronomers, are, according to the computation of Kepler, as the numbers

95 LOGO, 519650, 152350, 100000, 72400, 3S806; by the computation of

/iHllialdus, as the numbers 95419S, 522520, 152350, 100000, 72393,
38585

;
and from the periodic times they come out 953806, 520116, 152399,

100000, 72333, 38710. Their distances, according to Kepler and

Ktillwldus, scarcely differ by any sensible quantity, and where they
differ most the distances drawn from the periodic times, fall in between them.

That the circum-terrestrial force likewise decreases in the duplicate pro

portion of the distances, I infer thus.

The mean distance of the moon from the centre of the earth, is, in semi-

diameters of the earth, according to Ptolemy, Kepler in his Ephemerides,
Bidliuldus, Hevelius, and Ricciolns, 59

; according to Flamsted, 59| ;

according to Tycho, 56 1
;

to Vendelin, 60
;
to Copernicus, 60 1

: to Kir-

cher, 62i
(p . 391, 392, 393).

Cut Tycho, and all that follow his tables of refraction, making the

refractions of the sun and moon (altogether against the nature of light)

to exceed those of the fixed stars, and that by about four or five minutes

in the horizon, did thereby augment the horizontal parallax of the moon

by about the like number of minutes
;
that is, by about the 12th or 15th

part of the whole parallax. Correct this error, and the distance will be

come 60 or 61 semi-diameters of the earth, nearly agreeing with what

others have determined.

Let us, then, assume the mean distance of the moon 60 semi-diameters

of the earth, and its periodic time in respect of the fixed stars 27d
. 7h

. 43
,

as astronomers have determined it. And (by Cor. VI, Prop. IV) a body
revolved in our air, near the surface of the earth supposed at rest, by
means of a centripetal force which should be to the same force at the dis

tance of the moon in the reciprocal duplicate proportion of the distances

from the centre of the earth, that is, as 3600 to 1, would (secluding the

resistance of the air) complete a revolution in l
h

. 24 27&quot;.

Suppose the circumference of the earth to be 123249600 Paris feet
;
ar
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has been determined by the late mensuration of the French (vide p. 406) ;

then the sume body, deprived of its circular motion, and falling by the

impulse of the same centripetal force as before, would, in one second of

time, describe 15-^ Paris feet.

This we infer by a calculus formed upon Prop. XXXYI, and it agrees

with what we observe in all bodies about the earth. For by the experi

ments of pendulums, and a computation raised thereon, Mr. Hnygens has

demonstrated that bodies falling by all that centripetal force with which

(of whatever nature it is) they are impelled near the surface of the earth,

do, in one second of time, describe 15 T^ Paris feet.

But if the earth is supposed to move, the earth and moon together (by

Cor. IV of the Laws of Motion, and Prop. LVID will be revolved about

their common centre of gravity. Ana the moon (by Prop. LX) will in

the same periodic time, 27 1

. 7 h
. 43

,
with the same circum terrestrial force

diminished in the duplicate proportion of the distance, describe an orbit

whose semi-diameter is to the semi-diameter of the former orbit, that is, to

60 semi-diameters of the earth, as the sum of both the bodies of the earth

and moon to the first of two mean proportionals between this sum and the

body of the earth
;
that is, if we suppose the moon (on account of its

mean apparent diameter 31^ )
to be about ^ of the earth, as 43 to

^ 42 a-
43|2, or as about 128 to 127. And therefore the semi-diameter

of the orbit, that is, the distance between the centres of the moon and

earth, will in this case be 60^ semi-diameters of the earth, almost the same

with that assigned by Copernicus, which the Tychonic observations by no

means disprove ; and, therefore, the duplicate proportion of the decrement

of the force holds good in this distance. I have neglected the increment

of the orbit which arises from the action of the sun as inconsiderable
;

but if that is subducted, the true distance will remain about 60|- semi-

diameters of the earth.

But farther (p. 390) ;
this proportion of the decrement of the forces is

confirmed from the eccentricity of the planets, and the very slow motion

of their apses ;
for (by the Corollaries of Prop. XLV) in no other pro-

portion could the circum-solar planets once in every revolution descend to

their least and once ascend to their greatest distance from the sun, and the

places of those distances remain immoveable. A small error from the du

plicate proportion would produce a motion of the apses considerable in

every revolution, but in many enormous.

But now, after innumerable revolutions, hardly any such motion ha&

been perceived in the orbs of the circum-solar planets. Some astronomers

affirm that there is no such motion; others reckon it no greater than what

may easily arise from the causes hereafter to be assigned, and is of no mo

ment in the present question.



THE SYSTEM 01 THE WORLD. 521

We may even neglect the motion of the moon s apsis (p. 390, 391), which

is far greater than in the circum-solar planets, amounting in every revolu

tion to three degrees ;
and from this motion it is demonstrable that the

circum-terrestrial force decreases in no less than the duplicate, but far less

than the triplicate proportion of the distance
;
for if the duplicate propor

tion was gradually changed into the triplicate, the motion of the apsis

would thereby increase to infinity; and, therefore, by a very small muta

tion, would exceed the motion of the moon s apsis. This slow motion arises

from the action of the circum-solar force, as we shall afterwards explain.

But, secluding this cause, the apsis or apogeon of the moon will be fixed,

and the duplicate proportion of the decrease of the circum-terrestrial force

in different distances from the earth will accurately take place.

Now that this proportion has been established, we may compare the

forces of the several planets among themselves (p. 391).

In the mean distance of Jupiter from the earth, the greatest elongation

of the outmost satellite from Jupiter s centre (by the observations of Mr.

Flamsted] is 8 13&quot;
;
and therefore the distance of the satellite from the

centre of Jupiter is to the mean distance of Jupiter from tne centre of the

sun as 124 to 52012, but to the mean distance of Venus from the centre

of the sun as 124 to 7234; and their periodic times are 16 d
. and 224f

d

;

and from hence (according to Cor. II, Prop. IV), dividing the distances by

the squares of the times, we infer that the force by which the satellite is

impelled towards Jupiter is to the force by which Venus is impelled to

wards the sun as 442 to 143
;
and if we diminish the force by which the

satellite is impelled in the duplicate proportion of the distance 124 to

7234, we shall have the circum-jovial force in the distance of Venus from

the sun to the circum-solar force by which Venus is impelled as yW to

143, or as 1 to 1100; wherefore at equal distances the circum-solar force

is 1100 times greater than the circum-jovial.

And, by the like computation, from the periodic time of the satellite ot

Saturn 15 (l

. 22 h
. and its greatest elongation from Saturn, while that planet

is in its mean distance from us, 3
20&quot;,

it follows that the distance of this

satellite from Saturn s centre is to the distance of Venus from the sun as

92| to 7234; and from thence that the absolute circum-solar force is 2360

times greater than the absolute circum-saturnal.

From the regularity of the heliocentric and irregularity of the geocen
tric motions of Venus, of Jupiter, and the other planets, it is evident (by

Cor. IV, Prop. Ill) that the circum-terrestrial force, compared with the cir

cum-solar, is very small.

Ricciolus and Vendelin have severally tried to determine the sun s par
allax from the moon s dichotomies observed by the telescope, and they agree

that it does not exceed half a minute.

Kepler, from Ti/cho s observations and his own, found the parallax of
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Mars insensible, even in opposition to the sun, when that parallax is some

thing greater than the sun s.

Flamsted attempted the same parallax with the micrometer in the peri-

geon position of Mars, but never found it above 25&quot;
;
and thence conclud

ed the sun s parallax at most 10&quot;.

Whence it follows that the distance of the moon from the earth bears

no greater proportion to the distance of the earth from the sun than 29 to

IOUOO : nor to the distance of Venus from the sun than 29 to 7233.

From which distances, together with the periodic times, by the method

above explained, it is easy to infer that the absolute circum-soiar force is

greater than the absolute circum-terrestrial force at least 229400 times.

And though we were only certain, from the observations of Ricciolus

and Vcitdelin, that the sun s parallax was less than half a minute, yet from

this it will follow that the absolute circum-solar force exceeds the absolute

circum-terrestrial force S500 times.

By the like computations I happened to discover an analogy, that is ob

served between the forces and the bodies of the planets ; but, before I ex

plain this analogy, the apparent diameters of the planets in their mean
distances from the earth must be first determined.

Mr. Flamsted (p. 387), by the micrometer, measured the diameter of

Jupiter 40&quot; or
41&quot;;

the diameter of Saturn s ring 50&quot;
;
and the diameter

of the sun about 32 13&quot;
(p. 387).

But the diameter of Saturn is to the diameter of the ring, according to

Mr. Huygens and Dr. Halley, as 4 to 9; according to Gullet-ins, as 4 to

10; and according to Hooke (by a telescope of 60 feet), as 5 to 12. And
from the mean proportion, 5 to 12, the diameter of Saturn s body is in

ferred about 21&quot;.

Such as we have said are the apparent magnitudes; but. because of the

unequal refrano-ibility of light, all lucid points are dilated by the tele

scope, and in the focus of the object-glass possess a circular space whose

breadth is about the 50th part of the aperture of the glass.

It is true, that towards the circumference the light is Su rare as hardly
to move the sense

;
but towards the middle, where it is of greater density,

and is sensible enough, it makes a small lucid circle, whose breadth varies

according to the splendor of the lucid point, but is generally about the 3d,

or 4th, or 5th part of the breadth of the whole.

Let ABD represent the circle of the whole light; PQ the small circle

of the denser and clearer light; C the centre of both; CA, CB, semi-di

ameters of the greater circle containing a right angle at C
;
ACBE the

square comprehended under these semi-diameters
;
AB the diagonal of that

square; EGH an hyperbola with the centre C and asymptotes CA, CB
PG a perpendicular erected from any point P of the line BC, and meeting
the hyperbola in G, and the right lines AB, AE, in K and F : and th
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density of the light in any place P, will, by my computation, be as the

line FG, and therefore at the centre infinite, but near the circumference

very small. And the whole light within the small circle PQ, is to the

without as the area of the quadrilateral figure CAKP to the trian-

gle PKB. And we are to understand the small circle PQ, to te there

terminated, where FG, the density of the light, begins to be less than what

is required to move the sense.

Hence it was, that, at the distance of 191 382 feet, a fire of 3 feet in di

ameter, through a telescope of 3 feet, appeared to Mr. Picart of S&quot; in

breadth, when it should have appeared only of 3&quot; 14 &quot;

;
and hence it is

that the brighter fixed stars appear through the telescope as of 5&quot; or 6&quot; in

diameter, and that with a good full light ;
but with a fainter light they

appear to run out to a greater breadth. Hence, likewise, it was that He-

velius, by diminishing the aperture of the telescope, did cut off a great part
of the light towards the circumference, and brought the disk of the star to

be more distinctly defined, which, though hereby diminished, did yet ap

pear as of 5&quot; or 6&quot; in diameter. But Mr. Hvygetis, only by clouding the

eye-glass with a little smoke, did so effectually extinguish this scattered

light, that the fixed stars appeared as mere points, void of all sensible

breadth. Hence also it was that Mr. Huygens, from the breadth of bodies

interposed to intercept the whole light of the planets, reckoned their diam

eters greater than others hav measured them by the micrometer : for the
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scattered light, which could not be seen before for the stronger light of the

planet, when the planet is hid, appears every way farther spread. Lastly,

from hence it is that the planets appear so small in the disk of the sun,

being lessened by the dilated light. For to Hevelius, Galletius, and Dr.

Halley, Mercury did not seem to exceed 12&quot; or 15&quot;
;
and Venus appeared

to Mr. Crabtrie only 1 3 ;/

;
to Horrox but 1 12&quot;

; though by the men

surations of Hevelius and Hu&enius without the sun s disk, it ought to

have been seen at least 1 24&quot;. Thus the apparent diameter of the moon,

which in 1 684, a few days both before and after the sun s eclipse, was

measured at the observatory of Paris 31
30&quot;,

in the eclipse itself did not

seem to exceed 30 or 30 05&quot;
;
and therefore the diameters of the planets

are to be diminished when without the sun, and to be augmented when

within it, by some seconds. But the errors seem to be less than usual in

the mensurations that are made by the micrometer. So from the diameter

of the shadow, determined by the eclipses of the satellites, Mr. Flamsted

found that the semi-diameter of Jupiter was to the greatest elongation of

the outmost satellite as 1 to 24,903. Wherefore since that elongation is

8 13
,
the diameter of Jupiter will be

39^-&quot; ; and, rejecting the scattered

light, the diameter found by the micrometer 40&quot; or 41&quot; will be reduced to

39|-&quot; 5
and the diameter of Saturn 21&quot; is to be diminished by the like cor

rection, and to be reckoned
20&quot;,

or something less. But (if I am not mis

taken) the diameter of the sun, because of its stronger light, is to be dimin

ished something more, and to be reckoned about 32
,
or 32 6

1

.

That bodies so different in magnitude should come so near to an analogy
with their forces, is not without some mystery (p. 400).

It may be that the remoter planets, for want of heat, have not those me
tallic substances and ponderous minerals with which our earth abounds

;

and that the bodies of Venus and Mercury, as they are more exposed to the

sun s heat, are also harder baked, and more compact.

For, from the experiment of the burning-glass, we see that the heat in

creases with the density of light ;
and this density increases in the recipro

cal duplicate proportion of the distance from the sun
;
from whence the

san s heat in Mercury is proved to be sevenfold its heat in our summer

seasons. But with this heat our water boils
;
and those heavy fluids, quick

silver and the spirit of vitriol, gently evaporate, as I have tried by the

thermometer
;
and therefore there can be no fluids in Mercury but what

are heavy, and able to bear a great heat, and from which substances of great

density may be nourished.

And why not, if God has placed different bodies at different distances

from the sun, so as the denser bodies always possess the nearer places, and

each body enjoys a degree of heat suitable to its condition, and proper for

its nourishment? From this consideration it will best appear that the

weights of all the planets are one to another as their forces.
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But I should be glad the diameters of the planets were more accurately

measured
;
and that may be done, if a lamp, set at a great distance, is made

to shine through a circular hole, and both the hole and the light of the

lamp are so diminished that the spectrum may appear through the telescope

just like the planet, and may be defined by the same measure : then the

diameter of the hole will be to its distance from the objective glass as the

true diameter of the planet to its distance from us. The light of the lamp

may be diminished by the interposition either of pieces of cloth, or of

smoked glass.

Of kin to the analogy we have been describing, there is another observed

between the forces and the bodies attracted (p. 395, 396, 397). Since the

action of the centripetal force upon the planets decreases in the duplicate

proportion of the distance, and the periodic time increases in the sesquipli-

cate thereof, it is evident that the actions of the centripetal force, and

therefore the periodic times, would be equal in equal planets at equal dis

tances from the sun
;
and in equal distances of unequal planets the total

actions of the centripetal force would be as the bodies of the planets ;
for

if the actions were not proportional to the bodies to be moved, they could

not equally retract these bodies from the tangents of their orbs in equal
times : nor could the motions of the satellites of Jupiter be so regular, if it

was not that the circum-solar force was equally exerted upon Jupiter and

all its satellites in proportion of their several weights. And the same thing
is to be said of Saturn in respect of its satellites, and of our earth in re

spect of the moon, as appears from Cor. II and III, Prop. LXV. Arid,

therefore, at equal distances, the actions of the centripetal force are equal

upon all the planets in proportion of their bodies, or of the quantities of

matter in their several bodies; and for the same reason must be the same

upon all the particles of the same size of which the planet is composed ;
for

if the action was greater upon some sort of particles than upon others than

in proportion to their quantity of matter, it would be also greater or less

upon the whole planets not in proportion to the quantity only, but like

wise of the sort of the matter more copiously found in one and more

sparingly in another.

In such bodies as are found on our earth of very different sorts, I exam
ined this analogy with great accuracy (p. 343, 344).

If the action of the circum-terrestrial force is proportional to the bodies

to be moved, it will (by the Second Law of Motion) move them with equal

velocity in equal times, and will make all bodies let fall to descend through

equal spaces in equal times, and all bodies hung by equal threads to vibrate

in equal times. If the action of the force was greater, the times would be

less
;

if that was less, these would be greater.

But it has been long ago observed by others, that (allowance being made

for the small resistance of the air) all bodies descend through equal spaces
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in equal times
; and, by the help of pendulums, that equality of tim-es may

be distinguished to great exactness.

1 tried the thing in gold, silver, lead, glass, sand, common salt wood,

water, and wheat. I provided two equal wooden boxes. I filled the one

with wood, and suspended an equal weight of gold (as exactly as I could)
in the centre of oscillation of the other. The boxes, hung by equal threads

of 11 feet, made a couple of pendulums perfectly equal in weight and fig

ure, and equally exposed to the resistance of the air : and, placing the one

by the other, I observed them to play together forwards and backwards for

a long while, with equal vibrations. And therefore (by Cor. 1 and VI,

Prop. XXIV. Book II) the quantity of matter in the gold was to the quan

tity of matter in the wood as the action of the motive force upon all the

gold to the action of the same upon all the wood ; that is, as the weight of

the one to the weight of the other.

And by these experiments, in bodies of the same weight, could have dis

covered a difference of matter less than the thousandth part of the whole.

Since the action of the centripetal force upon the bodies attracted is, at

equal distances, proportional to the quantities of matter in those bodies,

reason requires that it should be also proportional to the quantity of mat
ter in the body attracting.

For all action is mutual, and
(p. 83, 93. by the Third Law of Motion)

makes the bodies mutually to approach one to the other, and therefore must

be the same in both bodies. It is true that we may consider one body as

attracting, another as attracted; but this distinction is more mathematical

than natural. The attraction is really common of either to other, and

therefore of the same kind in both.

And hence it is that the attractive force is found in both. The sun at

tracts Jupiter and the other planets ; Jupiter attracts its satellites
; and,

for the same reason, the satellites act as well one upon another as upon Ju

piter, and all the planets mutually one upon another.

And though the mutual actions of two planets may be distinguished
and considered as two, by which each attracts the other, yet, as those ac

tions are intermediate, they do not make two but one operation between

two terms. Two bodies may be mutually attracted each to the other by
the contraction of a cord interposed. There is a double cause of action,

to wit, the disposition of both bodies, as well as a double action in so far

as the action is considered as upon two bodies
;
but as betwixt two bodies

it is but one single one. It is not one action by which the sun attracts

Jupiter, and another by which Jupiter attracts the sun
;
but it is one ac

tion by which the sun and Jupiter mutually endeavour to approach each

the other. By the action with which the sun attracts Jupiter, Jupiter and

the sun endeavours to come nearer together (by the Third Law of Mo

tion) ;
and by the action with which Jupiter attracts the sun, likewise Ju-
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pitcr and the sun endeavor to come nearer together. But the sun is not

attracted towards Jupiter by a twofold action, nor Jupiter by a twofold

action towards the sun
;
but it is one single intermediate action, by which

both approach nearer together.

Thus iron draws the load-stone (p. 93), as well as the load-stone

draws the iron : for all iron in the neighbourhood of the load-stone draws

other iron. But the action betwixt the load-stone and iron is single, and

is considered as single by the philosophers. The action of iron upon the

load-stone, is, indeed, the action of the load-stone betwixt itself and the

iron, by which both endeavour to come nearer together : and so it mani

festly appears ;
for if you remove the load-stone, the whole force of the

iron almost ceases.

Tn this sense it is that we are to conceive one single action to be ex

erted betwixt two planets, arising from the conspiring natures of both :

and this action standing in the same relation to both, if it is proportional
to the quantity of matter in the one, it will be also proportional to the

quantity of matter in the other.

Perhaps it may be objected, that, according to this philosophy (p. 39S),
all bodies should mutually attract one another, contrary to the evidence
of experiments in terrestrial bodies

;
but I answer, that the experiments in

terrestrial bodies come to no account
;
for the attraction of homogeneous

spheres near their surfaces are (by Prop. LXXII) as their diameters.
Whence a sphere of one foot in diameter, and of a like nature to the

earth, would attract a small body placed near its surface with a force
20UOOOOO times less than the earth would do if placed near its surface;
but so small a force could produce no sensible effect. If two such spheres
were distant but by

1 of an inch, they would not, even in spaces void of



528 THE SYSTEM OF THE WORLD.

resistance, come together by the force of their mutual attraction in less

than a month s time
j
and less spheres will come together at a rate yet

slower, viz.. in the proportion of their diameters. Nay, whole mountains

will not be sufficient to produce any sensible effect. A mountain of an

hemispherical figure, three miles high, and six broad, will not, by its at

traction, draw the pendulum two minutes out of the true perpendicular :

and it is only in the great bodies of the planets that these forces are to be

perceived, unless we may reason about smaller bodies in manner following.

Let ABCD (p. 93) represent the globe of the earth cut by any plane

AC into two parts ACB, and ACD. The part ACB bearing upon the

part ACD presses it with its whole weight; nor can the part ACD sustain

this pressure and continue unmoved, if it is not opposed by an equal con

trary pressure. And therefore the parts equally press each other by their

weights, that is, equally attract each other, according to the third Law of

Motion
; and, if separated and let go, would fall towards each other with

velocities reciprocally as the bodies. All which we may try and see in the

load-stone, whose attracted part does not propel the part attracting, but is

only stopped and sustained thereby.

Suppose now that ACB represents some small body on the earth s sur

face : then, because the mutual attractions of this particle, and of the re

maining part ACD of the earth towards each other, are equal, but the

attraction of the particle towards the earth (or its weight) is as the matter

of the particle (as we have proved by the experiment of the pendulums),

the attraction of the earth towards the particle will likewise be as the

matter of the particle ;
and therefore the attractive forces of all terres

trial bodies will be as their several quantities of matter.

The forces (p. 396), which are as the matter in terrestrial bodies of all

forms, and therefore are not mutable with the forms, must be found in all

sorts of bodies whatsoever, celestial as well as terrestrial, and be in all

proportional to their quantities of matter, because among all there is no

difference of substance, but of modes and forms only. But in the celes

tial bodies the same thing is likewise proved thus. We have shewn that

the action of the circum-solar force upon all the planets (reduced to equal

distances) is as the matter of the planets ;
that the action of the circum-

jovial force upon the satellites of Jupiter observes the same law
;
and the

same thing is to be said of the attraction of all the planets towards every

planet : but thence it follows (by Prop. LXIX) that their attractive forces

are as their several quantities of matter.

As the parts of the earth mutually attract one another, so do those of

all the planets. If Jupiter and its satellites were brought together, and

formed into one globe, without doubt they would continue mutually to

attract one another as before. And, on the other hand, if the body of

Jupiter was broke into more globes, to be sure, these would no less attract.
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3ne another than they do the satellites now. From these attractions it is

that the bodies of the earth and all the planets effect a spherical figure, and

their parts cohere, and are not dispersed through the aether. But we have

before proved that these forces arise from the universal nature of matter

(p. 398), and that, therefore, the force of any whole globe is made up of

the several forces of all its parts. And from thence it follows (by Cor.

III, Prop. LXXIV) that the force of every particle decreases in the dupli

cate proportion of the distance from that particle ;
and (by Prop. LXXIII

and LXXV) that the force of an entire globe, reckoning from the surface

outwards, decreases in the duplicate, but, reckoning inwards, in the sim

ple proportion of the distances from the centres, if the matter of the globe

be uniform. And though the matter of the globe, reckoning from the

centre towards the surface, is not uniform (p. 398, 399), yet the decrease in

the duplicate proportion of the distance outwards would (by Prop. LXXVI)
take place, provided that difformity is similar in places round about at

equal distances from the centre. And two sucli globes will (by the same

Proposition) attract one the other with a force decreasing in the duplicate

proportion of the distance between, their centres.

Wherefore the absolute force of every globe is as the quantity of matter

which the globe contains
;
but the motive force by which every globe is

attracted towards another, and which, in terrestrial bodies, we commonly
call their weight, is as the content under the quantities of matter in both

globes applied to the square of the distance between their centres (by Cor.

IV, Prop. LXXVI), to which force the quantity of motion, by which each

globe in a given time will be carried towards the other, is proportional.

And the accelerative force, by which every globe according to its quantity
of matter is attracted towards another, is as the quantity of matter in that

other globe applied to the square of the distance between the centres of

the two (by Cor. II, Prop. LXXVI): to which force, the velocity by which

the attracted globe will, in a given time, be carried towards the other is

proportional. And from these principles well understood, it will be now

easy to determine the motions of the celestial bodies among themselves.

From comparing the forces of the planets one with another, we have

above seen that the circum-solar does more than a thousand times exceed

all the rest ;
but by the action of a force so greab it is unavoidable but that

all bodies within, nay, and far beyond, the bounds of the planetary system
must descend directly to the sun, unless by other motions they are impelled

towards other parts : nor is our earth to be excluded from the number of

such bodies : for certainly the moon is a body of the same nature with the

planets, and subject to the same attractions with the other planets, seeing

it is by the circum-terrestrial force that it is retained in its orbit. But

that the earth and moon are equally attracted towards the sun, we have

above proved ;
we have likewise before proved that all bodies are subject to
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the said common laws of attraction. Nay, supposing any of those bodies

to be deprived of its circular motion about the sun, by having its distance

from the sun, we may find (by Prop. XXXVI) in what space of time it

would in its descent arrive at the sun
;

to wit, in half that periodic time in

.vhich the body might be revolved at one half of its former distance; or in

a space of time that is to the periodic time of the planet as 1 to
4&amp;lt;/2;

as

that Venus in its descent would arrive at the sun in the space of 40 days,

Jupiter in the space of two years and one month, and the earth and moon

together in the space of 66 days and 19 hours. But, since no such thing

happens, it must needs be, that those bodies are moved towards other parts

(p. 75), nor is every motion sufficient for this purpose. To hinder such a

descent, a due proportion of velocity is required. And hence depends the

force of the argument drawn from the retardation of the motions of the

planets. Unless the circum-solar force decreased in the duplicate ratio of

their increasing slowness, the excess thereof would force those bodies to de

scend to the sun
;
for instance, if the motion (c&teris paribns) was retarded

by one half, the planet would be retained in its orb by one fourth of the

former circum-solar force, and by the excess of the other three fourths

would descend to the sun. And therefore the planets (Saturn, Jupiter,

Mars, Venus, and Mercury) are not really retarded in their perigees, nor

become really stationary, or regressive with slow motions. All these are

but apparent, and the absolute motions, by which the planets continue to

revolve in their orbits, are always direct, and nearly equable. But that

such motions are performed about the sun, we have already proved ;
and

therefore the sun, as the centre of the absolute motions, is quiescent. For

we can by no means allow quiescence to the earth, lest the planets in their

perigees should indeed be truly retarded, and become truly stationary and

regressive, and so for want of motion should descend to the sun. But

farther
;
since the planets (Venus, Mars, Jupiter, and the rest) by radi:

drawn to the sun describe regular orbits, and areas (as WTC have shewn)

nearly and to sense proportional to the times, it follows (by Prop. III. and

Cor. Ill, Prop. LXV) that the sun is moved with no notable force, unless

perhaps wT
ith such as all the planets are equally moved with, according to

their several quantities of matter, in parallel lines, and so the whole sys

tem is transferred in right lines. Reject that translation of the whole

system, and the sun will be almost quiescent in the centre thereof. If the

gun was revolved about the earth, and carried the other planets round about

itself, the earth ought to attract the sun with a great force, but the cir

cum-solar planets with no force producing any sensible effect, which is

contrary to Cor. Ill, Prop. LXV. Add to this, that if hitherto the earth,

because of the gravitation of its parts, has been placed by most authors in

the lowermost region of the universe
; now, for better reason, the sun pos

sessed of a centripetal force exceeding our terrestrial gravitation a thousand



THE SYSTEM OF THE WJP.I.D. 53L

times and more, ought to be depressed into the lowermost place, and to be

held for the centre of the system. And thus the true disposition of the

whole system will be more fully and more exactly understood.

Because the fixed stars are quiescent one in respect of another (p. 401,

4U2), we may consider the sun, earth, and planets, as one system of bodies

carried hither and thither by various motions among themselves; and the

common centre of gravity of all (by Cor. IT of the Laws of Motion) will

either be quiescent, or move uniformly forward in a right line : in which

case the whole system will likewise move uniformly forward in right lines.

But this is an hypothesis hardly to be admitted ; and, therefore, setting it

arfide, that common centre will be quiescent: and from it the sun is never

far removed. The common centre of gravity of the sun and Jupiter falls

on the surface of the sun
;
and though all the planets were placed towards

the same parts from the sun with Jupiter the common centre of the sun

and all of them would scarcely recede twice as far from the sun s centre
;

and, therefore, though the sun, according to the various situation of the

planets, is variously agitated, and always wandering to and fro with a slow

motion of libration, yet it never recedes one entire diameter of its own body
from the quiescent centre of the whole system. But from the weights of

the sun and planets above determined, and the situation of all among them

selves, their common centre of gravity may be found
; and, this being given,

the sun s place to any supposed time may be obtained.

About the sun thus librated the other planets are revolved in elliptic

orbits (p 403), and, by radii drawn to the sun, describe areas nearly pro

portional to the times, as is explained in Prop. LXV. If the sun was qui

escent, and the other planets did not act mutually one upon another, their

orbits would be elliptic, and the areas exactly proportional to the times (by

Prop. XI, and Cor. 1, Prop. XIII). But the actions of the planets amonir

themselves, compared with the actions of the sun on the planets, are of no

moment, and produce no sensible errors. And those errors are less in rev

olutions about the sun agitated in the manner but now described than if

those revolutions were made about the sun quiescent (by Prop. LXV1, and

Cor. Prop. LXVIll), especially if the focus of every orbit is placed in the

common centre of gravity of all the lower included planets; viz., the focus

of the orbit of Mercury in the centre of the sun : the focus of the orbit of

Venus in the common centre of gravity of Mercury and the sun
;
the focus

of the orbit of thp earth in the common centre of gravity of Venus, Mer

cury, and the sun
;
and so of the rest. And by this means the foci of the

crbits of all the planets, except Saturn, will not be sensibly removed from

the centre of the sun, nor will the focus of the orbit of Saturn recede sensi

bly from the common centre of gravity of Jupiter and the sun. And
therefore astronomers are not far from the truth, when they reckon the

sun s centre the common focus of all the planetary orbits. In Saturn itself
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the error thence arising docs not exceed 1 45 . And if its orbit, by placing
the focus thereof in the common centre of gravity of Jupiter and the sun,

ghall happen to agree better with the phenomena, from thence all that we

have said will be farther confirmed.

If the sun was quiescent, and the planets did not act one on another, the

aphelions and nodes of their orbits would likewise (by Prop. 1, XI, and Cor.

Prop. XIU) be quiescent. And the longer axes of their elliptic orbits

would (by Prop. XV) be as the cubic roots of the squares of their periodic

times : and therefore from the given periodic times would be also given.

But those times are to be measured not from the equinoctial points, which

are rnoveable, but from the first star of Aries. Put the semi-axis of the

earth s orbit 100000, and the semi-axes of the orbits of Saturn, Jupiter,

Mars, Venus, and Mercury, from their periodic times, will come out

953806, 520116, 152399, 72333, 38710 respectively. But from the sun s

motion every semi-axis is increased (bv Prop. LX) by about one third of

the distance of the sun s centre from the common centre of gravity of

the sun and planet (p. 405, 406.) And from the actions of the exterior

planets on the interior, the periodic times of the interior are something

protracted, though scarcely by any sensible quantity ;
and their aphelions

are transferred (by Cor. VI and VII, Prop. LXVI)by very slow motions

in conset/ue/ttia. And on the like account the periodic times of all, espe

cially of the exterior planets, will be prolonged by the actions of the

somets, if any such there are, without the orb of Saturn, and the aphe
lions of all will be thereby carried forwards in consequent-la. But from

the progress of the aphelions the regress of the nodes follows (by Cor.

XI, XIII, Prop. 1 jXVI). And if the plane of the ecliptic is quiescent, the

regress of the nodes (by Cor. XVI, Prop. LX.VI) will be to the progress of

*he aphelion in every orbit as the regress of the nodes of the moon s orbit

to the progress of its apogeon nearly, that is, as about 10 to 21. But as

tronomical observations seem to confirm a very slow progress of the aphe
lions, and a regress of the nodes in respect of the fixed stars. And hence

it is probable that there are comets in the regions beyond the planets, which,

revolving in very eccentric orbs, quickly fly through their perihelion parts,

and, by an exceedingly slow motion in their aphelions, spend almost their

whole time in the regions beyond the planets ;
as we shall afterwards ex

plain more at large.

The planets thus revolved about the sun (p. 413, 41.4, 415) may at the

same time carry others revolving about themselves as satellites or moons,

as appears by Prop. LXVI. But from the action of the sun our moon

must move with greater velocity, and, by a radius drawn to the earth, de

scribe an area greater for the time
;

it must have its orbit less curve, and

therefore approach nearer to the earth in the syzygies than in the quadra

tures, except in so far as the motion of eccentricity hinders those effects.
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Per the eccentricity is greatest when the moon s apogeon is in the syzygies,

and least when the same is in the quadratures ;
and hence it is that the

perigeon moon is swifter and nearer to us, but the apogeon moon slower and

farther from us, in the syzygies than in the quadratures. But farther; the

apogeon has a progressive and the nodes a regressive motion, both unequa
ble. For the apogeon is more swiftly progressive in its syzygies, more

slowly regressive in its quadratures, and by the excess of its progress above

its regress is yearly transferred in coiisequentia ; but the nodes are quies

cent in their syzygies, and most swiftly regressive in their quadratures. But

farther, still, the greatest latitude of the moon is greater in its quadra
tures than in its syzygies ;

and the mean motion swifter in the aphelion of

the earth than in its perihelion. More inequalities in the moon s motion

have not hitherto been taken notice of by astronomers : but all these fol

low from our principles in Cor. II, III, IV, V, VI, VII, VIII, IX, X, XI,

XII, XIII, Prop. LXVI, and are known really to exist in the heavens.

And this may seen in that most ingenious, and if I mistake not, of all, the

most acccurate, hypothesis of Mr. Horrnx, which Mr. Flamsted has fitted

to the heavens
;
but the astronomical hypotheses are to be corrected in the

motion of the nodes
;
for the nodes admit the greatest equation or pros-

thaphaeresis in their octants, and this inequality is most conspicuous when

the moon is in the nodes, and therefore also in the octants
;
and hence it

was that Tycho, and others after him, referred this inequality to the

octants of the moon, and made it menstrual; but the reasons by us addu

ced prove that it ought to be referred to the octants of the nodes, and to

be made annual.

Beside those inequalities taken notice of by astronomers (p. 414, 445,

447,) there are yet some others, by which the moon s motions are so dis

turbed, that hitherto by no law could they be reduced to any certain regu
lation. For the velocities or horr.ry motions of the apogee and nodes of

the moon, and their equations, as well as the differs ice betwixt the greatest

eccentricity in the syzygies and the least in the &amp;lt; rrdratures, and that ine

quality which we call the variation, in the progress of the year are aug
mented and diminished (by Cor. XIV, Prop. LXVI) in the triplicate ratio

of the sun s apparent diameter. Beside that, the variation is mutable

r.sarly in the duplicate ratio of the time between the quadratures (by Cor.

I and II, Lem. X, and Cor. XVI, Prop. LXVI); and all those inequali

ties are something greater in that part of the orbit which respects the sun

than in the opposite part, but by a difference that is scarcely or not at all

perceptible.

By a computation (p. 422), which for brevity s sake I do not describe, 1

also find that the area which the moon by a radius drawn to the earth

describes in the several equal moments of time is nearly as the sum of the

number 237T\, and versed sine of the double distance of the moon frour.
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the nearest quadrature in a circle whose radius is unity ;
and therefore

that the square of the moon s distance from the earth is as that sum divid

ed by the horary motion of the moon. Thus it is when the variation in

the octants is in its mean quantity ;
but if the variation is greater or less,

that versed sine must be augmented or diminished in the same ratio. Let

astronomers try how exactly the distances thus found will agree with fjie

moon s apparent diameters.

From the motions of our moon we may derive the motions of themoon*

or satellites of Jupiter and Saturn (p. 413); for the mean motion of the

nodes of the outmost satellite of Jupiter is to the mean motion of the nodes

of our moon in a proportion compounded of the duplicate proportion of

the periodic time of the earth about the sun to the periodic time of Jupiter

about the sun, and the simple proportion of the periodic time of the sat

ellite about Jupiter to the periodic time of our moon about the earth (by

Gor. XVI, Prop. LXVI) : and therefore those nodes, in the space of a hun

dred years, are carried 8 24 backwards, or in atitecedeutia. The mean

motions of the nodes of the inner satellites are to the (mean) motion of

(the nodes of) the outmost as their periodic times to the periodic time of

this, by the same corollary, and are thence given. And the motion of the

apsis of every satellite in consequentia is to the motion of its nodes in

a/ttecedentia, as the motion of the apogee of our moon to the motion of i s

nodes (by the same Corollary), and is thence given. The greatest equa
tions of the nodes and line of the apses of each satellite are to the greatest

equations of the nodes and the line of the apses of the moon respectively

as the motion of the nodes and line of the apses of the satellites in the

time of one resolution of the first equations to the motion of the nodes

and apogeon of the moon in the time of one revolution of the last equa
tions. The variation of a satellite seen from Jupiter is to the variation

of our moon in the same proportion as the whole motions of their nodes

respectively, during the times in which the satellite and our moon (after

parting from) arc revolved (again) to the sun, by the same Corollary ;
ami

therefore in the outmost satellite the variation does not exceed 5&quot; 12 &quot;.

From the small quantity of those inequalities, and the slowness of the

motions, it happens that the motions of the satellites are found to be so

regular, that the more modern astronomers either deny all motion to the

nodes, or affirm them to be very slowly regressive.

(P. 404). While the planets are thus revolved in orbits about remote

centres, in the mean time they make their several rotations about their

proper axes; the sun in 26 days; Jupiter in 9h
. 56

;
Mars in 24f,

h
.

;

Venus in 23h
.

;
and that in planes not much inclined to the plane of the

ecliptic,
and according to the order of the signs, as astronomers determine

from the spots or macula? that by turns present themselves to our sight in

their bodies; and there is a like revolution of our earth performed in 24h
.

;
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find those motions are neither accelerated nor retarded
l&amp;gt;y

the actions of

the centripetal forces, as appears by Cor. XXII, Prop. LXVI ;
and there

fore of all others they are the most equable and most fit for the mensura

tion of time; but those revolutions are to be reckoned equable not from

their return to the sun, but to some fixed star: for as the position of the

planets to the sun is unequably varied, the revolutions of those planets

from sun to sun are rendered unequable.

In like manner is the moon revolved about its axis by a motion most

equable in respect of the fixed stars, viz., in 27 J
. 7h

. 43
,
that is, in the

space of a sidereal month
;
so that this diurnal motion is equal to the

mean motion of the moon in its orbit : upon which account the same face

of the moon always respects the centre about which this mean motion is

performed, that is, the exterior focus of the moon s orbit nearly ;
and hence

arises a deflection of the moon s face from the earth, sometimes towards

the east, and other times towards the west, according to the position of the

focus which it respects ;
and this deflection is equal to the equation of the

moon s orbit, or to the difference betwixt its mean and true motions; and

this is the moon s libration in longitude: but it is likewise affected with

a libration in latitude arising from the inclination of the moon s axis to

the plane of the orbit in which the moon is revolved about the earth
;
for

that axis retains the same position to the fixed stars nearly, and hence the

poles present themselves to our view by turns, as we may understand from

the example of the motion of the earth, whose poles, by reason of the incli

nation of its axis to the plane of the ecliptic, are by turns illuminated by
the sun. To determine exactly the position of the moon s axis to the

fixed stars, and the variation of this position, is a problem worthy of an

astronomer.

By reason of the diurnal revolutions of the planets, the matter which

they contain endeavours to recede from the axis of this motion
;
and hence

the fluid parts rising higher towards the equator than about the poles

(p. 405), would lay the solid parts about the equator under water, if those

parts did not rise also (p. 405, 409) : upon which account the planets are

something thicker about the equator than about the poles ;
and their equi

noctial points (p. 413) thence become regressive ;
and their axes, by a

motion of nutation, twice in every revolution, librate towards their eclip

tics, and twice return again to their former inclination, as is explained in

Cor. XVIII, Prop. LXVI ;
and hence it is that Jupiter, viewed through

very long telescopes, does not appear altogether round (p. 409). but having
its diameter that lies parallel to the ecliptic something longer than that

which is drawn from north to south.

And from the diurnal motion and the attractions (p. 415, 418) of the

Bun and moon our sea ought twice to rise and twice to fall every day, as

well lunar as solar (by Cor. XIX, XX, Prop. LXVI), and the greatest
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height of the water to happen before the sixth hour of either day and aftei

the twelfth hour preceding. By the slowness of the diurnal motion the

flood is retracted to the twelfth hour
;
and by the force of the motion of

reciprocation it is protracted and deferred till a time nearer to the sixth

hour. But till that time is more certainly determined by the pheno
mena, choosing the middle between those extremes, why may we not

conjecture the greatest height of the water to happen at the third hour ?

for thus the water will rise all that time in which the force of the lumi

naries to raise it is greater, and will fall all that time in which their force

is less : viz., from the ninth to the third hour when that force is greater,

and from the third to the ninth when it is less. The hours I reckon from

the appulse of each luminary to the meridian of the place, as well under

as above the horizon
;
and by the hours of the lunar day I understand the

twenty-fourth parts of that time which the moon spends before it comes

about again by its apparent diurnal motion to the meridian of the place

which it left the day before.

But the two motions which the two luminaries raise will not appear distin

guished, but will make a certain mixed motion. In the conjunction or op

position of the luminaries their forces will be conjoined, and bring on the

greatest flood and ebb. In the quadratures the sun will raise the waters

which the moon dcpresseth. and depress the waters which the moon raiseth
;

and from the difference of their forces the smallest of all tides will follow.

And because (as experience tells us) the force of the moon is greater than

that of the sun, the greatest height of the water will happen about the

third lunar hour. Out of the syzygies and quadratures the greatest tide

which by the single force of the moon ought to fall out at the third lunar

hour, and by the single force of the sun at the third solar hour, by the

compounded forces of both must fall out in an intermediate time that ap

proaches nearer to the third hour of the moon than to that of the sun:

and, therefore, while the moon is passing from the syzygies to the quadra

tures, during which time the third hour of the sun precedes the third of

the moon, the greatest tide will precede the third lunar hour, and that by
the greatest interval a little after the octants of the moon

;
and by like

intervals the greatest tide will follow the third lunar hour, while the moon

is passing from the quadratures to the syzygies.

But the effects of the luminaries depend upon their distances from the

earth
;
for when they are less distant their effects are greater, and when

more distant their effects are less, and that in the triplicate proportion of

their apparent diameters. Therefore it is that the sun in the winter time,

being then in its perigee, has a greater effect, and makes the tides in the

syzyii ies something greater, and those in the quadratures something less,

cre/m.&amp;lt;? panbiis, than in the summer season
;
and every month the moon,

vhile in the perigee, raiseth greater tides than at the distance of 15 days
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K N

K forc or after, when it is in its apogee. Whence it comes to pasa that two

nighest tides do not follow one the other in two immediately succeeding

syzygies.

The effect of either luminary doth likewise depend upon its declination

or distance from the equator ;
for if the luminary was placed at the pole,

it would constantly attract all the parts of the waters, without any inten

sion or remission of its action, and could cause no reciprocation of motion
;

and, therefore, as the luminaries decline from the equator towards either

pole, they will by degrees lose their force, and on this account will excite

lesser tides in the solstitial than in the equinoctial syzygies. But in the

solstitial quadratures they will raise greater tides than in the quadratures
about the equinoxes ;

because the effect of the moon, then situated in the

equator, most exceeds the effect of the sun
;
therefore the greatest tides

fall out in those syzygies. and the least in those quadratures, which happen
about the time of both equinoxes ;

and the greatest tide in the syzygies is

always succeeded by the least tide in the quadratures, as we lind by expe
rience. But because the sun is less distant from the earth in winter than

in summer, it cornes to pass that the greatest and least tides more fre

quently appear before than after the vernal equinox, and more frequently
after than before the autumnal.

Moreover, the effects cf che lumina

ries depend upon the latitudes of places.

Let AjoEP represent the earth on all

sides covered with deep waters: C its

centre; P, p, its poles; AE the equa
tor: P any place without the equator:

F/ the parallel of the place : Del the

correspondent parallel OD the other side

of the equator; L the rlnoe which the moon possessed three hours before

H the place of the earth directly under it
;
h the opposite place ;

K, k,

the places at 90 degrees distance
; CH, Ch, the greatest heights of the sea

from the centre of the earth
;
and CK, C&, the least heights : and if with

the axes H/?,, K/r, an ellipsis is described, and by the revolution rf that

ellipsis about its longer axis HA a spheroid HPK//jt?A* is formed, this sphe

roid will nearly represent the figure of the sea; and CF, C/, CD, Cd, will

represent the sea in the places F,/, D, d. But farther : if in the said revo

lution of the ellipsis any point N describes the circle NM, cutting the

parallels F/, Dr/
?
in any places R, T, and the equator AE in S, CN will

represent the height of the sea in all those places R, S, T, situated in this

circle. Wherefore in the diurnal revolution of any place F the greatest

flood will be in F. at the third hour after the appulse of the moon to the

meridian above the horizon
;
and afterwards the greatest ebb in Q, at the

third hour after the setting of the moon : and then the greatest flood inf.
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at the third Lour after the appulse of the rnoon to the meridian under tht

horizon
, and. lastly, the greatest ebb in Q. at the third hour after the

rising of the moon; and the latter flood
iny&quot;

will be less than the preced

ing flood in F For the whole sea is divided into two huge and hemis

pherical floods, one in the hemisphere KH/rC on the north side, the other

in the opposite hemisphere KH/cC, whicli we may therefore call the north

ern and the southern floods : these floods being always opposite the one to

the other, come by turns to the meridians of all places after the interval

of twelve lunar hours
; and, seeing the northern countries partake more

of the northern flood, and the southern countries more of the southern

flood, thence arise tides alternately greater and less in all places without

the equator in Avhich the luminaries rLe and set. But the greater tide

will happen when the moon declines towards the vertex of the place, about

the third hour after the -appulse of the moon to the meridian above the

horizon
;
and when the moon changes its declination, that which was the

greater tide will be changed into a lesser
;
and the greatest difference of

the floods will fall out about the times of the solstices, especially if the

ascending node of the moon is about the first of Aries. So the morning
tides in winter exceed those of the evening, and the evening tides exceed

those of the morning in summer
;
at Plymouth by the height of one foot,

but at Bristol by the height of 15 inches, according to the observations of

Qvleptvss and Stitrnnj.

But the motions which we have been describing suffer some alteration

from that force of reciprocation which the waters [having once received]
retain a little while by their vis iiisita ; whence it comes to pass that the

tides may continue for some time, though the actions of the luminaries

should cease. This power of retaining the impressed motion lessens the

difference of the alternate tides, and makes those tides which immediately

succeed after the syzygies greater, and those which follow next after the

quadratures less. And hence it is that the alternate tides at l
:

1ymonth
and Bristol do not differ much more one from the other than by the height
of a foot, or of 15 inches; and that the greatest tides &amp;lt;~&amp;gt;f all at those ports

are not the first but the third after the syzygies.

And. besides, all the motions are retarded in their passage through shal

low channels, so that the greatest tides of all, in some strai s and mouths

of rivers, are the fourth, or even the fifth, after the syzygies.

It may also happen that the greatest tide may be the fourth or fifth

after the syzygies, or fall out yet later, because the motions of the sea are

retarded in passing through shallow places towards the shores: for so the

tide arrives at the western coast of Ireland at the third lunar hour, and an

hour or two after at the ports in the southern coast of the same island
;
as

also at the islands Cftssiterides, commonly Sorliti^s ; then successively at

Palrnonth. Plymouth, Portland, the isle of Wight, Winchester, Dover,
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the mouth of the Thames, arid London Btidgey spending twelve hours in

this passage. But farther; the propagation of the tides may he obstructed

even by the channels of the ocean itself, when they are not of depth enough,
for the flood happens at the third lunar hour in the Canary islands

;
and

at all those western coasts that lie towards the Atlantic ocean, as of Ire

land, France, Spain, and all Africa, to the Cape of Good Hope, except
in some shallow places, where it is impeded, and falls out later

;
and in the

straits of Gibraltar, where, by reason of a motion propagated from the

Mediterranean sea, it flows sooner. But, passing from those coasts over

the breadth of the ocean to the coasts of America, the flood arrives first at

the most eastern shores of Brazil, about the fourth or fifth lunar hour;
then at the mouth of the river of the Amazons at the sixth hour, but at

the neighbouring islands at the fourth hour
;
afterwards at the islands of

Bermudas at the seventh hour, and at port St. An^nstin in Florida at

seven and a half. And therefore the tide is propagated through the ocean

with a slower motion than it should be according to the course of the

moon
;
and this retardation is very necessary, that the sea at the same time

may fall between Brazil and New France, and rise at the Canary islands,

and on the coasts of Europe and Africa, and vice versa : for the sea can

not rise in one place but by falling in another. And it is probable that

the Pacific sea is agitated by the same laws : for in the coasts of Chili and

Peru the highest flood is said to happen at the third lunar hour. But

with what velocity it is thence propagated to the eastern coasts of

Japan, the Philippine and other islands adjacent to China, I have not

yet learned.

Farther; it may happen (p. 418) that the tide may be propagated from

the ocean through different channels towards the same port, and may pass

quicker through some channels than through others, in which case the

same tide, divided into two or more succeeding one another, may compound
new motions of different kinds. Let us suppose one tide to be divided into

two equal tides, the former whereof precedes the other by the space of six

hours, and happens at the third or twenty-seventh hour from the appulse
of the moon to the meridian of the port. If the moon at the time of this

appulse to the meridian was in the equator, every six hours alternately

there would arise equal floods, which, meeting with as many equal ebbs,

would so balance one the other, that, for that day, the water wrould stag

nate, and remain quiet. If the moon then declined from the equator, the

tides in the ocean would be alternately greater and less, as was said; and

from hence two greater and two lesser tides would be alternately propa

gated towards that port. But the two greater floods would make the

greatest height of the waters to fall out in the middle time betwixt both,

and the Greater and lesser floods would make the waters to rise to a mean&

height in the middle time between them; and in the middle time between
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the two lesser floods the waters would rise to their least height. Thus in

the space of twenty-four hours the waters would come, riot twice, but once

only to their greatest, and once only to their least height ; and their great

est height, if the moon declined towards the elevated pole, would happen
at the sixth or thirtieth hour after the appulse of the moon to the meridian

and when the moon changed its declination, this flood would be changed
into an ebb.

Of all which we have an example in the port of Batsham, in the king
dom of Tunquin. in the latitude of 20 50 north. In that port, on the

day which follows after the passage of the moon over the equator, the

waters stagnate ;
when the moon declines to the north, they begin to fluw

and ebb, not twice, as in other ports, but once only every day ;
and the

flood happens at the setting, and the greatest ebb at the rising of the moon.

This tide increaseth with the declination of the moon till the seventh or

eighth day ;
then for the seventh or eighth day following it decreaseth at

the same rate as it had increased before, and ceaseth when the moon

changeth its declination. After which the flood is immediately changed
into an ebb

;
and thenceforth the ebb happens at the setting and the flood

at the rising of the moon, till the moon again changes its declination.

There are two inlets from the ocean to this port; one more direct and short

between the island Hainan and the coast of QuanttiHg, a province of

China ; the other round about between the same island and the coast of

Cochim ; and through the shorter passage the tide is sooner propagated to

Batsham.

In the channels of rivers the influx and reflux depends upon the current

of the rivers, which obstructs the ingress of the waters from the sea. and

promotes their egress to the sea, making the ingress later and slower, and

the egress sooner arid faster; and hence it is that the reflux is of longer

duration that the influx, especially far up the rivers, where the force of the

sea is less. So Sturmy tells us, that in the river Avon, three miles below

Bristol, the water flows only five hours, but ebbs seven
;
and without doubt

the difference is yet greater above Bristol, as at Carcs/iam or the Bath.

This difference does likewise depend upon the quantity of the flux and re

flux
;
for the more vehement motion of the sea near the syzygies of the

luminaries more easily overcoming the resistance of the rivers, will make

the ingress of the water to happen sooner and to continue longer, and will

therefore diminish this difference. But while the moon is approaching to

the syzygies, the rivers will be more plentifully filled, their currents being

obstructed by the greatness of the tides, and therefore will something more

retard the reflux of the sea a little after than a little before the syzygies.

Upon which account the slowest tides of all will not happen in the syzy-

^ies, but precede them a little
;
and I observed above that the tides before

the sy/ygies were also retarded by the force of the sun
;
and from both
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causes conjoined the retardation of the tides will be both greater and sooner

before the syzygies. All which I find to be so, by the tide-tables which

Ftamsted has composed from a great many observations.

By the laws we have been describing, the times of the tides are governed ;

but the greatness of th-e tides depends upon the greatness of the seas. Let

C represent the centre of the earth, EAUB the oval figure of the seas, CA
the longer semi-axis of this oval, OB the shorter insisting at right angles

upon the former, D the middle point between A and B, and EOF or eCf
the angle at the centre of the earth, subtended by the breadth of the sea

that terminates in the shores E, F, or e,f. Now, supposing that the point

A is in the middle between the points E, F, and the point D in the middle

between the points e,/, if the difference of the heights CA, CB, represent
the quantity of the tide in a very deep sea surrounding the whole earth,

the excess of the height CA above the height OE or OF will represent the

quantity of the tide in the middle of the sea EF, terminated by the shores

E, F ;
and the excess of the height Ce above the height Cf will nearly

represent the quantity of the tide on the
shores/&quot;

of the same sea. Whence
it appears that the tides are far less in the middle of the sea than at the

shores
;
and that the tides at the shores are nearly as EF (p. 451, 452), the

breadth of the sea not exceeding a quadrantal arc. And hence it is that

near the equator, where the sea between Africa and America is narrow,
the tides are far less than towards either side in the temperate zones, wrhere

the seas are extended wider
;
or on almost all the shores of the Pacific sea

;

as well towards America as towards China,, and within as well as without

the tropics ;
and that in islands in the middle of the sea they scarcely rise

higher than two or three feet, but on the shores of great continents are

three or four times greater, and above, especially if the motions propagated
from the ocean are by degrees contracted into a narrow space, and the water,

to fill and empty the bays alternately, is forced to flow and ebb with great

violence through shallow places ;
as Plymouth and Chepstow Bridge in

England) at the mount of &amp;gt;S*/. Michael and town of Avranches in Aor-

mcihdy, and at Cambaia and Peyn. in the East Indies. In which places.
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the sea, hurried in and out with great violence, sometimes lays the shores

under water, sometimes leaves them dry, for many miles. Nor is the force

of the influx and efflux to be broke till it has raised or depressed the water

to forty or fifty feet and more. Thus also -long and shallow straits that

open to the sea with mouths wider and deeper than the rest of their chan

nel (such as those about Britain and the Magellanic Straits at the east

ern entry) will have a greater flood and ebb, or will more intend and remit

their course, and therefore will rise higher and be depressed lower. Or

the coast of South America it is said that the Pacific sea in its reflux

sometimes retreats two miles, and gets out of sight of those that stand on

shore. Whence in these places the floods will be also higher ;
but in deepei

waters the velocity of influx and efflux is always less, and therefore tlu

ascent and descent is so too. Nor in such places is the ocean known to

ascend to more than six, eight, or ten feet. The quantity of the ascent I

compute in the following manner

Let S represent the sun, T the

earth (419. 420), P the moon,

PAGB the moon s orbit. In SP
take SK equal to ST and SL to

SK in the duplicate ratio of SK
to SP. Parallel to PT draw LM

;

and, supposing the mean quantity
of the circum-solar force directed towards the earth to be represented \j

the distance ST or SK, SL will represent the quantity thereof directed

towards the moon. But that force is compounded of the parts SM, LM ;

of which the force LM and that part of SM which is represented by TJVI,

do disturb the motion of the moon (as appears from Prop. LXVI, and its

Corollaries) In so far as the earth and moon are revolved about their

common centre of gravity, the earth will be liable to the action of the like

forces. But we may refer the sums as well of the forces as of the motions

to the moon, and represent the sums of the forces by the lines TM and

ML, which are proportional to them. The force LM, in its mean quan

tity, is to the force by which the moon may be revolved in an orbit, about

the earth quiescent, at the distance PT in the duplicate ratio of the moon s

periodic time about the earth to the earth s periodic time about the nun

(by Cor. XVII, Prop. LXVI) : that is, in the duplicate ratio of 27d
. 7h

.

43 to 365d
. 6h

. 9
;
or as 1000 to 178725, or 1 to 178f f. The force by

which the moon may be revolved in its orb about the earth in rest, at the

distance PT of 60| semi-diameters of the earth, is to the force by which

it may revolve in the same time at the distance of 60 semi- diameters as

60i to 60
;
and this force is to the force of gravity with us as 1 to 60 X

60 nearly ;
and therefore the mean force ML is to the force of gravity at

the surface of the earth as 1 X 60| to 60 X 60 X 178f, or 1 to
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638092,6. Whence the force TM will be ulso given from the proportion

of the lines TM, Ml,. And these are the forces of the sun, by which the

moon s motions are disturbed.

If from the moon s orbit (p. 449V we descend to the earth s surface, those

forces will be diminished in the ratio of the distances 60| and 1
; and

therefore the force LM will then become 3S604600 times less than the

force of gravity. But this force acting equally every where upon the

earth, will scarcely effect any change on the motion of the sea, and there

fore may be neglected in the explication of that motion. The other force

I M, in places where the sun is vertical, or in their nadir, is triple the

quantity of the force ML, and therefore but 12868200 times less than the

force of gravity.

Suppose now AUBE to represent the spherical surface of the enrth,

&amp;lt;/D/&amp;gt;E the surface of the water overspreading it, C the centre of both, A

the place to winch the sun is vertical, B the place opposite : I), E. places

at 90 degrees distance from the former
;
ACEwz/A a right angled cylmdric

canal passing through the earth s centre. The force TM in any place is

as the distance of the place from the plane DE, on which a line fr^m A
to C insists at right angles, and J)

therefore in the part of the ca

nal which is represented by EC
ini is of no quantity, but in the

other part AClk is as the gravity
at the several heights ;

for in /

descending towards the centre of 7; -pi

the earth, gravity is (by Prop- ;

LXX1II) every where as the

height ;
and therefore the force

TM drawing the water upwards
will diminish its gravity in the

leg AC//J of the canal in a given
ratio : upon which account the

water will ascend in this leg, till its defect of gravity is supplied by its

greater height : nor will it rest in an equilibrium till its total gravity
becomes equal to the total gravity in EC/m, the other leg of the canal.

Because the gravity of every particle is as its distance from the earth s

centre, the weight of the whole water in either leg will increase in the

duplicate ratio of the height ;
and therefore the height of the water in the

leg AC/A* will be to the height thereof in the leg C/wE in the subdupli-

cate ratio of the number 12868201 to 12808200, or in the ratio of the

number 25623053 to the number 25623052, and the height of the water

in the leg EC/ra to the difference of the heights, as 25623052 to 1. But

the height in the lea: EC/m is of 19615800 Pa rift feet, as hits been lately
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found by the mensuration of the French ; and, therefore, by the preceding

analogy, the difference of the heights comes out 9} inches of the Paris

foot
;
and the sun s force will make the height of the sea at A to exceed

the height of the same at E by 9 inches. And though the water of the

canal ACE/??7/,: be supposed to be frozen into a hard and solid consistence,

yet the heights thereof at A and E, and all other intermediate places, would

still remain the same.

Let Act (in the following figure) represent that excess of height of 9

inches at A, and hf the excess of height at any other place h; and upon
DC let fall the perpendicular /G, meeting the globe of the earth in F :

and because the distance of the sun ib so great that all the right lines

drawn thereto may be considered as parallel, the force TM in any place /

will be to the same force in the place A as the sine FG to the radius AC.

And, therefore, since those forces tend to the sun in the direction of par
allel lines, they will generate
the parallel heights F/ An,
in the same ratio

;
and there

fore the figure of the water

Ylfaeb will be a spheroid

made by the revolution of an

ellipsis about its longer axis

ab. And the perpendicular

height fh will be to the ob

lique height F/ as/G to /C,

or as FG to AC : and there

fore the height fh is to the

height Art in the duplicate

ratio of FG to AC, that is, in the ratio of the versed sine of double the

angle DC/ to double the radius, and is thence given. And hence to the

several moments of the apparent revolution of the sun about the earth we

may infer the proportion of the ascent and descent of the waters at any

given place under the equator, as well as of the diminution of that ascent

and descent, whether arising from the latitude of places or from the sun s

declination
; viz., that on account of the latitude of places,

the ascent and

descent of the sea is in all places diminished in the duplicate ratio of the

co-sines of latitude
;
and on account of the sun s declination, the ascent

and descent under the equator is diminished in the duplicate ratio of the

v)-sine of declination. And in places without the equator the half sum

of the morning and evening ascents (that is, the mean ascent) is diminished

nearly in the same ratio.

Let S and L respectively represent the forces of the sun and moon

placed in the equator, and at their mean distances from the earth; R the

radius
;
T and V the versed sines of double the complements of the sun
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and moon s declinations to any given time
;
D and E the moan apparent

diameters of the sun and moon : and, supposing F and G to be their appa
rent diameters to that given time, their forces to raise the tides under the

VG 3 TF 3

equator will be, in the
syzygies-^^ 1, -f

^ 3 S; in the quadratures,

VG 3 TF 3

--,
L -TTT S. And if the same ratio is likewise observed under2RE 3 2R1) 3

the parallels, from observations accurately made in our northern climates

we may determine the proportion of the forces L and S
;
and then by

means of this rule predict the quantities of the tides to every syzygy and

quadrature.

At the mouth of the river Avon, three miles below Bristol (p. 450 to

453), in spring and autumn, the whole ascent of the water in the conjunc
tion or opposition of the luminaries (by the observation of Sturnty) is

about 45 feet, but in the quadratures only 25. Because the apparent di

ameters of the luminaries are not here determined, let us assume them in

their mean quantities, as well as the moon s declination in the equinoctial

quadratures in its mean quantity, that is, 23| ;
and the versed sine of

double its complement will be 1082, supposing the radius to be 1000. But

the declinations of the sun in the equinoxes and of the moon in the syzy-

gies are of no quantity, and the versed sines of double the complements
are each 2000. Whence those forces become L + S in the syzygies, and

\ L S in the quadrature^ respectively proportional to the heights
/cUOU

of the tides of 45 and 25 feet, or of and 5 paces. And, therefore, mul-

15138
tiplying the extremes and the means, we have 5L + 5S = TxTr L&amp;lt;

But farther
;

I remember to have been told that in summer the ascent of

the sea in the syzygies is to the ascent thereof in the quadratures as about

5 to 4. In the solstices themselves it is probable that the proportion may
be something less, as about 6 to 5

;
whence it would follow that L is =

5|S [for then the proportion is L + S : I, -S : : 6 : 5].

Till we can more certainly determine the proportion from observation, let

us assume L = 5^S ;
and since the heights of the tides are as the forces

which excite them, and the force of the sun is able to raise the tides to the

height of nine inches, the moon s force will be sufficient to raise the same

to the height of four feet. And if we allow that this height may be

doubled, or perhaps tripled, by that force of reciprocation which we observe

in the motion of the waters, and by which their motion once be ^un is kept
35
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up for some time, there will be force enough to generate all that quantity

of tides which we really find in the ocean.

Thus we have seen that these forces are sufficient to move the sea. But.

so far as I can observe, they will not be able to produce any other effect

sensible on our earth
;

for since the weight of one grain in 4000 is not

sensible in the nicest balance : and the sun s force to move the tides is

12868200 less than the force of gravity ;
arid the sum of the forces of both

moon and sun, exceeding the sun s force only in the ratio of 6^ to 1, is still

2032890 times less than the force of gravity ;
it is evident that both forces

together are 500 times less than what is required sensibly to increase * r

diminish the weight of any body in a balance. And, therefore, they will

not sensibly move any suspended body ;
nor will they produce any sensible

eifect on pendulums, barometers, bodies swimming in stagnant water, or in

the like statical experiments. In the atmosphere, indeed, they will excite

such a flux and reflux as they do in the sea, but with so small a motion

that no sensible wind will be thence produced.

if the effects of both moon and sun in raising the tides (p. 454), as well

as their apparent diameters, were equal among themselves, their absolute

forces would (by Cor. XIV, Prop. LXVI) be as their magnitudes. But the

effect of the moon is to the effect of the sun as about 5| to 1
;
and the

moon s diameter less than the sun s in the ratio of 31 1 to 32^, or of 45 to

46. Now the force of the moon is to be increased in the ratio of the effect

directly, and in the triplicate ratio of the diameter inversely. Whence the

force of the moon compared with its magnitude will be to the force of the

sun compared with its magnitude in the ratio compounded of
5-^-

to 1, and

the triplicate of 45 to 46 inversely, that is, in the ratio of about 5^ to 1.

And therefore the moon, in respect of the magnitude of its body, has an

absolute centripetal force greater than the sun in respect of the magnitude
of its body in the ratio to 5 T\ to 1, and is therefore more dense in the

same ratio.

In the time of 27 1

. 7h
. 43

,
in which the moon makes its revolution about

the earth, a planet may be revolved about the sun at the distance of 18.95 1

diameters of the sun from the sun s centre, supposing the mean apparen
diameter of the sun to be 32} ;

and in the same time the moon may be r&quot;-

volved about the earth at rest, at the distance of 30 of the earth s diame

ters. If in both cases the number of diameters was the same, the absolute

circum-terrestrial force would (by Cor. II, Prop. LXXll) be to the absolute

circum-solar force as the magnitude of the earth to the magnitude of the

tun. Because the number of the earth s diameters is greater in the ratio

of 30 to 18,954, the body of the earth will be less in the triplicate of that

ratio, that is, in the ratio of 3|| to 1. Wherefore the earth s force, for the

magnitude of its body, is to the sun s force, for the magnitude of its body,

as 3f f to 1 : and consequently the earth s density to the sun s will be IL
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the same ratio. Since, then, the moon s density is to the sun s density as

5JS to I, the moon s density will be to the earth s density as 5 r\ to 3f {,

or as 23 to 16. Wh. veforc since the moon s magnitude is to the earth s

magnitude as about I to 4l, the moon s absolute centripetal force will be

to the earth s absolute centripetal force as about I to 29, and the quantity
of matter in the moon to the quantity of matter in the earth in the same-

ratio. And hence the common centre of gravity of the earth and moon is

more exactly determined than hitherto has been done; from the knowledge
of which AVC may now infer the moon s distance from the earth with greater

accuracy. But I would rather wait till the proportion of the bodies of the

moon and earth one to the other is more exactly defined from the phae

nomena of the tides, hoping that in the mean time the circumference of the

earth may be measured from more distant stations than any body has yet

employed for this purpose.

Thus I have given an account of the system of the planets. As to the

fixed stars, the smallness of their annual parallax proves them to be re

moved to immense distances from the system of the planets: that this

parallax is less than one minute is most certain
;
and from thence it follows

that the distance of the fixed stars is above 360 times greater than the

distance of Saturn from ;he sun. Such as reckon the earth one of the

planets, and the sun one of the fixed stars, may remove the fixed stars to

yet greater distances by the following arguments: from the annual motion

of the earth there would happen an apparent transposition of the fixed

stars, one in respect of another, almost equal to their double parallax: but

the greater and nearer stars, in respect of the more remote, which are only

seen by the telescope, have not hitherto been observed to have the least

motion. If we should suppose that motion to be but less than
20&quot;,

the

distance of the nearer fixed stars would exceed the mean distance of Saturn

by above 2000 times. Again: the disk of Saturn, which is only 17&quot; or

18&quot; in diameter, receives but about ^------^.^ of the sun s light; for so

much less is that disk than the whole spherical surface of the orb of Saturn.

Now if we suppose Saturn to rellec* about { of this light, the whole light

reflected from its illuminated hemisphere will be about T ^^Wo o&quot;^~
^ ^e

whole light emitted from the sun s hemisphere: and, therefore, since light

is rarefied in the duplicate ratio of the distance from the luminous body, if

the sun was 10000 v/42 times more distant than Saturn, it would yet ap

pear as lucid as Saturn now does without its ring, that is, something more

lucid than a fixed star of the first magnitude. Let us, therefore, suppose

that the distance from which the sun would shine as a fixed star exceeds

that of Saturn by about 100,000 times, and its apparent diameter will be

7V
. 16vi

. and its parallax arising from the annual motion of the earth 13&quot;&quot; :

and so great will be the distance, the apparent diameter, and the parallax

of the fixed stars of the first magnitude, in bulk and light equal to our sun.
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Some may, perhaps, imagine that a great part of the light of the fixed stars

is intercepted and lost in its passage through so vast spaces, and upon that

account pretend to place the fixed stars at nearer distances; but at this

rate the remoter stars could be scarcely seen. Suppose, for example, that

of the light perish in its passage from the nearest fixed stars to us
;
then

| will twice perish in its passage through a double space, thrice through a

triple, and so forth. And, therefore, the fixed stars that are at a double

distance wHl be 16 times more obscure, viz., 4 times more obscure on ac

count of the diminished apparent diameter
; and, again, 4 times more on

account of the lost light. And, by the same argument, the fixed stars at a

triple distance will be 9 X 4. X 4, or 144 times more obscure; and those

at a quadruple distance will be 16 X 4 X 4 X 4, or 1024 times more ob

scure: but so great a diminution of light is no ways consistent with the

phenomena and with that hypothesis which places the fixed stars at differ

ent distances.

Tne fixed stars being, therefore, at such vast distances from one another

(p. 460, 461), can neither attract each other sensibly, nor be attracted by
our sun. But the comets must unavoidably be acted on by the circum

solar force
;
for as the comets were placed by astronomers above the moon,

because they were found to have no diurnal parallax, so their annual

parallax is a convincing proof of their descending into the regions of the

planets. For all the comets which move in a direct course, according to

the order of the signs, about the end of their appearance become more than

ordinarily slow, or retrograde, if the earth is between them and the sun ;

and more than ordinarily swift if the earth is approaching to a heliocen

tric opposition with them. Whereas, on the other hand, those which move

against the order of the signs, towards the end of their appearance, appear
swifter than they ought to be if the earth is between them and the sun

;

and slower, and perhaps retrograde, if the earth is in the other side of its

crbit. This is occasioned by the motion of the earth in different situa

tions. If the earth go the same way with the comet, with a swifter

motion, the comet becomes retrograde; if with a slower motion, the comet

becomes slower, however
;
and if the earth move the contrary way, it be

comes swifter
;
and by collecting the differences between the slower and

swifter motions, and the sums of the more swift and retrograde motions,

and comparing them with the situation and motion of the earth from,

whence they arise, I found, by means of this parallax, that the distances

of the comets at the time they cease to be visible to the naked eye are

always less than the distance of Saturn, and generally even less than the

distance of Jupiter.

The same thing may be collected from the curvature of the way of the

comets (p. 462). These bodies go on nearly in great circles while their

motion continues swift
;
but about the end of their course, when that part
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of their apparent motion which arises from the parallax bears a greater

proportion to their whole apparent motion, they commonly deviate from

those circles
;
and when the earth goes to one side, they deviate to the

other
;
and this deflection, because of its corresponding with the motion

of the earth, must arise chiefly from the parallax ;
and the quantity there

of is so considerable, as, by my computation, to place the disappearing
comets a good deal lower than Jupiter. Whence it follows, that, when

they approach nearer to us in their perigees and perihelions, they often de

scend below the orbits of Mars and the inferior planets.

Moreover, this nearness of the cornets is confirmed by the annual paral
lax of the orbit, in so far as the same is- pretty nearly collected by the

supposition that the comets move uniformly in right lines. The method

of collecting the distance of a comet according to this hypothesis from

four observations (first attempted by Kepler, and perfected by Dr. Wallis

and Sir Christopher Wren) is well known and the comets reduced to

this regularity generally pass through the middle of the planetary region.

So the comets of the year 1607 and 1618, as their motions are defined by

Kepler, passed between the sun and the earth : that of the year 16 4 be

low the orbit of Mars; and that in 1680 below the orbit of Mercury, as

its motion was defined by Sir Christopher Wren rind others. By a like

rectilinear hypothesis, Hevelius placed all the comets about which we have

any observations below the orbit of Jupiter. It is a false notion, there

fore, and contrary to astronomical calculation, which some have enter

tained, who, from the regular motion of the comets, either remove them

into the regions of the fixed stars, or deny the motion of the earth : where

as their motions cannot be reduced to perfect regularity, unless we suppose
them to pass through the regions near the earth in motion

;
and these are

the arguments drawn from the parallax, so far as it can be determined

without an exact knowledge of the orbits and motions of the comets.

The near approach of the comets is farther confirmed from the light of

their heads (p. 463, 465) ;
for the light of a celestial body, illuminated by

the sun, and receding to remote parts, is diminished in the quadruplicate

proportion of the distance
;

to wit, in one duplicate proportion on account

of the increase of the distance from the sun
;
and in another duplicate

proportion on account of the decrease of the apparent diameter. Hence it

may be inferred, that Saturn being at a double distance, and having its

apparent diameter nearly half of that of Jupiter, must appear about I (5

times more obscure
;
and that, if its distance were 4 times greater, its

light would be 256 times less
;
and therefore would be hardly perceivable

to the naked eye. But now the comets often equal Saturn s light, without

exceeding him in their apparent diameters. So the comet of the year

1668, according to Dr. Hooke s observations, equalled in brightness the

light of a fixed star of the first magnitude ;
and its head, or the star ID
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the middle of the coma, appeared, through a telescope oi 15 feet, as lucid

as Saturn near the horizon
;
but the diameter of the head was only 25&quot;

that is, almost the same with the diameter of a circle equal to Saturn

and his ring. The coma or hair surrounding the head was about ten times

as broad; namely, 4 min. Again ;
the least diameter of the hair of the

comet of the year 1682, observed by Mr. Flamsted with a tube of 16 feet

and measured with the micrometer, was 2
;
but the nucleus, or star in

the middle, scarcely possessed the tenth part of this breadth, and was

therefore only 11 or 12&quot; broad; but the light and clearness of its head

exceeded that of the year 1680, and was equal to that of the stars of the

first or second magnitude. Moreover, the comet of the year 1665, in April,

as Hevelws informs us, exceeded almost all the fixed stars in splendor, arid

even Saturn itself, as being of a much more vivid colour
;
for this comet

was more lucid than that which appeared at the end of the foregoing year

and was compared to the stars of the first magnitude. The diameter of

the coma was about 6
;
but the nucleus, compared with the planets by

means of a telescope, was plainly less than Jupiter, and was sometime*?

thought less, sometimes equal to the body of Saturn within the ring. To
this breadth add that of the ring, and the whole face of Saturn will be

twice as great as that of the comet, with a light not at all more intense ;

and therefore the comet was nearer to the sun than Saturn. From the

proportion of the nucleus to the whole head found by these observations,

and from its breadth, which seldom exceeds 8 or 12 ;

,
it appears that thi-

Btars of the comets are most commonly of the same apparent magnitude
as the planets ;

but that their light may be compared oftentimes with that

of Saturn, and sometimes exceeds it. And hence it is certain that in their

perihelia their distances can scarcely be greater than that of Saturn. At

twice that distance, the light would be four times less, which besides by its

dim paleness would be as much inferior to the light of Saturn as the light

of Saturn is to the splendor of Jupiter : but this difference would be easily

observed. At a distance ten times greater, their bodies must be greattr

than that of the sun
;
but their light would be 100 times fainter than

that of Saturn. And at distances still greater, their bodies would far

exceed the sun
;. but, being in such dark regions, they must be no longer

visible. So impossible is it to place the comets in the middle regions be

tween the sun and fixed stars, accounting the sun as one of the fixed stars:

for certainly they would receive no more light there from the sun than w&amp;lt;?

do from the greatest of the fixed stars.

So far we have gone without considering that obscuration which comets

suffer from that plenty of thick smoke which encompasseth their heads.

and through which the heads always shew dull as through a cloud
;
for

by how much the more a body is obscured by this smoke, by so much th.2

more near it must be allowed to come to the sun, that it may vie with the
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planets in the quantity of light which it reflects : whence it is probable

that the comets descend far below the orbit of Saturn, as we proved before

from their parallax. But, above all, the thing is evinced from their tails,

which must be owing either to the sun s light reflected from a srnoke

arising from them, and dispersing itself through the aether, or to the light

uf their own headt.

In the former case we must shorten the distance of the comets, lest we be

obliged to allow that the smoke arising from their heads is propagated

through such a vast extent of space, and with such a velocity of expansion,

jus will seem altogether incredible; in the latter case the whole light of

both head and tail must be ascribed to the central nucleus. But, then, if

we suppose all this light to be united and condensed within the disk of the

nucleus, certainly the nucleus will by far exceed Jupiter itself in splendor,

especially when it emits a very large and lucid tail. If, therefore, under a less

apparent diameter, it reflects more light, it must be much more illuminated

by the sun, and therefore much nearer to it. So the comet that appeared
Dec. }2 and 15, O.S. Anno 1679, at the time it emitted a very shining

tail, whose splendor was equal to that of many stars like Jupiter, if their

light were dilated and spread through so great a space, was, as to the mag
nitude of its nucleus, less than Jupiter (as Mr. Flawsled observed), and

therefore was much nearer to the sun : nay, it was even less than Mercury.
For on the 17th of that month, when it was nearer to the earth, it ap

peared to Cassini through a telescope of 35 feet a little less than the globe

of Saturn. On the 8th of this month, in the morning, Dr. ffalfey saw the

tail, appearing broad and very short, and as if it rose from the body of the

sun itself, at that time very near its rising. Its form was like that of an

extraordinary bright cloud
;
nor did it disappear till the sun itself began

to be seen above the horizon. Its splendor, therefore, exceeded the light of

the clouds till the sun rose, and far surpassed that of all the stars together,

as yielding only to the immediate brightness of the sun itself. Neither

Mercury, nor Venus, nor the moon itself, are seen so near the rising sun.

Imagine all this dilated light collected together, and to be crowded into

the orbit of the comet s nucleus which was less than Mercury ; by its

splendor, thus increased, becoming so much more conspicuous, it will vastly

exceed Mercury, and therefore must be nearer to the sun. On the 12th

and 15th of the same month, this tail, extending itself over a much greater

space, appeared more rare; but its light was still so vigorous as to become

visible when the fixed stars were hardly to be seen, and soon after to appear
like a fiery beam shining in a wonderful manner. From its length, which

was 40 or 50 degrees, and its breadth of 2 degrees, we may compute what

the light of the whole must be

This near approach of the comets to the sun is confirmed from the situ-

tion they are seen in when their tails appear most resplendent; for when
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the head passes by the sun, and lies hid under the solar rays, very bright
and shining ta Is, like fiery beams, are said to issue from the horizon; but

afterwards, when the head begins to appear, and is got farther from the

sun, that splendor always decreases, and turns by degrees into a paleness

like to that of the milky way, but much more sensible at first
;
after that

vanishing gradually. Such was that most resplendent comet described by

Aristotle, Lib. 1, Meteor. 6.
&quot; The head thereof could not be seen, because

it set before the sun, or at least was hid under the sun s rays ;
but the next

day it was seen as well as might be
; for, having left the sun but a very

little way, it set immediately after it
;
and the scattered light of the head

obscured by the too great splendour (of the tail) did not yet appear. But

afterwards (says Aristotle), when the splendour of the tail was now dimin

ished (the head of), the comet recovered its native brightness. And the

splendour of its tail reached now to a third part of the heavens (that is, to

60). It appeared in the winter season, and, rising to Orion s girdle, there

vanished
away.&quot;

Two comets of the same kind are described by Justin,

Lib. 37, which, according to his account,
&quot; shined so bright, that the whole

heaven seemed to be on fire
;
and by their greatness filled up a fourth part

of the heavens, and by their splendour exceeded that of the sun.&quot; By
which last words a near position of these bright comets and the rising or

setting sun is intimated (p. 494, 495). We may add to these the comet of

the year 1101 or 1106,
&quot; the star of which was small and obscure (like that

of ] 6SO) ;
but the splendour arising from it extremely bright, reaching like

a fiery beam to the east and north,&quot; as Hevelius has it from Simeon, the

monk of Durham. It appeared at the beginning of February about the

evening in the south-west. From this and from the situation of the tail

we may infer that the head was near the sun. Matthew Paris says, &quot;it

was about one cubit from the sun
;
from the third [or rather the sixth] to

the ninth hour sending out a long stream of
light.&quot;

The comet of 1264,

in July, or about the solstice, preceded the rising sun, sending out its beams

with a great light towards the west as far as the middle of the heavens
;

and at the beginning it ascended a little above the horizon : but as the sun

went forwards it retired every day farther from the horizon, till it passed

by the very middle of the heavens. It is said to have been at the beginning

large and bright, having a large coma, which decayed from day to day. It

is described in Append. Matth, Paris, Hist. Aug. after this manner : ^Au.

Christi 1265, there appeared a comet so wonderful, that none then living
had ever seen the like

; for, rising from the east with a great brightness, it

extended itself \uth a great light as far as the middle of the hemisphere
towards the west.&quot; The Latin original being somewhat barbarous and ob-

gcure, it is here subjoined. Ah oriente enim cum tnaguo fulgore sur-
&quot; :i

s, usque ad medium hcmisp]icerii versus occideutcm, omuia per lucid*

pertrahcbai.
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&quot;In the year 1401 or 1402, the sun being got below the horizon, there

appeared in the west a bright and shining comet, sending out a tail up

wards, in splendor like a flame of fire, and in form like a spear, darting its

rays from west to east. When the sun was sunk below the horizon, by the

lustre of its own rays it enlightened all the borders of the earth, not per

mitting the other stars to shew their light, or the shades of night to darken

the air, because its light exceeded that of the others, and extended itself to

the upper part of the heavens, flaming,&quot; &c., Hist. Byzaut. Due. Mich.

Nepot. From the situation of the tail of this comet, and the time of its

first appearance, we may infer that the head was then near the sun, and

went farther from him every day ;
for that comet continued three months.

In the year 1527, Aug. 11, about four in the morning, there was seen al

most throughout Europe a terrible comet in Leo, which continued flaming
an hour and a quarter every day. It rose from the east, and ascended to

the south and west to a prodigious length. It was most conspicuous to the

north, and its cloud (that is, its tail) was very terrible
; having, according

to the fancies of the vulgar, the form of an arm a little bent holding a

sword of a vast magnitude. In the year 1618, in the end of November,
there began a rumour, that there appeared about sun-rising a bright beam,
which was the tail of a comet whose head was yet concealed within the

brightness of the solar rays. On Nov. 24, and from that time, the comet

itself appeared with a bright light, its head and tail being extremely re

splendent. The length of the tail, which was at first 20 or 30 dog., in

creased till December 9, when it arose to 75 deg,, but with a light much
more faint and dilute than at the beginning. In the year 1668, March 5,

N. S., about 7 in the evening, P. Volent. Estaucius, being in Brazil, saw

a comet near the horizon in the south-west. Its head was small, and

scarcely discernible, but its tail extremely bright and refulgent, so that the

reflection of it from the sea was easily seen by those who stood upon the

shore. This great splendor lasted but three days, decreasing very remark

ably from that time. The tail at the beginning extended itself from west

to south, and in a situation almost parallel to the horizon, appearing like

a shining beam 23 deg. in length. Afterwards, the light decreasing, its

magnitude increased till the comet ceased to be visible; so that Cassiid,

at Bologna^ saw it (Mar. 10, 11, 12) rising from the horizon 32 deg. in

length. In Portugal it is said to have taken up a fourth part of the

heavens (that is, 45 deg.), extending itself from west to east with a notable

brightness ; though the whole of it was not seen, because the head in this

part of the world always lay hid below the horizon. From the increase of

the tail it is plain that the head receded from the sun. and was nearest to

it at the beginning, when the tail appeared brightest.

To all these we may add the comet of 1680, whose wonderful splendor

at the conjunction of the head with the sun was above described. Hut so
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great a splendor argues the comets of this kind to have really passed near

the fountain of light, especially since the tails never shine so much in

their opposition to the sun
j
nor do we read that fiery beams have ever ap

peared there.

Lastly, the same thing is inferred (p. 466; 407) from the light of the

heads increasing in the recess of the comets from the earth towards the

sun, and decreasing in their return from the sun towards the earth
;
for so

the last comet of the year 1 665 (by the observation of Hevelius]^ from the

time that it was first seen, was always losing of its apparent motion, and

therefore had already passed its perigee : yet the splendor of its head was

daily increasing, till, being hid by the sun
?

s rays, the comet ceased to ap

pear. The comet of the year (683 (by the observation of the same He-

jelius), about the end of July, when it first appeared, moved at a very
slow rate, advancing only about 40 or 45 minutes in its orbit in a day s

time. I3ut from that time its diurnal motion was continually upon the

increase till Septe/uber 4, when it arose to about 5 degrees ;
and therefore

in all this interval of time the comet was approaching to the earth. Which

is likewise proved from the diameter of its head measured with a microme

ter
; for, August the 6th, Hevelius found it only 6

5&quot;, including the

coma ; which, September 2, he observed 9 7&quot;. And therefore its head

appeared far less about the beginning than towards the end of its motion,

though about the beginning, because nearer to the sun, it appeared far

more lucid than towards the end, as the same Hevelius declares. Where

fore in all this interval of time, on account of its recess from the sun,

it decreased in splendor, notwithstanding its access towards the earth. The

comet of the year 1618, about the middle of December, and that of the

year 1680, about the end of the same month, did both move with their

greatest velocity, and were therefore then in their perigees : but the greatest

splendor of their heads was seen two weeks before, when they had just got

clear of the sun s rays : and the greatest splendor of their tuild a little

more early, when yet nearer to the sun. The head of the former comet,

according to the observations of Cysattis, Dec. 1, appeared greater than

the stars of the first magnitude: and, Dec. 16 (being then in its perigee),

)i a small magnitude, and the splendor or clearness was much diminished.

Jan. 7, Kepler, being uncertain about the head
?
left off observing. Dec.

12, the head of the last comet was seen and observed by Flamxted at the

distance of 9 degrees from the sun, which a star of the third magnitude
could hardly have been. December 15 and 17, the same appeared like a

star of the third magnitude, its splendor being diminished by the bright

clouds near the setting sun. Dec. 26, when it moved with the greatest

swiftness, and was almost in its perigee, it was inferior to Os Pegasi, a

star of the third magnitude. Jait. 3, it appeared like a star of the fourth :

fan. 9, like a star of the fifth. Jan. 13. it disappeared, by reason of tb&amp;lt;~
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brightness of the moon, which was then in its increase. Jan. 25, it was

scarcely equal to the stars of the seventh magnitude. If we take equal

times on each hand of the perigee, the heads placed at remote distances

would have shined equally before and after, because of their equal distances

frjin the earth. That in one case they shined very bright, and in the

other vanished, is to be ascribed to the nearness cf the sun in the first case,

and his distance in the other; and from the great difference of the light

in these two cases we infer its great nearness in the first of them : for

the light of the comets uses to be regular, and to appear greatest when

their heads move the swiftest, and are therefore in their perigees ; except

ing in so fur as it is increased by their nearness to the sun.

From thee things I at last discovered why the comets frequent so much
the region of the sun. If they were to be seen in the regions a great way

beyond Saturn, they must appear oftener in these parts of the heavens

that are opposite to the sun
;
for those which are in that situation would

be nearer to the earth, and the interposition of the sun would obscure the

others: but, looking over the history of comets, I find that four or five

times more have been seen in the hemisphere towards the sun than in th-3

opposite hemisphere ; besides, without doubt, not a few which have been

hid by the light of the sun
;
fur comets descending into our parts neither

emit tails, nor are so well illuminated by the sun, as to discover them

selves to our naked eyes, till they are come nearer to us than Jupiter. But

the far greater part of that spherical space, which is described about the

sun with so small an interval, lies en that side of the earth which regards
the sun, and the comets in that greater part are more strongly illuminated,

as being for the most part nearer to the sun : besides, from the remarka

ble eccentricity of their orbits, it comes to pass that their lower apsides

are much nearer to the sun than if their revolutions were performed in

circles concentric to the sun.

Hence also we understand why the tails of the comets, while their heads

are descending towards the sun, always appear short and rare, and are sel

dom said to have exceeded 15 or 20 deg. in length ;
but in the recess of

the heads from the sun often shine like fiery beams, and soon after reach

to 40, 50, 60, 70 deg. in length, or more. This great splendor and length

of the tails arises from the heat which the sun communicates to the comet

as it passes near it. And thence, I think, it may be concluded, that all the

comets that have had such tails have passed very near the sun.

Hence also we may collect that the tails arise from the atmospheres of

the heads (p. 487 to 488) : but we have had three several opinions about

the tails of comets
;
for some will have it that they are nothing else but

the beams of the sun s light transmitted through the comets heads, which

they suppose to be transparent ; others, that they proceed from the refrac

tion which light suffers in passing from the comet s head to the earth
;
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and, lastly, others, that they are a sort of clouds or vapour constantly

rising from the cornets heads, and tending towards the parts opposite to

the sun. The first is the opinion of such as are yet unacquainted with

optics ;
for the beams of the sun are not seen in a darkened room, but in

consequence of the light that is reflected from them by the little particles

of dust and smoke which are always flying about in the air
;
and hence it

is that in air impregnated with thick smoke they appear with greater

brightness, and are more faintly and more difficultly seen in a finer air;

but in the heavens, where there is no matter to reflect the light, they are

not to be seen at all. Light is not seen as it is in the beams, but as it is

thence reflected to our eyes ;
for vision is not made but by rays falling

upon the eyes, and therefore there must be some reflecting matter in those

parts where the tails of comets are seen
;
and so the argument turns upon

the third opinion ;
for that reflecting matter can be no where found but in

the place of the tail, because otherwise, since all the celestial spaces are

equally illuminated by the sun s light, no part of the heavens could appear

with more splendor than another. The second opinion is liable to many
difficulties. The tails of comets are never seen variegated with thos-e

colours which ever use to be inseparable from refraction
;
and the distinct

transmission of the light of the fixed stars and planets to us is a demon

stration that the aether or celestial medium is not endowed with any re

fractive power. For as to what is alledged that the fixed stars have been

sometimes seen by the Egyptians environed with a coma or capillitium

because that has but rarely happened, it is rather to be ascribed to a casual

refraction of clouds, as well as the radiation and scintillation of the fixed

stars to the refractions both of the eyes and air
;
for upon applying a tele

scope to the eye, those radiations and scintillations immediately disappear.

By the tremulous agitation of the air and ascending vapours, it happens

that the rays of light are alternately turned aside from the narrow space

of the pupil of the eye ;
but no such thing can have place in the much

wider aperture of the object-glass of a telescope ;
and hence it is that a

scintillation is occasioned in the former case which ceases in the latter
;

and this cessation in the latter case is a demonstration of the regular trans

mission of light through the heavens without any sensible refraction.

But, to obviate an objection that may be made from the appearing of no

tail in such comets as shine but with a faint light, as if the secondary

rays were then too weak to affect the eyes, and for this reason it is that

the tails of the fixed stars do not appear, we are to consider that by the

means of telescopes the light of the fixed stars may be augmented above

an hundred fold and yet no tails are seen; that the light of the planets is

yet more copious without any tail, but that comets are seen sometimes

with huge tails when the light of their heads is but faint and dull
;
for

so it happened in the comet of the year 1680, when in the month of De-
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cember it was scarcely equal in light to the stars of the second magnitude
and yet emitted a notable tail, extending to the length of 40, 50, 60. or

70, and upwards ;
and afterwards, on the 27th and 28th of January, the

head appeared but as a star of the seventh magnitude ;
but the tail (as

was said above), with a light that was sensible enough, though faint, was

stretched out to 6 or 7 degrees in length, and with a languishing light

that was more difficultly seen, even to 12 and upwards. But on the 9th

and 10th of February, when to the naked eye the head appeared no more,

I saw through a telescope the tail of 2 in length. But farther : if the

tail was owing to the refraction of the celestial matter, and did deviate

from the opposition of the sun, according as the figure of the heavens re

quires, that deviation, in the same places of the heavens, should be always

directed towards the same parts : but the comet of the year 1680, Decem

ber 28 1

. SJ
1

. P. M. at London, was seen in Pisces, 8 41
,
with latitude

north 28 6
,
while the sun was in Capricorn 18 26 . And the comet of

the year 1577, December 29, was in Pisces 8 41
,
with latitude north

2S D 40
;
and the sun, as before, in about Capricorn 18 26 . In both

cases the situation of the earth was the same, and the comet appeared in

the same place of the heavens
; yet in the former case the tail of the comet

(as well by my observations as by the observations of others) deviated

from the opposition of the sun towards the north by an angle of 4| de

grees, whereas in the latter there was (according to the observation of

Tycht] a deviation of 21 degrees towards the south. The refraction,

therefore, of the heavens being thus disproved, it remains that the phaeno-

meria of the tails of comets must be derived from some reflecting matter.

That vapours sufficient to fill such immense spaces may arise from the

comet s atmospheres, may be easily understood from what follows.

It is well known that the air near the surface of our earth possesses a

space about 1200 times greater than water of the same weight ;
and there

fore a cylindric column of air 1200 feet high is of equal weight with a

cylinder of water of the same breadth, and but one foot high. But a

cylinder of air reaching to the top of the atmosphere is of equal weight
with a cylinder of water about 33 feet high ;

and therefore if from the

whole cylinder of air the lower part of 1200 feet high is taken away, the

remaining upper part will be of equal weight with a cylinder of water 32

feet high. Wherefore at the height of 1200 feet, or two furlongs, the

weight of the incumbent air is less, and consequently the rarity of the

compressed air greater, than near the surface of the earth in the ratio of

33 to 32. And, having this ratio, we may compute the rarity of the air

in all places whatsoever (by the help of Cor. Prop. XXII, Book II), sup

posing the expansion thereof to be reciprocally proportional to its compres
sion

;
and this proportion has been proved by the experiments of Hooke

and others. The result of the computation I have set down in the follow-
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ing table, in the first column of which you have the height o the air in

miles, whereof 4000 m:ike a semi-diameter of the earth; in the second the

compression of the air, or the incumbent weight ; in the third its rarity or

expansion, supposing gravity to decrease in the duplicate ratio of the

distances from the earth s centre. And the Latin numeral characters

are here used for certain numbers of ciphers, as 0,xvii 1224 for

IMJ00000000000000001224, and 26950 xv for 26956000000000000000,

AlR s

But from this table it appears that the air, in proceeding upwards, is

rarefied in such manner, that a sphere of that air which is nearest to the

earth, of but one inch in diameter, if dilated with that rarefaction which
it would have at the height of one semi-diameter of the earth, would fill all

the planetary regions as far as the sphere of Saturn, and a great way be

yond ;
and at the height of ten semi-diameters of the earth would fill up

more space than is contained in the whole heavens on this side the fixed

stars, according to the preceding computation of their distance. And

though, by reason of the far greater thickness of the atmospheres of comets,
and the great quantity of the circum-solar centripetal force, it may happen
that the air in the celestial spaces, and in the tails of comets, is not so

vastly rarefied, yet from this computation it ^s plain that a very small

quantity of air and vapour is abundantly sufficient to produce all the ap

pearances of the tails of comets; for that they are indeed of a very notable

rarity appears from the shining of the stars through them. The atmos

phere of the earth, illuminated by the sun s light, though but of a few miles

in thickness, obscures arid extinguishes the light not only of all the stars,

but even of the moon itself; whereas the smallest stars are seen to shine

through the immense thickness of the tails of comets, likewise illuminated

by the sun, without the least diminution of their splendor.

Kepler ascribes the ascent of the tails of comets to the atmospheres of

their heads, and their direction towards the parts opposite to the sun to the

action of the rays of light carrying along with them the matter of the

comets tails
;
and without any great incongruity we may suppose that, in

so free spaces, so fine a matter as that of the aether may yield to the action
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of the rays of the sun s light, though those rays are not able sensibly to move

the gross substances in our parts, which are clogged with so palpable a re

sistance. Another author thinks that there may be a sort of particles of

matter endowed with a principle of levity as well as others are with a

power of gravity ;
that the matter of the tails of comets may be of the

former sort, and that its ascent from the sun may be owing to its levity ;

but, considering the gravity of terrestrial bodies is as the matter of the

bodies, and therefore can be neither more nor less in the same quantity of

matter, I am inclined to believe that this ascent may rather proceed from

the rarefaction of the matter of the comets tails. The ascent of smoke in

a chimney is owing to the impulse of the air with which it is entangled.

The air rarefied by heat ascends, because its specific gravity is diminished,

and in its ascent carries along with it the smoke with which it is engaged.
/Vnd why may not the tail of a comet rise from the sun after the same

manner? for the sun s rays do not act any way upon the mediums which

they pervade but by reflection and refraction
;
and those reflecting parti

cles heated by this action, heat the matter of the aether which is involved

with them. That matter is rarefied by the heat which it acquires, and

because by this rarefaction the specific gravity, with which it tended

towards the sun before, is diminished, it will ascend therefrom like a stream,

and carry along with it the reflecting particles of which the tail of the

comet is composed ;
the impulse of the sun s light, as we have said, pro

moting the ascent.

But that the tails of comets do arise from their heads (p. 488), and tend

towards the parts opposite to the sun, is farther confirmed from the laws

which the tails observe
; for, lying in the planes of the comets orbits which

pass through the sun, they constantly deviate from the opposition of the

sun towards the parts which the comets heads in their progress along those

orbits have left
;
and to a spectator placed in those planes they appear in

the parts directly opposite to the sun
;
but as the spectator recedes from

those planes, their deviation begins to appear, and daily becomes greater.

And the deviation, c&teris paribits, appears less when the tail is more ob

lique to the orbit of the comet, as well as when the head of the comet ap

proaches nearer to the sun
.; especially if the angle of deviation is estimated

near the head of the comet. Farther; the tails which have no deviation

appear straight, but the tails which deviate are likewise bended into a cer

tain curvature
;
and this curvature is greater when the deviation is greater,

and is more sensible when the tail, cccteris paribus, is longer; for in the

shorter tails the curvature is hardly to be perceived. And the angle of

deviation is less near the comet s head, but greater towards the other end

of the tail, and that because the lower side of the tail regards the parts

from which the deviation is made, and which lie in a right line drawn out

infinitely from the sun through the comet s head. And the tails that are
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longer and broader
;
and shine with a stronger light, appear more resplendent

and more exactly defined on the convex than on the concave side. Upon
which accounts it is plain that the phenomena of the tails of comet? de

pend upon the motions of their heads, and by no means upon the places of

the heavens in which their heads are seen
;
and that, therefore, the tailg of

the comets do not proceed from the refraction of the heavens, but from

their own heads, which furnish the matter that forms the tail
;
for as in

our air the smoke of a heated body ascends either perpendicularly, if the

body is at rest, or obliquely if the body is moved obliquely, so in the

heavens, where all the bodies gravitate towards the sun, smoke and vapour

must (as we have already said) ascend from the sun, and either rise perpen

dicularly, if the smoking body is at rest, or obliquely, if the body, in the

progress of its motion, is always leaving those places from which the upper

or higher parts of the vapours had risen before. And that obliquity will

be less where the vapour ascends with more velocity, to wit, near the

smoking body, when that is near the sun
;
for there the force of the sun by

which the vapour ascends is stronger. But because the obliquity is varied,

the column of vapour will be incurvated
;
and because the vapour in the

preceding side is something more recent, that is, has ascended something
more lately from the body, it will therefore be something more dense on

that side, and must on that account reflect more light, as well as be better

defined
;
the vapour on the other side languishing by degrees, and vanish

ing out of sight.

But it is none of our present business to explain the causes of the ap

pearances of nature. Let those things which we have last said be true or

false, we have at least made out, in the preceding discourse, that the rays

of light are directly propagated from the tails of comets in right lines

through the heavens, in which those tails appear to the spectators wherever

placed ;
and consequently the tails must ascend from the heads of the comets

towards the parts opposite to the sun. And from this principle we may
determine anew the limits of their dis-

&amp;lt;~ tances in manner following. Let S rep-

resent the sun, T the earth, STA the

elongation of a comet from the sun, and

ATB the apparent length of its tail;

and because the light is propagated from

the extremity of the tail in the direction

of the right, line TB, that extremity

must lie somewhere in the line TB.

Suppose it in D, and join DS cutting

TA in C. Then, because the tail is al -

ways stretched out towards the parts

nearly opposite to the sun, and there! ore
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the sun, the head of the comet, and the extremity of the tail, lie in a right

line, the comet s head will be found in C. Parallel to TB draw SA, meet

ing the line TA in A, arid the comet s head C must necessarily be found

between T and A, because the extremity of the tail lies somewhere in the

infinite line TB
;
and all the lines SI) which can possibly be drawn from

the point S to the line TB must cut the line TA somewhere between T
and A. Wherefore the distance of the comet from the earth cannot exceed

the interval TA. nor its distance from the sun the interval SA beyond, or

ST on this side the sun. For instance : the elongation of the comet of

16SO from the sun, Dec. 12, was 9, and the length of its tail 35 at least.

If, therefore, a triangle TSA is made, whose angle T is equal to the elon

gation 9, and angle A equal to ATB, or to the length of the tail, viz., 35,
then SA will be to ST, that is, the limit of the greatest possible distance

of the comet from the sun to the semi -diameter of the oj-bis magnus, as

the sine of the angle T to the sine of the angle A, that is, as about 3 to

11. And therefore the comet at that time was less distant from the sun

than by T
3
T of the earth s distance from the sun, and consequently either

was within the orb of Mercury, or between that orb and the earth. Again,

Dec. 21, the elongation of the comet from the sun was 32f ,
and the length

of its tail 70. Wherefore as the sine of 3^| to the sine of 70, that is,

as 4 to 7, so was the limit of the comet s distance from the sun to the dis

tance of the earth from the sun, and consequently the comet had not then

got without the orb of Venus. Dec. 28, the elongation of the comet from

the sun was 55, and the length of its tail 56
;
and therefore the limit of

the comet s distance from the sun was not yet equal to the distance of the

earth from the same, and consequently the comet had not then got without

the earth s orbit. But from its parallax we find that its egress from the

orbit happened about Jan. 5, as well as that it had descended far within

the orbit of Mercury. Let us suppose it to have been in its perihelion

Dec. the 8th, when it was in conjunction with the sun
;
and it will follow

that in the journey from its perihelion to its exit out of the earth s orbit

it had spent 28 days ;
and consequently that in the 26 or 27 days fol

lowing, in which it ceased to be farther seen by the naked eye, it had

scarcely doubled its distance from the sun
;
and by limiting the distances

of other comets by the like arguments, we come at last to this conclu

sion, that all comets, during the time in which they are visible by us,

are within the compass of a spherical space described about the sun as a

centre, with a radius double, or at most triple, of the distance of the earth

from the sun.

And hence it follows that the comets, during the whole time of their

appearance unto us, being within the sphere of activity of the circum

solar force, and therefore agitated by the impulse of that force, will (by

Cor. 1, Prop. XII, Book I, for the same reason as the planets) be made tc

36
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move in conic sections that have one focus in the centre of the sun, and

by radii drawn to the sun, to describe areas proportional to the times
;
for

that force is propagated to an immense distance, and will govern the

motions of bodies far beyond the orbit of Saturn.

There are three hypotheses about comets (p. 466) ;
for some will have it

that they are generated and perish as often as they appear and vanish
;

others, that they come from the regions of the rixed stars, and are seen by
us in their passage through the system of our planets ; and, lastly, others,

that they are bodies perpetually revolving about the sun in very eccentric

orbits. In the first case, the comets, according to their different vel cities,

will move in conic sections of all sorts; in the second, they will describe

hyperbolas, and in either of the two will frequent indifferently all quar
ters of the heavens, as well those about the poles as those towards the

ecliptic ;
in the third, their motions will be performed in ellipses very ec

centric, and very nearly approaching to parabolas. But (if the law of the

planets is observed) their orbits will not much decline from the plane of

the ecliptic; and, so far as I could hitherto observe, the third case obtains;

for the comets do, indeed, chiefly frequent the zodiac, and scarcely ever

attain to a heliocentric latitude of 40. And that they move in orbits

very nearly parabolical, I infer from their velocity ;
for the velocity with

which a parabola is described is every where to the velocity with which a

comet or planet may be revolved about the sun in a circle at the same dis

tance in the subduplicate ratio of 2 to 1 (by Gor. VII, Prop. XVI) ; and,

by my computation, the velocity of comets is found to be much about

the same. I examined the thing by inferring nearly the velocities from

the distances, and the distances both from the parallaxes and the phaeno-

rnena of the tails, and never found the errors of excess or defect in the ve

locities greater than what might have arose from the errors in the dis

tances collected after that manner. But I likewise made use of the reason

ing that follows.

Supposing the radius of the nrbis magiius to be divided into 1000

parts: let the numbers in the first column of the following table represent

the distance of the vertex of the parabola from the sun s centre, expressed

by those parts : and a comet in the times expressed in col. 2, will pass

from its perihelion to the surface of the spheie which is described about

the sun as a centre with the radius of the orbis magnus ; and in the

times expressed in col. 3, 4, and 5, it will double, triple, and quadruple,

that its distance from f.l:o sun.
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TABLE L

[This table, here corrected, is made on the supposition that the earth s

diurnal motion is just 59
,
and the measure of one minute loosely 0,2909,

in respect of the radius 1000. If those measures are taken true, the

true numbers of the table will all come out less. But the difference,

even when greatest, and to the quadruple of the earth s distance from

the sun, amounts only to 16h
. 55

.]

The time of a comet s ingress into the sphere of the orbis magnus, or

of its egress from the same, may be inferred nearly from its parallax, bn1

with more expedition by the following

TABLE II.
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The ingress 01 a comet into the sphere of the orbis magnus, or its

egress from the same, happens at the time of its elongation from the sun,

expressed in col. 1, against its diurnal motion. So in the comet of 1681.

Jan. 4, O.S. the apparent diurnal motion in its orbit was about 3 5
,
and

the corresponding elongation 71 J ;
and the comet had acquired this elon

gation from the sun Jan. 4, about six in Ae evening. Again, in the year

1680, Nov. 11, the diurnal motion of the comet that then appeared was

about 4| ;
and the corresponding elongation 79f happened Now. 10, a

little before midnight. Now at the times named these comets had arrived

at an equal distance from the sun with the earth, and the earth was then

almost in its perihelion. But the first table is fitted to the earth s mean

distance from the sun assumed of 1000 parts ;
and this distance is greater

by such an excess of space as the earth might describe by its annual motion

in one day s time, or the comet by its motion in 16 hours. To reduce the

comet to this mean distance of 1000 parts, we add those 16 hours to the

former time, and subduct them from the latter
;
and thus the former be

comes Jan. 4d
. 10 1

. afternoon
;
the latter Nov. 10, about six in the morn

ing. But from the tenor and progress of the diurnal motions it appears

that both comets were in conjunction with the sun between Dec. 7 and Dec.

8
;
and from thence to Jan. 4d

. 10h
. afternoon on one side, and to Nov.

10 . 6h
. of the morning on the other, there are about 28 days. And so

many days (by Table 1) the motions in parabolic trajectories do require.

But though we have hitherto considered those comets as two, yet, from

the coincidence of their perihelions and agreement of their velocities, it is

probable that in effect they were but one and the same
;
and if so, the

orbit of this comet must have either been a parabola, or at least a conic

section very little differing from a parabola, and at its vertex almost in

contact with the surface of the sun. For (by Tab. 2) the distance of the

comet from the earth, Nov. 10, was about 360 parts, and Jan. 4, about

630. From which distances, together with its longitudes and latitudes,

we infer the distance of the places in which the comet was at those times

to have been about 280 : the half of which, viz., 140, is an ordinate to the

comet s orbit, cutting off a portion of its axis nearly equal to the radius

of the orbis magnus, that is, to 1000 parts. And, therefore, dividing the

square of the ordinate 140 by 1000, the segment of the axis, we find the

latu$ rectum 19, 16, or in a round number 20
;
the fourth part whereof,

5, is the distance of the vertex of the orbit from the sun s centre. But the

time corresponding to the distance of 5 parts in Tab. 1 is 27d
. 16h

. 7 . Ir.

which time, if the comet moved in a parabolic orbit, it would have been

carried from its perihelion to the surface of the sphere of the orbis mag*
nus described with the radius 1000, and would have spent the double of

that time, viz., 55d
. 8|

h
. in the whole course of its motion within that

sphere : and so in fact it did
;
for from Nov. 10d

. 6h
. of the morning, thf
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time of the comet s ingress into the sphere of the orbis magnns, to Jan..

4 1

. 10h
. afternoon, the time of its egress from the same, there are 55 (1

. 16h
.

The small difference of 7 u
. in this rude way of computing is to be neg

lected, and perhaps may arise from the comet s motion being some small

matter slower, as it must have been if the true orbit in which it was car

ried was an ellipsis. The middle time between its ingress and egress was

December Sd
. 2 1

. of the morning ;
and therefore at this time the comet

ought to have been in its perihelion. And accordingly that very day, just

before sunrising, Dr. Halley (as we said) saw the tail short and broad, but-

very bright, rising perpendicularly from the horizon. From the position

of the tail it is certain that the comet had then crossed over the ecliptic,

and got into north latitude, and therefore had passed by its perihelion,

which lay on the other side of the ecliptic, though it had not yet come into

conjunction with the sun
;
and the comet [see more of this famous comet,

p. 475 to 486] being at this time between its perihelion and its conjunc
tion with the sun, must have been in its perihelion a few hours before;

for in so near a distance from the sun it must have been carried with great

velocity, and have apparently described almost half a degree every hour.

By like computations I find that the comet of 1618 entered the sphere
of the orbis maxims December 7, towards sun-setting ;

but its conjunc
tion with the sun was Nov. 9, or 10, about 28 days intervening, as in the

preceding comet
;
for from the size of the tail of this, in wtrch it was

equal to the preceding, it is probable that this comet likewise did come

almost into a contact with the sun. Four comets were seen that year of

which this was the last. The second, which made its first appearance
October 31, in the neighbourhood of the rising sun, and was soon after hid

under the sun s rays, 1 suspect to have been the same with the fourth,

which emerged out of the sun s rays about Nov. 9. To these we may add

the comet of 1607, which entered the sphere of the orbis mi^-tnis Sept.

14, O.S. and arrived at its perihelion distance from the sun about October

19, 35 days intervening. Its perihelion distance subtended an apparent

angle at the earth of about 23 degrees, and was therefore of 390 parts.

And to this number of parts about 34 days correspond in Tab. 1 . Far

ther
;
the comet of 1665 entered the sphere of the orbis nta^tnts about

March 17, and came to its perihelion about April 16, 30 days intervening.

Its perihelion distance subtended an angle at the earth of about seven

degrees, and therefore was of 122 parts : and corresponding to this number

of parts, in Tab. 1, we find 30 days. Again ;
the comet of 1 682 entered

the sphere of the orbis magnus about Aug. 11, and arrived at its perihe

lion about Sep. 16, being then distant from the sun by about 350 parts, to

which, in Tab. I, belong 33^ days. Lastly ;
that memorable comet of

Regiomontanus, which in 1472 was carried through the circum-polar

parts of our northern hemisphere with such rapidity as to describe 40



566 THE SYSTEM OF THE WORLD.

degrees in one day, entered the sphere of the orbis magnus Jan 21, abonl
the time that it was passing by the pole, and, hastening from them*
towards the sun, was hid under the sun s rays about the end of Feb. ,

whence it is probable that 30 days, or a few more, were spent between its

ingress into the sphere of the orbis magnus and its perihelion. Nor did
this comet truly move with more velocity than other comets, but owed the

greatness of its apparent velocity to its passing by the earth at a near
distance.

It appears, then, that the velocity of comets
(p. 471), so far as it can be

determined by these rude ways of computing, is that very velocity with
which parabolas, or ellipses near to parabolas, ought to be described; and
therefore the distance between a comet and the sun being given, the velocity
of the comet is nearly given. And hence arises this problem.

4 PROBLEM.
The relation betwixt the velocity of a comet and its distance from the

sun s centre being given, the comet s trajectory is required.

If this problem was resolved, we should thence have a method of deter

mining the trajectories of comets to the greatest accuracy : for if that re

lation be twice assumed, and from thence the trajectory be twice computed,
and the error of each trajectory be found from observations, the assumption
may be corrected by the Rule of False, and a third trajectory may thence

be found that will exactly agree with the observations. And bv deter

mining the trajectories of comets after this method, we may come&quot; at last,

to a more exact knowledge of the parts through which those bodies travel,
of the velocities with which they are carried, what sort of trajectories they
describe, and what are the true magnitudes and forms of their tails accord

ing to the various distances of their heads from the sun
; whether, after

certain intervals of time, the same comets do return again, and in what

periods they complete their several revolutions. But hhe problem ma? be

resolved by determining, first, the hourly motion of a comet to a ffiven time

from three or more observations, and then deriving the trajectory from this

motion. And thus the invention of the trajectory, depending on one ob

servation, and its hourly motion at the time of this observation, will either

confirm or disprove itself; for the conclusion that is drawn from the mo
tion only of an hour or two and a false hypothesis, will never agree with

the motions of the comets from beginning to end. The method of fh*

whole computation is this.
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LEMMA I.

To cut two right lines OR, TP, given in, position, by a third right line

RP, so as TRP may be a right angle ; and, if another right line SP
is drawn to any given point S, the solid contained under this line SP

5

and the square of the right line OR terminated at a given point O,

may be of a given magnitude.

It is done by linear description thus. Let the given magnitude of the

solid be M 2 x N : from any point r of the right line OR erect the per

pendicular rp meeting TP in p. Then through the point Sp draw the

M 2 X N
line Sq equal to ^ 2

. In like manner draw three or more right lines

S2q, S3&amp;lt;7,
&c.

;
and a regular line q2q3q, drawn through all the points

y2q3q, &c., will cut the right line TP in the point P, from which the per

pendicular PR is to be let fall. Q.E.F.

By trigonometry thus. Assuming the right line TP as found by the

preceding method, the perpendiculars TR, SB, in the triangles TPR, TPS,
will be thence given ;

and the side SP in the triangle SBP, as well as the

M 2 X N
error ^r^ SP. Let this error, suppose D, be to a new error, sup

pose E, as the error 2p2q + 3p3q to the error 2p3p ; or as the error 2p2q
H- D to the error 2pP ;

and this new error added to or subducted from the

length TP, will give the correct length TP + E. The inspection of the

figure will shew whether we are to add to or subtract
;
and if at any time

there should be use for a farther correction, the operation may be repeated



668 THE SYSTEM OF THE WORLD.

By arithmetic thus. Let us suppose the thing done, and let TP -f- e be the

correct length of the right line TP as found out by delineation : and thence

TR
the correct lengths of the lines OR. BP, and SP, will be OR ^^e.

BP + e, and ^/SP 2 + 2BPe + ee = M 2N

QRa
20RX i

TP
op SR 2

Whence, by the method of converging series, we have SP -f-
-p6 + op~j

M 2N 2TR M 2N 3TR 2 M 2N
ee, &amp;lt;fcc.,

=
2
+ X

3
e + x l

66 ^ tor the given

M 2N ^ 2TR M 2N BP 3TR 2 M 2N SB 2

co-efficients ^-2 SP, Tp X
-^-3 gp&amp;gt; Tppl&quot;

x
QR4

~
2SP~J

F F F
putting F, , ppj,

and carefully observing the signs, wo find F + ^ e -f

F ee
i = 0, and e + YT= G. Whence, neglecting the very smallH
e 2 e 2

term
^,

e comes out equal to G. If the error ^ is not despicable, take

G
jj
= e.

And it is to be observed that here a general method is hinted at for

solving the more intricate sort of problems, as well by trigonometry as by

arithmetic, without those perplexed computations and resolutions of affected

equations which hitherto have been in use.

LEMMA II.

To cut three right lines given in position by a fourth right line that

shall pass through a point assigned in any of the three, and so as its

intercepted parts shall be in a given ratio one to the other.

Let AB, AC, BC, be the right lines given in position, and suppose D to

be the given point in the line AC. Parallel to AB draw DG meeting BC

in G
; and, taking GF to BG in the given ratio, draw FDE

;
and FD

will be to 1)E as FG to BG. Q.E.F.
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By trigonometry thus. In the triangle CGD all the angles and the side

CD are given, and from thence its remaining sides are found
;
and from

the given ratios the lines GF and BE are also given.

LEMMA III.

Tofind and represent hy a linear description the hourly motion of a comet

to any given time.

From observations of the best credit, let three longitudes of the comet
be given, and, supposing ATR, RTB, to be their differences, let the hourly
motion be required to the time of the middle observation TR. By Lem
II. draw the right line ARB, so as its intercepted parts AR, RB, may b&amp;lt;

as the times between the observations
;
and if we suppose a body in the

whole time to describe the whole line AB with an equal motion, and to be

in the mean time viewed from the place T, the apparent motion of that

body about the point R will be nearly the same with that of the comet at

the time of the observation TR.

The same more accurately.

Let Ta, T6, be two longitudes given at a greater distance on one sftle

and on the other
;
and by Lem,. II draw the right line aRb so as its inter

cepted parts aR, Rft may be as the times between the observations aTR, RTA.

Suppose this to cut the lines TA, TB, in D and E
;
and because the error

of the inclination TRa increases nearly in the duplicate ratio of the time

between the observations, draw FRG, so as either the angle DRF may be

to the angle ARF, or the line DF to the line AF, in the duplicate ratio

of the whole time between the observations aTB to the whole time between

the observations A IB, and use the line thus found FG in place of the

line AB found above.

It will be convenient that the angles ATR, RTB, aTA, BT6, be nc

less than of ten or fifteen degrees, the times corresponding no greater than
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of eight or twelve days, and the longitude^ taken when the comet jnoves

with the greatest velocity for thus the errors of the observation \s will

bear a less proportion to the differences of the longitudes.

LEMMA IV.

Tofind the longitudes of a comet to any given times.

It is done by taking in the line FG the distances Rr, Rp, proportional

to the times, and drawing the lines Tr, Tp. The way of working by
thgonometry is manifest.

LEMMA V.

To find the latitudes.

On TF, TR, TG, as radiuses, at right angles erect F/, RP, Gg-, tan

gents of the observed latitudes
;
and parallel to fg draw PH. The per

pendiculars rp, pw, meeting PH, will be the tangents of the sought latitudes

to Tr and Tp as radiuses.

PROBLEM I.

Prow, the assumed ratio of the velocity to determine the trajectory oj a

comet.

Let S represent the sun
; /, T, r

}
three places of the earth in its orbit

at e^ual distances
; p, P, o5

?
as many corresponding places of the comet in

its trajectory, so as the distances interposed betwixt place and place may
answer to the motion of one hour

; pr, PR, wp, perpendiculars let fall on

the plane of the ecliptic, and rRp the vestige of the trajectory in this

plane. Join S/?, SP, Sc5, SR, ST, tr, TR, rp, TP ,
and let tr, -p, meet in

O, TR will nearly converge to the same point O, or the error will be in

considerable. By the premised lemmas the angles rOR, ROp, are given,

as well as the ratios pr to
//;,
PR to TR, and wp to rp.

rr
lie figure TrO
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is likewise given both in magnitude and position, together with the dis

tance ST, and the angles STR, PTR, STP. Let us assume the velocity

of the comet in the place P to be to the velocity of a planet revolved

about the sun in a circle, at the same distance SP, as V to 1
;
and we shall

have a line pP& to be determined, of this condition, that the space /?w,

described by the comet in two hours, may be to the space V X tr (that is.

to the space which the earth describes in the same time multiplied by the

number V) in the subduplicate ratio of ST, the distance of the earth from

the sun, to SP, the distance of the comet from the sun
;
and that the space

pP, described by the comet in the first hour, may be to the space Pw, de

scribed by the comet in the second hour, as the velocity in p to the velocity

in P
;
that is, in the subduplicate ratio of the distance SP to the distance

S/7, or in the ratio of 2Sp to SP + Sp ; for in this whole work I neglect
small fractions that can produce no sensible error.

In the first place, then, as mathematicians, in the resolution of affected

equations, are wont, for the first essay, to assume the root by conjecture,

so, in this analytical operation, I judge of the sought distance TR as I

best can by conjecture. Then, by Lem. II. I draw rp, first supposing / R
equal to Rp, and again (after the ratio of SP to Sp is discovered) so as

rR may be to Rp as 2SP to SP + Sp, and I find the ratios of the lines

pw, rp, and OR, one to the other. Let M be to V X tr as OR to pi** ;
and

because the square of
p&amp;lt;*&amp;gt;

is to the square of V X tr as ST to SP, we

shall have, ex aquo, OR 2 to M 2 as ST to SP, and therefore the solid

OR 2 X SP equal to the given solid M 2 X ST; whence (supposing the

triangles STP, PTR, to be now placed in the same plane) TR, TP, SP,

PR, will be given, by Lem. I. All this I do, first by delineation in a rude

and hasty way ;
then by a new delineation with greater care

; and, lastly,

by an arithmetical computation. Then I proceed to determine the position

of the lines rp, pti, with the greatest accuracy, together with the nodes and

inclination of the plane Spti to the plane of the ecliptic ;
and in that

plane Spti I describe the trajectory in which a body let go from the place

P in the direction of the given right line
jf?c5

would be carried with i velo

city that is to the velocity of the earth as pti to V X tr. Q.E.F.

PROBLEM II.

To correct the assumed ratio of the velocity and the trajectory thence

found.

Take an observation of the comet about the end of its appearance, or

any other observation at a very great distance from the observations used

before, and find the intersection of a right line drawn to the comet, in that

observation with the plane Sjow, as well as the comet s place in its trajec

tory to the time of the observation. If that intersection happens in this

place, it is a proof that the trajectory was rightly determined
;

if other-
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wise, a new number V is to be assumed, and a new trajectory to be found
;

Z.L.\\ then tlu place of tke comet in this trajectory to the time of that pro-

batory observation, and the intersection of a right line drawn to the comet

with the plane of the trajectory, are to be determined as before
;
and by

comparing the variation of the error with the variation of the other quan
tities, we may conclude, by the Rule of Three, how far those other

quantities ought to be varied or corrected, so as the error may become as

small as possible. And by means of these corrections we may have the

trajectory exactly, providing the observations upon which the computation
was founded were exact, and that we did not err much in the assumption
of the quantity V : for if we did, the operation is to be repeated till the

trajectory is exactly enough determined. Q,.E.F.

CNJ) OF THE SYSTEM OF THE WORLD.
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As, the mathematical signification of this word defined, . . .100
ATTRACTION of all bodies demonstrated, 3 &amp;gt;7

&quot; the certainty of this demonstration shewn, 384

the cause or manner thereof no where defined by the author, .... 507

the common centre of gravity of the earth, sun, and all the planets, is at rest, con

firmed by Cor. 2, Prop. XIV, Book HI, 401
&quot; the common centre of gravity of the earth and moon goes round the orbis magnus, 402
&quot;

its distance from the earth and from the moon, 452

CENTRE, the common centre of gravity of many bodies does not alter its state of motion or rest

by the actions of the bodies among themselves, 87
&quot; of the forces by which revolving bodies are retained in their orbits, how indicated by

the description of areas, 107
&quot; how found by the given velocities of the revolving bodies, . ..... 110

CIRCLE, by what law of centripetal force tending to any given point its circumference may be

described, . 108,111,114

COMETS, a sort of planets, not meteors, 465,486
&quot;

higher than the moon, and ir. the- planetary regions, 460
&quot; their distance how collected very nearly by observations, 401
&quot; more of them observed in the hemisphere towards the sun than in the opposite hemis

phere; and how this comes to pa?s, 464
&quot; shine by the sun s light reflected from them, 464

&quot; surrounded with vast atmospheres, 463, 465
&quot; those which come nearest to the sun probably the least, ... . . 4P5
&quot; why they are not comprehended within a zodia

,
like the planets, but move differently

into all parts of the heavens, ... 502
&quot; may sometimes fall into the sun, and afford a new supply of fire, 502

the use of them hinted, 492
&quot; move in conic sections, having their foci in the sun s centre, and by radii drawn to the

sun describe areas proportional to the times. Move in ellipses if they come round again
in their orbits, but these ellipses will be near to parabolas, 466

COMET S parabolic trajectory found from three observations given, 472

corrected when found, ... 495
&quot;

place in a parabola found to a given time, 466
&quot;

velocity compared with the velocity of the planets, .... . 466
JoMKTs TAILS directed from the sun, 489

&quot; &quot;

brightest and
large&amp;gt;t immediately after their passage through the neighbour

hood of the sun, 487
&quot; &quot; their wonderful rarity, 490
* &quot; their origin and nature, ...... . . . 46S

&quot;

in what space of time they ascend from their heads, . . 490

7V
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r?OMET of the years 1664 and 1665 the observations of its motion compared with the theory, . 496
u of the years 1680 and 1681 observations of its motion, ...... 474
&quot;

its motion computed in a parabolic orbit, 478
&quot; in an elliptic orbit, ....... 479
&quot;

its trajectory, and its tail in the several parts of its orbit, delineated, .... 484
&quot; of the year 1682 its motion compared with the theory, 500- -

l seems to have appeared in the year 1607, and likely to return again after a period of

75 years, 501,502
&quot; of the year 1683 its motion compared with the theory, 499
&quot; of the year 1723 its motion compared with the theory, . . * . 501

CONIC SECTIONS, by what law of centripetal force tending to any given point they may be de

scribed by revolving bodies, . 125
&quot; the geometrical description of them when the foci are given, .... 125
&quot; when the foci are not given, 131

when the centres or asymptotes are given, ....... 147

CURVATURE of figures how estimated, 271, 423

CURVES distinguished into geometrically rational and geometrically irrational, . . . 157

CYCLOID, or EPICYCLOID, its rectification, 184
&quot; &quot;

its evoluta, 185

CYLINDER, the attraction of a cylinder composed of attracting particles, whose forces are recip

rocally as the square of the distances, 239

DESCENT of heavy bodies in vacuo, how much it is, 405
&quot; and ascent of bodies in resisting mediums, 252,265,281,283,345

DESCENT or ASCENT rectilinear, the spaces described, the times of decription, and the velocities

acquired in such ascent or descent, compared, on the supposition of any
kind of centripetal force, 160

EARTH, its dimension by Norwood, by Picart, and by Cassini, 405
&quot;

its figure discovered, with the proportion of its diameters, and the meattire of the degrees

upon the meridian, ............ 405, 40?)
&quot; the excess of its height at the equator above its height at the poles, . . . 407, 412
&quot;

its greatest and least semi-diameter, .......... 407
&quot;

its mean semi-diameter, 407
&quot; the globe of the earth more dense than if it was entirely water, 400
&quot; the nutation of its axis, 413
&quot; the annual motion thereof in the orbis magnus demonstrated, 498
&quot; the eccentricity thereof how much, 452
&quot; the motion of its aphelion how much, 404

ELLIPSES, by what law of centripetal force tending to the centre of the figure it is described by a

revolving body, 114
&quot;

by what law of centripetal force tending to the focus of the figure it is described by a

revolving body 116

FLUID, the definition thereof, 108

FLUIDS, the laws of their density and compression shewn, ....... 293
&quot; their motion in running out at a hole in a vessel determined, . . . . . 331

FORCES, their composition and resolution, 84
&quot; attractive forces of spherical bodies, composed of particles attracting according to any

law, determined, 218
&quot; attractive forces of bodies not spherical, composed of particles attracting according to

any law, determined, 233
&quot; the invention of the centripetal forces, when a body is revolved in a non-resisting space

about an immoveable centre in any orbit, 103, 116
&quot; the centripetal forces tending to any point by which any figure may be described by a

revolving body being given, the centripetal forces tending to any other point by which

the same figure may be described in the same periodic time are also given, . . . lie
v the centripetal forces by which any figure is described by a revolving body being given,

there are given the forces by which a new figure may be described, if the ordinates are

augmented or diminished in any given ratio, or the angle of their inclination be any
how changed, the periodic time remaining the same, 116

M
centripetal forces decreasing in the duplicate proportion of the distances, what figures

may be described by them, 120 19f



INDEX TO THE PRINCIPIA. 577

FomcE, centripetal force defined, 74
&quot; the absolute quantity of centripetal force defined, 75
M the accelerative quantity of the same defined, 76
w the mutive quantity of the same defined, 76

&quot; the proportion thereof to any known force how collected, 109
&quot; a centripetal force that if reciprocally as the cube of the ordinate tending to a vastly

remote centre of lorce will ca.use a body to move in any given conic section, . . 114
&quot; a centripetal force that is as the cube of the ordinate tending to a vastly remote centre of

force will cau^e a body to move in an hyperbola, 243

centrifugal force of bodies on the earth s equator, how great, 405

GOD, his nature, 506

ClaAviTY mutual between the earth and its parts, . 94&quot;

* of a different nature from magnetical force, ........ 397
&quot; the cause of it not assigned, 507
&quot; tends towards all the pi anets, 393
&quot; from the surfaces of the planets upwards decreases in the duplicate ratio of the dis

tances from the centre, 400
&quot; fruin the same downwards decreases nearly in the simple ratio of the same, . . 400
&quot; tends towards all b dies, ami is proportional to the quantity of matter in each, . 397
&quot;

is the force by which the moon is retained in its orbit, 391
&quot; the same proved by an accurate calculus, 453
&quot;

is the force by which the primary planets and the satellites of Jupiter and Saturn are

retained in their orbits, 393

HEAT, an iron rod increases in length by heat, ......... 112
&quot; of the sun, how great at different distances from the sun, 486
&quot; how great in Mercury, 400
&quot; how great in the comet of 1680, when in its perihelion, ... , , 486

HEAVENS are void of any sensible re.-iotauce, 401, 445, 492; and, therefore, of almost any cor

poreal fluid whatever, 355 356
&quot; suffer light to pass through them without any refraction, .... 485

HYDROSTATICS, the principles thereof delivered, . .... 293

SYPERBOLA, by what law of centrifugal force tending from the centre of the figure it is described

by a revolving body, 116
&quot;

by what law of centrifugal force tending from the focus of the figure it is described

by a revolving body, 117
&quot;

by what law of o* itripetal force tending to the focus of the figure it is described

by a revi living body, 118

HYPOTHESES of what kind oever rejected from this philosophy, 508

JUPITER, its periodic time, 388
&quot;

its distance from the sun, 388
&quot;

its apparent diameter, 386
&quot;

its true diameter, . 399
&quot;

its attractive t rce, how great, 398
&quot; the weights of bi dies on its surface, . . 399
&quot;

its density, ... .399
&quot;

its quantity of matter, . 399
&quot;

its perturbation by Saturn, how much, 403
&quot; the proportion of its diameters exhibited by computation, . . 409
&quot; and comftared with observations, ........ . 409
&quot;

its rotation about its axis, in what time performed, ..... . 409
&quot; the cause of its belts hinted at, 445

fjlOHT, its propagation not instantaneous, .......... 246
&quot;

its velocity different in different mediums, ... 24J5
&quot; a certain reflection it sometimes suffers explained*, 245

&quot;

its refraction explained, 243
u refraction is not made in the single point of incidence, 247 .

&quot; an incurvation of light about the extremities of bodies observed by experiments, . . 24fc

&quot; not caused by the agitation of any ethereal medium, 368

ANETIC force, 94,304,397,454
37
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WARS, its periodic time, 3^
&quot;

its distance from the sun,
&amp;lt; 339

&quot; the motion of its aphelion, 4^/5

MATTER, its quantity of matter defined, ...&quot; 73
&quot;

its msinsita define!.
. 74

&quot;

its impressed force defined, 74
its extension, hardness, impenetrability, mobility, rta inertia:, gravity, how discovered, 385
subtle mattir of Descartes ii quired into, 320

MECHANICAL POWERS explained and demonstrated, 94

MERCURY, its periodic time, ........... . 388
its distance from the sun, ., 389
the ruotion of its aphelion, . ... 405

METHOD of first and last ratios, 95
&quot; of transforming figures into others of the same analytical order, .... 141
&quot; of fluxions, ............... 261

differential, ........... 447
of finding the quadratures of all curves very nearly true, ...... 448

&quot;

ot converging series applied to the solution of difficult problems, . . . 271 430
MOON, the inclination of its orbit to the ecliptic greatest in the syzygies of the node with the ^un,

and least in the quadratures, 208
&quot; the figure of its body collected by calculation, 45.)
&quot;

its librations explained, .......... 405
its mean apparent diameter, . ... 453

&quot;

its true diameter, 453
&quot;

weight of bodies on its surface, 453
&quot;

its density, 453
&quot;

its quantity of matter, 453
&quot;

its mean distance from the earth, how many greatest sem&amp;gt;diameters of the earth con
tained therein, 453

&quot; how many mean semi-diameter?, 454
&quot;

its force to move the sea how great, 449
not perceptible in experiments of pendulums, or any statical or hydrostatical observations, 452

&quot;

its periodic time, 454
&quot; the time of its synodical revolution, 422
tt

its motions, and the inequalities of the same derived from their causes, . . 413, 144
&quot; revolves more slowly, in a dilated orbit, when the earth is in its perihelion ;

and more

swiftly in the aphelion the f-ame, its orbit being contracted, .... 413, 444, 445
&quot; revolves more slowly, in a dilated orbit, when tl.e apogteon is in the syzygies with the sun

;

and more swiftly, in a contracted orbit, when the apogaeon is in the quadratures, . 445
&quot; revolves more slowly, in a dilated orbit, when the node is in the syzygies with the sun

;

and more swiftly, in a contracted orbit, when the node is in the quadratures, . . 44G
&quot; moves slower in its quadratures with the sun, swifter in the syzygies; and by a radius

drawn to the earth describes an area, in the fir.&amp;lt;t case less in proportion to the time, in the

last case greater, ... 413
&quot; the inequality of those areas computed, .... 420
&quot;

its orbit is more curve, and goes farther from the earth in the first case; in the last case

its orbit i? less curve, and comes nearer to the earth, 415
u the figure of this orbit, and the proportion of its diameters collected by computation, . 423
&quot; a method of finding the moon s distance from the earth by its horary motion, . . 423
&quot;

its apogaenn moves more slowly when the earth is in its aphelion, m&amp;lt; re swiftly in the peri

helion, 414,445
&quot;

its apogaeon goes forward most swiftly when in the syzygies with the sun
;
and goes back

ward in the quadratures, 414, 44l:

&quot;

its eccentricity greatest when the apogaeon is in the syzygies with the sun
;
least when the

same is in the quadratures, 414, 44C
*

its nodes move more slowly when the earth is in its aphelion, and more swiftly in the peri

helion, 414,445
*

its nodes are at rest in their syzygies with the sun, and go back most swiftly in the quad
ratures ... . . . .... 41-1
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MOON, the motions of the nodes and the inequalities of its motions computed from the theory of

gravity, 427,430,434,436
&quot; the same from a different principle, 437

the variations of the inclination computed from the theory of gravity, . . . 441, 443

&quot; the equ.ti3ns of the moon s motions for astronomical uses, 445

&quot; the unnual equation of the moon s mean motion, 445

&quot; the first semi-annual equation of the same, ... 443

&quot; the second serai-annual equation of the same, 447

&quot; the first equation of the moon s centre, 447

&quot; the second equation of the moon s centre, 448

MOON S first variation, 425

&quot; the annual equation of the mean motion of its apogee, 445

&quot; the semi-annual equation of the same, 447

&quot; the semi-annual equation of its eccentricity, 447

&quot; the annual equation of the mean motion of its nodes, 445

&quot; the seini-annual equation of the same, .......... 437

&quot; the seini-anuual equation of the inclination of the orbit to the ecliptic, . . . 444
&quot; the method of fixing the theory of the lunar motions from observations, ... 464

MOTION, its quantity defined, 73

absolute and relative, 78
&quot; absolute and relative, the separation of one from the other possible, demonstrated by

an example ...* 82
&quot; laws thereof; 83

&quot;. of concurring bodies after their .reflection, by what experiments collected, ... 91

&quot; of bodies in eccentric sections, . . 116
&quot; in moveub!e orbits, 172
&quot; in given superficies, and of the reciprocal motion of pendulums, .... 183
&quot; of bodies tending to each other with centripetal forces, 194
&quot; of very small bodies agitated by centripetal forces tending to each part of some very

great body, 233
&quot; of bodies resisted in the ratio of the velocities, 251
&quot; in the duplicate ratio of the velocity, 258
&quot;

partly in the simple and partly in the duplicate ratio of the same, . 280
&quot; of bodies proceeding by their vis insita alone in resisting mediums, 251, 258, 259, 280, 281, 330
&quot; of bodies ascending or descending in right lines in resisting mediums, and acted on by

an uniform force of gravity, 252,265,281,283
&quot; of bodies projected in resisting mediums, and acted on by an uniform force of gravity, 255, 268
u of bodies revolving in resisting mediums, 287
&quot; of funependulous bodies in resisting mediums, . 304
&quot; and resistance of fluids, 323
41

propagated through fluids, ... . ..... 356
&quot; of fluids after the manner of a vortex, or circular, 370

MOTIONS, composition and resolution of them, .......... 84

OVALS for optic uses, the method of finding them which Cartesius concealed, .... 246
&quot; a general solution of Cartesius s problem, 247, 248

OBBITS, the invention of those which are described by bodies going off from a given place with

a given velocity according to a given right line, when the centripetal force is recipro

cally as the square of the distance, and the absolute quantity of that force is known, . 123
&quot; of those which are described by bodies when the centripetal force is reciprocally as the

cube of the distance, 114, 171, 176
&quot; of those which are described by bodies agitated by any centripetal forces whatever, 168

PARABOLA., by what law of centripetal force tending to the focus of the figure the same may be

described, 120

PENDULUMS, their properties explained, 186, 190, 304

the diverse length? of isochronous pendulums in different latitudes compared among
themselves, both by observations and by the theory of gravity, . . 409 to 413

PLACE defined, and distinguished into absolute and relative, .78
PLACES of bodies moving in conic sections found to any assigned time, ..... 153

not carried about by corporeal vortices, ......... 378
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PLANET*, their peri..diet .imes, . . 3gg
&quot;

their distances from the tun, .
. 339

* the a
t
.helia and nodes of their orbits do almost rest, ...... 405

&quot;

their orbits determined, 406
&quot;

the way of finding their places in their orbit?, 347 to 350
&quot; their density suited to the heat they receive from the sun, ...*.. 400
&quot;

their diurnal revolutions equable. 406
&quot; their axes less than the diameters that stand upon them at right angles, . . . 406

PLANETS, PRIMARY, surround the sun, 387
&quot; move in ellipses whose focus is in the sun s centre 403

by radii drawn to the sun describe areas proportional to the times, . 388, 403

revolve in periodic times that are in the sesquiplicate proportion of the dis

tances from the sun, 387

are retained in their orbits by a force of gravity which respects the sun,
and is reciprocally as the square of the distance from the sun s centre, 389, 393

PLANETS, SECONDARY, move in ellipses having their focus in the centre of the primary, . 413

by radii drawn to their primary describe areas proportional to the

times 386,387,390
revolve in periodic times that are in the sesquiplicate proportion of their

distances from the primary, 386, 387
PROBLEM KEPLEHIAN, solved by the trochoid and by approximations, .... 157 to 160

of the ancients, of four lines, related by Pappus, and attempted by Car-

tesius, by an algebraic calculus solved by a geometrical composition, . 135

PROJECTILES move in parabolas when the resistance of the medium is taken away, 91, 115, 243, 273
their motions in re.-isting mediums, ........ 255, 268

PULSES of the air, by which sounds are propagated, their intervals or breadths determined, 368, 370
&quot; these intervals in sounds made by open pipes probably equal to twice the length of the

pipes, 370

QUADRATURES general of oval figures not to be obtained by finite terms, 153

QUALITIES of bodies how discovered, and when to be supposed universal, .... 38-1

RESISTANCE, the quantity thereof in mediums not continued, 329
&quot; in continued mediums, 40f

in mediums of any kind whatever, . . . . . . . . 3.i.

of mediums is as their density, cceteris paribus, . . 320, 321, 324, 329, 344. 353

is in the duplicate proportion of the velocity of the bodies resisted, ccrteris j.ari-

bus, 258, 314, 374, 329, 3J4, 35 i

Ct
is in the duplicate proportion of the diameters of spherical bodies resisted, cceteris

paribus 317, 31 8, 329, 34-1

&quot; of fluids threefold, arises either from the inactivity of the fluid matter, or the te

nacity of its parts, or friction, 286

the resistance found in fluids, almost all of the first kind, .... 321, 35*
&quot; cannot be diminished by the subtilty of the parts of the fluid, if the density remain, 355
&quot; of a globe, what proportion it bears to that of a cylinder, in mediums not continued, 327
&quot; in compressed mediums, 343
&quot; of a globe in mediums not continued, 329
&quot; in compressed mediums, 344
&quot; how found by experiments, 345 to 355
&quot; to a frustum oi a cone, how made the least possible, 328
&quot; what kind of solid it is that meets with the least, 329

RESISTANCES, the theory thereof confirmed by experiments of pendulums, . . . 313 to 321
&quot;

by experiments of fa-lling bodies, 345 to 356

REST, true and relative, 78

RULES of philosophy, 38-!

SATELLITES, the greatest heliocentric elongation of Jupiter s satellites, 387
&quot; the greatest heliocentric elongation of the Huygenian satellite from Saturn s centre. 398

the periodic times of Jupiter s satellites, and their distances from his centre, . 386, 387
&quot; the periodic times of Saturn s satellites, and their distances from his centre, 387, 388
&quot; the inequalities of the motions of the satellites of Jupiter and Saturn derived from

the motions of the moon, 413

SM^UIPLICATE proportion defined, 101
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SATURN, its periodic time, . 388
&quot;

its distance from the sun, 388
&quot;

its apparent diameter, ..* 388
&quot;

its true diameter, . . . . 399
&quot; its attractive force, how great, 398
&quot; the weight of bodies on its surface, 399
&quot;

its density, ... . . 399
&quot;

its quantity of matter, 399
&quot;

its perturbation by the approach of Jupiter how great, 403
&quot; the apparent diameter of its ring, . . . 388

SHADOW of the earth to be augmented in lunar eclipses, because of the refraction of the at

mosphere, 44?

SUUNDS, their nature explained, 360,363,365,366,367,368,369
( not propagated in directum, . ... 359

&quot; caused by the agitation of the air, 368
&quot; their velocity c&amp;lt; mputed, 368, 369
&quot; somewhat swifter by the theory in summer than m winter, 370
&quot; cease immediately, when the motion of the sonorous body ceases, .... 365
&quot; how augmented in speaking trumpets, 370

SfACE, absolute and relative, 78, 79
&quot; not equally full. 396

SPHEROID, the attraction of the same when the forces of its particles are reciprocally as the

squares of the distances 239

SPIRAL cutting all its radii in a given angle, by what law of centripetal force tending to the

centre thereof it may be described by a revolving body, .... 107, 287, 291

SPIRIT pervading all bodies, and concealed within them, hinted at, as required to solve a great

many phsenomena of Nature, 508

STARS, the fixed ,-tars demonstrated to be at rest, ... 404
&quot; their twinkling what to be ascribed to, . 487
&quot; new stars, whence they may arise, 502

SUBSTANCES of all things unknown, 507

SUN, m &amp;gt;ves round the common centre of gravity of all the planets, 401
&quot; the periodic time of its revolution about its axis 405

&quot;

its mean apparent diameter, ....*.. 453
&quot;

its true diameter, 398
&quot;

its horizontal parallax, 398
&quot; has a menstrual parallax, 403
&quot;

its attractive force how great, ............ 398
&quot; the weight &amp;lt;.f bodies on its surface, 399
&quot;

its density, . 399
&quot;

its quantity of matter, 399
&quot;

its force to disturb the motions of the moon, 391, 419
&quot;

its force to move the sea, 448

TIDES of the sea derived from their cause, 415, 448, 449

TIMF, absolute and relative, 78, 79
&quot;

tli? astronomical equation thereof proved by pendulum clocks, and the eclipses of Jupiter s

satellites, 79

A VACUUM proved, or that all spaces (if said to be full) are not equally full, .... 396

VELOCITIES of bodies moving in conic sections, whore the centripetal force tends to the focus, . 121

VELOCITY, the greatest that a globe falling in a resisting medium can acquire, . . . 344

VENUS, its periodic time, 388
&quot;

its distance from the sun, 388
&quot; the motion of its aphelion, 405

VOHTICES, their nature and constitution examined, 504

W.AVES, the velocity with which they are propagated on the superficies of stagnant water, . 361

WEIGHTS of bodies towards the sun, the earth, or any planet, are, at equal distances from the

centre, as the quantities of matter in the bodies, 394
1

they do not depend upon the forms and textures of bodies 395
&quot; of bodies in different regions of the earth found out, and compared together, . . 409
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