Laser Beam Propagation

We’ll begin our discussion of beam propagation with a practical topic. The focusing
characteristics of a laser beam, which may be of interest to anyone using a laser for work or

experimentation.
Focusing characteristics of a real laser beam
: e 4M 2t . . o :
Focus spot size due to diffraction: d f0 = T . In this equation, D is the input beam diameter at the

lens (Actually | think this is the waist width of the beam before the introduction of the lens) (at 1/¢* point), f

is the focal length of the lens being used and A is the wavelength of the laser light. M? is the times
diffraction beam quality factor.

Focus spot size of a real laser beam d(, = M :

is the smallest that the laser beam will focus. The

Rayleigh range is the distance over which the irradiance drops by a factor of 2, or the beam size covers

twice the area as compared with the waist is given by Z, =

2

0 > where M? is called the times

diffraction limit due to it’s use in the spot size equation above. The best possible M is unity, all but
“perfect” beams have M” > 1.

o 42, M?*42, o
Note: The Lagrange invariantis N - 2W0 -0 = K = ———— where n is the index
T T

of refraction wy is the waist half width and 0 is the far field divergence full angle. This
“invariant” remains constant through all paths of a beam as long as the optical system is
not aperturing and is free of aberrations.

The beam quality factor is a measure of the product of variances of the beams transverse
energy distribution and spatial frequency distribution and is constant for any particular
beam.

2 _
M, =4r- -0, O,
The variance of the energy distribution is simply a measure of the beam width while the
variance of the spatial frequency distribution is a measure of the number of plane wave

components making up the beam and is thus a measure of the angular divergence of the
beam.

The far field divergence full angle can be calculated from the beam diameter at the focus
of a lens, d;, from:

0= Tf , (Insight into this fact can be gained from Fourier Optics 0 and the Fourier

Transform performed by a lens) so that if n=1 the Lagrange invariant leads to:
M 2 4 Af
d, =—2

5 , which says that the diameter of the spot at the focal length of a lens of
2W,



focal length f is proportional to 4 M? times the focal length times the wavelength and
inversely proportional to « times the diameter of the waist before the lens.

When we focus a laser beam, we have a whole new set of parameters. We have the original beam waist
location, beam waist width, Rayleigh range divergence angle etc... but we also have the “artificial”
parameters, focused beam waist location, focused waist width, focused divergence etc... which all depend
on the location of the lens and the focal length of the lens.

reference point

The beam half width after the lens is given by the following as long as z is greater than the lens position
VA

2 2
7-1 M * 2 Z-1
w(z) = wj(l— f L) o [(ZL—ZO)(I— f Lj+z—zL}
0

Equation 1: Focused Beam Width Propagation.

which can be simplified if we set the reference at the waist location:

-7, MR 71 ’
wW(z) = wg(l— : LJ M [ZL[I— . L)%—Z—ZL}
0

or it can be simplified more by setting the reference at the lens location:

2\ M2 z ’
wW(z) = Woz(l—Tj o {(—zo)(l—?j+z}
0

Note also, that if f is infinite, then we get the usual arrangement in the case of no
lens at all:




M *2? >
w(z) = \/Wj +W(Z -2,)

0

Equation 2: Natural Beam Width Propagation.
Note that the Rayleigh range is:

o

Z, =
RM?2A

Equation 3: Rayleigh Range.
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so that W(Z) = ,[W; + W, [—Oj
z
R

The half width at the focal length of the lens is given by filling in for z the focal length plus the position of
the lens:

M 2 Af

W, =w(z=2z +f)=
0

which fits with the fact that the divergence angle can be derived from the diameter of the beam at the focal
length of the lens.

d M *4f d
0=—"and d; =————, which givesus: 6, =—+
f 2W, ZR

The waist of the focused beam is the point at which the half width is a minimum. But before we can find
what the waist width will be, we must find the position of the waist.

The location of the focused waist is derived by taking the derivative of the half width with respect to z
and then setting it to zero (to find minima of the half width) and then solving for z:

woz? (f +2z,)
M2
W’
Vs

+2e(f+z,. )+ zo(f2 —2zf)+ 2 — 22 f

Ziy =

+22+22,(f -z )-2z, f+22 + f?

Equation 4: Location of Artificial Waist.

if we set the reference point at the original waist we can simplify somewhat:

Wgﬂz(f+ZL) 23_22f

M * 22 Lot
w7’
M * A2

Lig =
-2z, f+z} +f?

or we can simplify by setting the lens position to be the zero reference:
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Zig =7 5 Note that 7z, can be negative in any case.
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Of course, we could simplify without making any assumptions about the
coordinate system used to get the position of the artificial waist:
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Figure 1 Showing the position of the artificial waist after a lens. Note that the artificial waist is
located one focal length beyond the lens only when the original waist is one focal length in front of the
lens.
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Figure 2 Displacement of the artificial waist away from one focal length beyond the lens goes through

a maximum and then asymptotically approaches that position again as we put the original waist
farther before or after one focal length before the lens.

The maximum displacement from one focal length after the lens occurs when the original waist is placed at
two possible locations measured from the lens location:

_fe L

Zp

or in other words 1/ Z on either side of one focal length before the lens.

This maximum displacement of the artificial waist from one focal length beyond the lens has a solution in
the reference frame centered on the lens:
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By putting the position of the artificial waist into the function giving the width of the beam after the lens,
we can find the width of the waist after the lens:

2 2
Zig—1 M*2? Zig—1
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W(Z=12;,)= Woz(l— J + (zL—z0 - +2Zi0-2,
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Which simplifies to:

W(z - zm{%ﬂ

0
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2
(Woﬁ] w+(z, - f-z,)

M?*2

Equation 5: Width of the Artificial Waist.
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The graph below shows that the waist size after the lens is affected by several things: The shorter
wavelength gives smaller artificial waists for the same size original waist, or we could think of the size of
the artificial waist being proportional to the ratio of the wavelength to the original waist size. Shorter focal
lengths give smaller waist sizes. Lower M? values give smaller waist sizes. And, note that the maximum
waist size is obtained when the original waist is one focal length in front of the lens. This maximum waist
size is the size of the spot at one focal length beyond the lens no matter where the new waist is located. It
is this constant that allows us to measure the far field divergence angle of the beam before the lens was
introduced.
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Figure 3 Waist size after the lens

If we step back further in order to look for a minimum waist size we see that the waist size approaches the
minimum asymptotically as the original waist is placed infinitely far in front of or beyond the lens.
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Figure 4 Waist size after the lens again.

Gaussian beam propagation:

With z, being the location of the beam waist, z the location of interest along the beam z, the Rayleigh range
W the half width of the beam at the waist and 0, the divergence half angle:

2 2 2 2
W, =W, +'91/2 (Z_Zo)

Equation 6

2

A >
2 2(2_20)
oW,

w (2)=w, +M*

Equation 7
so the divergence half angle is:

A

T+ W,

61/2 =M

Equation 8

For a Gaussian TEM,, beam the divergence is just:
A

T+ W,

91/2 =

Equation 9



or

2
w?(2)=w, 1+(Z_Z°j

z

r

Equation 10
with the Rayleigh range definition absorbing the M? term:

)

VIVE
Equation 11: Rayleigh Range.

z

For a Gaussian TEM,, beam the Rayleigh range is:

W,

Z = 0

A
Equation 12

Radius of curvature of a Gaussian beam:

P
R\z,zr> =z 1+ ?/

where zr is the rayleigh range and z is the distance from the waist.
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Figure 5 Radius of curvature of a Gaussian beam as a function of the distance from waist.



Radius of curvature is infinite at the waist giving a flat wavefront.

At distances from the waist of exactly the rayleigh range the radius of curvature becomes twice

the distance.

dz

Gaussian Beam Formulas

Complex phasor amplitude of ideal TEM,, beam:

~ W, X +y caxiayt 2w
E(x,y,z)_AOW(Z)exp[ —wz(z) i A—R(z) |/1 z+|g(z)}

R(z)=1z- 14{ al ]
z-1,

wW(z) =W, - 1+[Z_Z°j
z

1/2
Z‘Zr ﬂ"W
or zZ =

Equation 13

W, =

T

c(2) = arctan[ £7 % }
z

or
2 2
E(x,Y,2)= L_exp[— ik(z - zo)]exp{_ i g&}
-1, +1z, -1, +iz,
z, = Position _of _ waist
z, = Rayleigh _Range

Equation 15
~ A .27 T X4y’
E(x,y,2)= —lzexp[— I—(z— zo)}exp — |——y2
. W, A A . W,
Z-27,+I Z-27,+I
Equation 16

Intensity profile of the ideal TEM,, beam:

r . . . ..
d—R(z, Zr>=0 solve, z —>[ } And that is where the radius of curvature is at a minimum.
-7r

Equation 14



_ w, ? ~ 'x2+y2
1(X,y,2) = IO[W(Z)} exp[ 2 —WZ(Z) }

Equation 17
Or
x2+y2)zr 2
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Equation 18
Gaussian Spot size:

yh (z-2z,)

2 2 2 2 2
W (Z) =W, +—5——5(2—2,)" =W, +W, ——>—
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Equation 19: Gaussian Spot Size Propagation.
Focused beam size using perfect lens and TEM,, beam:
4Af
diy ==
7D
Equation 20: Beam diameter at focal plane.
Spatial Frequency Distribution of TEMy, beam:

Intensity profile of a Gaussian beam

Power density of a Gaussian beam: The maximum intensity as a function of the beam’s total power P and

the beams diameter D is: | (P, D) = For pulsed systems the maximum energy density is:

5 -

E.(E,D)= o Intensity of a gaussian beam at some radius r from the center of a beam of diam 2w:

-2r?

2P
Wz

I(r,P,w)=

Where r is the transverse radius from the center of the beam’s transverse energy profile.

Gaussian form: (r,w) = exp(-2r’>/w?)

Intensity Profile of Various Hermite Gaussian Modes

A laser beam can be represented by its complex amplitude. This complex amplitude is a linear
combination of the complex amplitudes of the Hermite Gaussian modes that compose the beam.

U(X’ y,Z): iAI,mUI,m(X’ y,Z)

0
1=0 m=0



Ul,m(xa y,Z)z{

The complex amplitudes of the individual modes are:

- ]H'[\E'X]'exl{ﬂ}'Hm(ﬁ.y]'exl{ﬂ]ex{—ikz—ikﬂﬂ(l+m+1)tan“(z_zoﬂ
W(Z) W(Zz) 2-W(2) W(z) 2-W(z) 2-R(2) .

The intensity at any point and thus the beam profile at any z location can be found by finding the norm of
the complex amplitude:

1(x,y,2) = U (x,y,2)] =U(x,y,2)-U"(X,y,2)

where the star indicates complex congugation (all +i’s go to —i’s , note that the result eliminates any
influence from the last exponential which is an oscillating term)

The Hermite polynomials in the expression for the complex amplitude are given by the following recursion
relation:

H|+1(V):2'V' Hl(V)_2'| ’ Hl—l(v)

and the first few such polynomials are given here.

Ho(V)=1
H,(v)=2v
H,(v)=4v’ -2

H,(v)=8v’ —12v

H,(v)=16v* —48v* +12
H.(v)=32v’ —160v’ +120v

H, (V) = 64v°® —480v* +720v> —120

Note that the phase structure of the entire beam, according to this theory, consists of the same phase as each
of the component modes which are all the same, namely
2 2

d(x,y,2) =—-kz -k % +(Il+m+1)-tan™ ((z—2,)/2,), in other words the wavefront is
z

rather boring having no structure to indicate the mode mix.

The wavenumber k is equal to 2n/A where A is the wavelength of the laser beam. (We’ll ignore linewidth
or spectral spread). Note that this differs from the spectral wavenumber which is just 1/A in microns.

The other factors in the equation are:



R(2)=(z-2,)- 1+(zZr j

. ,T1/2
w(z)=w, |1+ 0
Z r
1 1/2
* Z /s W2
W, = Ll oor  z = ‘
ﬂ 2/
Note that the equation for beam width is altered by the beam quality factor in the following manner:
,1/2 )
4 Z—-1, . . W,
wW(z)=w, |1+ M"| ——— or you can adjust the Rayleigh range Zp =-———- and get:
W, /A A
- ,1/2
71—-17
w(z)=w, |1+ 6
Zg

In these equations R is the radius of curvature of the wavefront, z-z, is the distance along the beam from the
waist and z; is the Rayleigh range

Note: by choosing the wavelength and the Rayleigh range, or by choosing the wavelength and the waist spot size we
can determine all of the characteristics of a Gaussian TEM,, beam.

The M? is given by the Im values of the mode. (Assuming a clean mode. If the beam consists of a mode
mix, then the incoherent assumption says that you figure M* for each mode in the mix and add them with
weighting according to the intensity in the modes in the mix. Coherent mode mix theory is more
complicated).

M? From Hermite Gaussian Mode Mixture
For a beam composed of a mixture of power-normalized H.G. modes GJm . (X, Y,Z) such that the phasor

amplitude is E(X, y,2) = Zﬁm,n U0 (X, Y,2) , then the M? or beam quality factors can be given by:
m,n

Mj :ii(2m+l)"6m,n ’ and Mj :ii(2n+1)~‘ﬁm,n 2

m=0 n=0 m=0 n=0

Derivation of M?.

Following will be the derivation of the beam quality factor M, which is essentially derived from the
uncertainty principle. It is used to express the relationship between a beams width and its divergence:



, m0-w,
2-2

Write the beam travelling in the z direction as:

E(X,Y,2,t) = ReE(X, Y, z) exp[i(at — kz)] in which E(X, Y,Z) is the complex amplitude
distribution. This distribution can always be expressed as the Fourier transform in the transverse x,y
coordinates of a spatial frequency distribution.

P(s,.s,,2) =17, 17, E(x,y,2)exp[i2z(s, X + s, y)]dxdy

&

E(x,y,2) =", [, P(s,,s,,2)exp[-i27(s, X +5,Y)]ds,ds,
s denotes a spatial frequency.

- 2
The beams intensity profile in spatial coordinates is given by: 1(X,Y,Z) = ‘E (X, Y, Z)‘ . While the

A ~ 2
beam’s profile in spatial frequency coordinates is given by |(S,, Sys Z)= ‘P(SX »Sys Z)‘ . One is the

intensity of the beam in transverse profile at some z location, the other is the relative power of the plane
wave component of the beam travelling in some direction indicated by s. This relative power profile in
spatial frequency coordinates happens to be independent of z, but I have not yet proved that here.

If we had a plane wave:

E,(X,Y,2) = E, exp[-ik - T]= E exp[-i(k,xsin6,) —i(k,ysin8,) - ik,z]
= E, exp[-i27s,x —i275,y — ik, 7]

So each spatial frequency component of a laser beam characterized by s, corresponds to a plane wave
sin @,

component propagating at an angle theta so that: §, = etc.

Under paraxial conditions: AS, =6, ,

k? =k; +k; +k;,

2 12 L2~ 2 2 2, Q2
K, z\/k -k —k, = k\/l—(/lsx) —(4s,)” =k —7mA(s, +5,), up to about 30 degrees spread
angle about the beam axis.

Each plane wave component making up the total beam thus has a z direction propagation behavior:
exp[—ik,z] = exp[—ikz]exp[izA(s; +5;)z]

so that

P(s,.8,,2) = P(s,,S,,2,) exp[iZA(s; +5;)(Z—2,)]

So the individual spatial frequency components making up the complex spatial frequency amplitude do not
change in amplitude they only rotate in phase angle as they propagate in free space.

Thus the angular intensity profile of the beam is independent of z:



A ~ 2
((s,.5,)=|P(s,.5,,2)

SIDELINE: The numerical propagation method is accomplished by:

1 From E(X, Y,Z), calculate 5(sx ,Sy > Z) using an appropriate fast fourier
transform.

2 Propagate by multiplying by exp[izA(S. + Sj NZ—-12,)].

3 P(s,.s,.z) — Inverse_FFT — E(x,y,2)

Moments of the Intensity Distribution

Zero order is the normalization, setting the total power equal to 1 makes normalization easier.

o= 1Tty s, <1

— —00—00

The first order is the center of mass (center of energy in this case).

X(z) = J‘ '[Xl (X, Y,z)dxdy center of mass.

—00—00

S, = j JSX f(sx ,S,,2)ds,ds, Note the lack of z dependence.

First moment propagation rule: X(Z) = X(Z,)+ 45,(z2—2,)

Second moment is the variance:

o0 0

o= jj(x—i)zl(x, y, 2)dxdy

—00—00

afx IJ(SX -5)° Iﬂ(sx,sy,z)ds,xds,y

—00—00

and in the case of the spatial variance this represents the beam diameter:

d, =40,
or
w, =20,

The spatial variances are functions of z but the spatial frequency variances are not. The spatial frequency
variance describes the divergence of the laser since it describes the bandwidth of the spatial frequencies in
the beam and thus the limit of the directions of the plane wave components of the beam. The variance of
the spatial frequency can be measured directly by use of the Fourier Transform of a lens. The lens focuses
the laser beam onto the focal plane and the power in any plane wave component of the beam becomes the
energy density at a location on the focal plane. So the spatial frequency variance can be measured by
measuring the beam width at the focal plane of a positive lens.

Intensity at the focal plane is proportional to the Fourier Transform:
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Equation Error! No text of specified style in document.:21

I (X, y) focal _ plane =

B| XY ;- focal plane
A

Which leads to:
W

o, = xfp
x 2f

Equation Error! No text of specified style in document.:22

Second moment propagation rule:

O-f(z) 20-5(21)_Alx(z_21)"'2“20-;(2_21)2

I s {P( o )W—ﬁ(sx,z)M ds,ds

Le—3

xy
—00 SX asx
GOx = O-i(zl) - Alzx /4120-2
Z.. =27, + A
ox — “~1
el

Alternative formulas for spatial frequency moments:

” (zﬂjzﬁjaE o (X, y)‘ dxdy

{8 (452

41,(X,Y) OX
Note that spatial frequency moments all involve transverse derivatives of the waist
distribution.

8'—-8

Gaussian beam formulas leading to M

The Beam Quality Factor is given by

7d,d
M?=4r-0, -0, = A W [ Wo | _ ™o%sp
T 2 471

Equation Error! No text of specified style in document.:23

It is the ratio of the beams spatial frequency variance—space variance product compared to the same
variance product for a perfect Gaussian beam TEMy.

The I1SO Standard gives the times diffraction limit factor as:
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Equation Error! No text of specified style in document.:24



I1SO Standard for Measuring M?

The ISO standard is developed as follows:

Any radially symmetric laser beam is described by the waist location, z,, the waist diameter, d,, and the far
field divergence 0.

Beam propagation is described by d°(Z) = do2 +0* (Z -1, )2

This is assuming the second moments of the power density distribution function are used for the definition
of beam widths and divergences.

The quality of the beam is described by the beam propagation factor, K, or the times-diffraction-limit
factor, M?, which can be derived from the basic data.

42, M?44 1 42

The Lagrange invariantis: N-d, -0 = =—" from which we gather K = =—

Kz Vs M? d,@

Beam diameters are measured as
d(2) = 2420(2)
”r2 E(r,z)rdrde
” E(r,2)rdrde
r=J(x=%)’+(y-y)’
. ” XE(X, Y, z)dxdy
" [0y, vy
Note that beam widths in x and y are done slightly differently:

d, (2)=40,(2)
d,(2)=40,(2)

H(x —X)>E(X, Y, z)dxdy

o’(2) =

o,(2)= IIE(X, . 2)dxdy
o2(2) = ”(y - V)’ E(X, Y, z)dxdy
s HE(X, y, z)dxdy

Note that E here stands for the energy and not the electric field. This may be done with intensity instead of
energy.

Then we get M* from:






Hermite Gaussian Decomposition of a Measured Beam
(Personal notes on physics and optics)

This section of my notes is an attempt to reconstruct a 2-dimensional method from a paper by Xin Xue,
Haiging Wei, and Andrew G. Kirk (Intensity-based modal decomposition of optical beams in terms
of Hermite-Gaussian functions, J. Opt. Soc. Am. A/Vol. 17 No. 6/ June 2000)

The intent is to apply the methods found in this paper to finding HG modes in beams measured by the
Spiricon M*-200 instrument. Of course I need it to be in both the x and y dimensions and so my notes may
contain errors in both my understanding of the paper and in my attempt at an extension to two dimensions.
I am also applying this to a focused beam. What I expect to find is the HG composition of the focused
beam. How this relates to the original beam is left for another section of my notes.

The intensity profile of any laser beam can be described by a superposition of the intensities due to the
“natural modes” of the laser cavity:

XY= Ca,
The situation is straight forward if the individual natural modes consist of Hermite Gaussian combinations:

Un (X ¥:0) = 6, (X)6, (Y)

where

2
Up o (X, Y32)| -

1/4 X
2 J L (x2)
ﬂWO

A2™"m! " W,

This makes it easy because the intensity profile is then sufficient to completely determine the
decomposition into Hermite Gaussian modes since the Fourier transform of the intensity due to a Hermite
Gaussian mode is a Laguerre Gaussian function which functions form a complete orthogonal set.

|

-7 (Wro P +Wy00°) /2

3082 (082 (DK P. @) = o (P W2 P2y, (W20 = L,y (22WE, P, (W21 Je

However, suppose instead, each natural mode is a combination of several HG modes:

y (X y: Z) _Zb ¢ (X77 (Z))¢ (y77 (Z))e[—ikz—ikx2/2Rx(z)-iky2/2Ry(z)+i(|+1/2)tan*‘(z/sz)+i(q+1/2)tan*‘(z/zRy)
m,n s ) - m,n,l,q | X q y
1.q

where



Here, there is a slight problem. The Rayleigh range should be modified by the beam quality factor:
2

7l
Zo = M—z"; but perhaps this should be different for each order of the HG function:
2
alll
Zg = _ X0
2l +1)A

This would mean that 77 and R are also HG order dependent. Unfortunately this would lead to the
following function for the Intensity:

>

2{ zbm,nll,ql b*m»”Jz:qz ¢|1 (an,ll (Z))¢|z ()(77)<,|2 (Z))¢ql (yrly,ql (Z))¢Iz (yﬂy,q2 (Z))

1,12,01,0,

(%Y. = [, bm,n,.,q\2\¢.(xnx,.(z))\z\céq(yny,q(z))FJ

+ Z‘am,n
m,n

wexp| ik ————— 1 |y — 1
R0 R, R, () 2R, (2)

. 1 al z . 1 4z . 1 4z . 1 4l oz
xexpli| |, +— [tan” | — |—=i| |, + — |tan +1| g, +— [tan -1 g, +— |tan
2 ZRxll 2 ZRxl2 2 Zqu1 2 Zqu2

Equation Error! No text of specified style in document.:25

The problem with this is that the summation of intensity profiles from different z locations would require
that I know the weighting at each x and y location for the different modes---this sort of defeats the purpose
of the work here. Then again, maybe | have not taken into account that the waist size for each mode
component may be different! Of course this just makes things worse.



Now if we allow that the Rayleigh range is not HG order dependent and invoke a change of variable
X—>&=xn,(2), Yy > ¢ =Yyn,(2), we can follow the lead of Xin Xue and write the coordinate

scaled intensity profile at some z location as:

1L D)= [an,| una &40
= G (8O + X dya0dy ()6, (), (O, ()
p.q

Ioly.0.0,
><exp[i(|2 —l)tan™(z/z,,) +i(q, —ql)tan‘l(z/zRy)]

where the coefficients are given by:

Cg = Z‘am,n
m,n

dll'z‘h% = Z‘am,n
m,n

Further simplification could be made if the Rayleigh range did not depend on whether we were looking at
the x or y coordinate.

|

2
‘bm,n,l,q

‘2

O
m,n.l,q ~m,n,l,.q,

The cross terms representing inter-modal interference with the d coefficients usually won’t vanish which is
what makes modal analysis from measured intensity profiles so difficult. We could, however, wash out the
cross terms if we properly superimpose a number of intensity profiles to get a synthesized intensity profile:

1O = [ECD a2 =27 e, JLO )

o N Zpy + Zg,
2

Equation Error! No text of specified style in document.:26

Here, I have used the average Rayleigh range in the place where the Rayleigh range goes
in the one-dimensional case. (I need to justify this approach, just a guess for now).

| could decide that there is only one Rayleigh range independent of the two transverse dimensions
and then the synthesize intensity becomes:

0

IGO0 = [IEC D+ 1=, Z)]ZzzZRT)dZ =27Y ¢ B

—o m,n

Equation Error! No text of specified style in document.:27

With this synthesized intensity profile we can determine the modal weights by an overlap integral in the
Laguerre---Gaussian functions:

Com = 220353, [ [ T(p, )y (27 W5, 07 )y, (7°W5,0* ) padpdg
0

O —y 8

Equation Error! No text of specified style in document.:28



Where the Fourier transform of the synthesized profile has been used.

J(p, ) =3P, a)

Equation Error! No text of specified style in document.:29

Note that we have used the relationship: @, (=&) = (— l)m $.,($). And continuous integration over the

z-axis will eliminate even combinations while odd combinations cancel. Unfortunately, integration over
the entire z-axis is not practical so we need an approximation.

The approximation we need is:

NEIED) ([XERTAICESEN]

Equation Error! No text of specified style in document.:30

Where N is the number of profiles used and the positions of the required profiles are given by:

Z, =1z tan6,
krz
Hk :00 +W

Equation Error! No text of specified style in document.:31

Is this set of points required to be symmetric about the waist location?

With this approximation, we are limited to finding HG modes of order less than N.

We probably won’t get the profiles at exactly the right locations so we may need to interpolate from the
profiles we do measure to get the profiles we should have at the correct locations.

In our instrument at Spiricon, we will already have two important parameters: the beam waist location and
size. With this information, we know the correct locations for the required profiles. Thanks to the
sampling theorem an interpolation method does exist that can reconstruct the profiles at the correct
positions from the actually measured profiles.

Using the Wigner Distribution to Extract Spatial Phase and Coherence Properties

Mode Coupling Coefficients



Fourier Optics

The intensity of light falling on a surface can be represented as the square of a supposed real wavefunction:
1(7,t) = 2(u* (7, 1))

Where the real wavefunction is the real part of a complex wavefunction:
_ 1 = -
u(F. t) =5[U(r,t)+u (F.1)

and the complex wavefunction consists of a complex amplitude times the harmonic function in time
representing the frequency of the light (monochromatic for now):

U(F,t) =U(F)e"

The time independent factor is the complex amplitude and will consist of a harmonic function along the
axis of travel times an arbitrary amplitude function (arbitrary as long as it satisfies the Helmholtz equation):

U(F) = a(F)e""

or

U(F)=a(r)e”"

Now lets start with a plane wave with complex amplitude:

U(x,y,z)= Aexp[— i(kxx +k,y+ kzz)J

with the wavevector R=kxf+kyj+k2|2 and ‘R‘= k =,k +k§ +kl =27/24.

This wavevector makes angles with the y-z and x-z planes:
9, =sin"'(k, /k)

PR
0, =sin (ky /k)

The paraxial approximation holds if the z component of k is much larger than either of the other two
components of k.

If we cut through this plane wave with constant Z plane and call that location Z=0, then the cross section
impinging on this plane is the complex amplitude profile of the plane wave on this (x, y) plane. (Note that
the square of this complex amplitude gives the intensity profile on this (x, y) plane and in the case of the
plane wave it is uniform illumination).

The complex amplitude in z=0 plane:

U(x,y,0) = f(x,y) = Aexp|-i2z{v,x+v,y)|

v, =k, /27

v, =k, /27

Here, vy and vy are the spatial frequencies of the complex amplitude along the x and y directions on the
z=0 plane.

Note now that if the paraxial approximation applies, then:



As a side note a hologram or a diffraction grating function by imposing a complex amplitude
transmittance at a certain plane so that the transmitted wave has this function f(x, y) forced on it at
that plane. A plane wave in the z direction becomes a plane wave in the z direction plus plane
waves at the appropriate angles such that the forced spatial frequencies apply. Since these spatial
frequencies, which are now forced by transmission properties, would have depended on both angle
and frequency of an incoming wave, the angle of the transmitted wave depends on the temporal
frequency of the wave and thus a diffraction grating acts to separate different wavelength
components of a beam into beams in different directions.

Now suppose the complex transmittance imposed on a plane wave, or equivalently, the complex amplitude
cross section of a light beam, f(x, y), is a superposition of many spatial frequencies (for example a
combination of spatial frequencies making up a photograph).

fGy) = [[Fo e -2zl x+v,y)dv dy,

Where F(vy, vy) is the amplitude of the (v, vy) spatial frequency combination. Then the transmitted light
(or the light moving beyond this plane in the beam) can be decomposed into a superposition of plane waves
such that each combination of spatial frequencies (vy, vy) is represented by a plane wave moving in a
unique direction. In this view, F(vy, vy) is the complex envelope of the plane wave component of the beam
moving in that unique direction. The intensity profile of the light on a given plane is the square of this
resultant complex amplitude function.



1(x,y,2) = U (x,y,2)
U(x,y,z) = ” F(vx,vy)exp[— i(27zvxx +2mv, y)]exp(— ik,z)dv,d vy
= [[F,.vyexpl-ik,z ik, x ik, y)dv,dv,

Note that in the last integral the values of k are dependent on the values of the spatial frequency
combination.

Seen in this way, free space propagation of a beam acts as a “spatial prism” separating the spatial frequency
components of a beams complex profile just as a prism separates the temporal frequency components.

The function of a lens places the energy of a plane wave with a particular direction at a particular location
on the focal plane. Since we have a unique direction for every spatial frequency component of a beam then
we would have a unique location on the focal plane of a lens for each spatial frequency component of the
beam falling on the lens. The lens maps each direction (6, 6y) into a single point

(x,y) = (6:f, 0,) = (AMv,Afvy).

If the complex amplitude of the beam falling in the lens is: (X, Y) then the amplitude of a given spatial

frequency pair (vx, Vy) and thus a given direction (0, 6y), is the Fourier transform of this complex
amplitude:

F(xY) = [[Fv,.vyexpl-i2z{v,x+ v, y)ldv,dv,
=

F(v,,v,)= ” f(x,y) exp[iZ;z(vXX +v, y)]dxdy

Then the complex amplitude of the beam on the focal plane is given by:

X
90 y) o F| =,
Af - Af
This means that the complex amplitude on the focal plane is proportional to the Fourier transform of the
complex amplitude of the beam falling on the lens. This is a result of the fact that direction of a plane
wave component at the lens is transformed to a point on the focal plane of the lens. The power at a point
on the focal plane then indicates the power in a plane wave component of a beam at the lens.

If we begin with an input plane a distance d from the lens, then the proportionality factor can be calculated
from the transfer function of the free space traveled and the transfer function of the lens. The final result is
that the complex amplitude on the back focal plane at the position (x, y) is proportional to the Fourier
transform of the complex amplitude on the input plane a distance d in front of the lens evaluated at the
frequencies (x/Af, y/Af):



[ —izkf{
y)=—e e AN
9 ¥) =" FrapT

iﬁ(x%yﬂ(d—f)}
Tl

. (x2+y2)(d—f)

= %e—nkf e{'” PE }”‘ f(x,y") exp[izn{% X'+ %f y’ﬂdx’dy’

Note that the resultant intensity is independent of the distance d:
2
1

(1Y F(E%f)

If we set the distance d equal to the front focal length, we simplify the equation a little further:

(X, y) =

[ Xy
X,Y)=—€ " F| —,—
9(x.y) Af (if /’th

Now suppose we put a screen at the back focal length, and screen out some specific spatial frequencies,
then put another lens one focal length beyond this screen. On the back focal plane of this new lens, we will
re-image the first plane one focal length in front of the first lens but we will have filtered out specific
spatial frequency combinations. For example, a screen blocking the central portion near the axis of the
system will screen out low spatial frequencies and the result is an image outlining the high contrast
locations of the original. This is a High Pass filter. A filter that consists of a small hole around the center
portion and everything else blocked acts as a Low Pass filter blocking all of the high spatial frequencies
and resulting in a softened image compared to the original that will have slower fluctuation over the image
plane. This situation corresponds to the pinhole filtering of a laser beam in a beam expansion telescope.

Original Image High Pass Filtered Low Pass Filtered

Fourier Propagation of a Beam (Mathematical Formulas)

Given a complex valued input function f (X, Y), the square of which would be the intensity of the light on

a plane, how do you find the function g(X, Y), the square of which would be the intensity of light at



another plane due to propagation from the first plane? The answer is that you use a transfer function,
3(v4,V,), in the following way:

F(v,,v,)= T T £ (x, y)el 2 gyay

g(x, y) = I J- (Vx , Vy)F(VX WV, )e—[iZH(VxXH/yy)]d de v,

The only trick now is to find that transfer function for a particular situation.

Free Space Transfer function

Suppose we have a plane wave at the plane Z = 0.
F(X,y) = U (X, y,0) = Ag 27t nlg-ino
b y b y’
At a later plane Z = d we expect to see the plane wave:
g(X, y) _ U (X, y,d) _ Ae—iZﬂ(vXXH/yy)e—ikZd

In order to make the required change in the Fourier transform of f (X, Y) so that the inverse Fourier

transform results in (X, ) we nee to remember:

( 9 )1/2 1 9 21/2
k, =k?>-k; -k’ —27r?—vx—vy

so that the required transfer function is:

g0y = [ [e L Fv,v,)e 2 lgy dy

Equation Error! No text of specified style in document.:32
Where:

F(v,,v,)= T T £ (x, y)el gy

Equation Error! No text of specified style in document.:33

Or, taking advantage of the series expansion in the exponent:
— o-ikd T izAd vx+vy F —[i27z(vxx+vyy)]d d
g(x,y)=e I_[e (v,>v,)e v dv,

Equation Error! No text of specified style in document.:34 Fresnel approximation of output plane, free
space propagation, frequency space transfer.



There is another approach, one using only the space domain instead of the frequency space domain. This
treats the free space propagation as a convolution:

(x=x)(y-y')

. I —ikdOOOO NSy P, !
9(xy) = e jw[of(x,y)e 8 dx'dy

Equation Error! No text of specified style in document.:35 Fresnel approximation of output plane, free
space propagation, space domain convolution.

If we used this free space transfer function to go from input to output planes far enough apart, then the
individual plane wave components of the input plane would contribute to the complex amplitude at
individual points in the output plane.

I i Xy
s ~—¢€ F DRI
9y~ (/w zdj

Equation Error! No text of specified style in document.:36
This is the Fraunhofer Approximation as is:
. X2y
e X
g y) ~—e e @ pl = L
Ad Ad - Ad
Equation Error! No text of specified style in document.:37

Thus the free space propagation will separate the Fourier components of the beam. The lens discussed
earlier is simply a way to accelerate that process. This is the far field result. This approximation is valid as

long as the complex function f (X, Y), in the input plane z=0 is confined to a radius b such that b*/Ad<<I.
and we confine ourselves to points in the output plane within a radius a such that a%/Ad<<l1.

Fresnel Approximation
If the function f (X, Y), contains only features much larger than the wavelength of the light used so that
Vf +v 5 << 1/ 22 , then the paraxial approximation is appropriate so that the angles associated with the

plane wave components of the beam make angles 6, ~ Av,,0, = Av, . The phase factor in the transfer

function can then be expanded in a Taylor series resulting in the Fresnel approximation:

which is valid as long as the following conditions are observed:

If a is the largest radial distance in the output plane, then:

N, =a’/4d,0, ~a/d

Then we use:



g Y) = [ [ 30,0 F v e 20 hdy dy,

—00—00

where

F(v,,v,)= T T £ (x, ygel2 = lgygy

—00—00

Now that we have this free space transfer function, we can use the properties of the Fourier transform to get
the free space transform as a convolution in the Fresnel approximation:

: ® © (=X +(y-y')
_ ik e A dy'dy’
90 y) = e _jw_jmf(x,y)e A dx'dy

Note that this approach treats the complex amplitude in the output plane as an expansion of paraboloidal
waves originating at the input plane, while the first approach treated the output complex amplitude as an
expansion of plane waves originating at the input plane.

Lens Transfer Function

Beginning with a complex amplitude f(x,y) at the input plane and using the transfer function of free space
to go from an input plane a distance d in front of a lens and then the transfer function of the lens

- (x2+y2)
Iﬂiﬂf
e and then the free space transfer function again from the lens to the output plane a distance f

beyond the lens we get for the complex amplitude at the output plane (focal plane of the lens):
iﬁL"zﬂ/z fa-1) ( Xy j

_ i —ik(d+f) af2
X,Y)=-—=<¢€ e _—
9(X,y) T

(4f)
Equation Error! No text of specified style in document.:38

F(v,,v,)= T T f(x, y)e[iz”(”x”yy)]dxdy

Equation Error! No text of specified style in document.:39

Note that the intensity of the light at the focal plane is equal to the absolute value squared of the output
plane complex amplitude:

1 (x oy Y
I(X’y)_(,1f)2 F(/if’/ifj

Equation Error! No text of specified style in document.:40

The intensity is independent of the distance d. If the distance d is equal to the focal length of the lens f,
then the complex amplitude itself is somewhat simplified.



i Xy
X,Y)=7—=€ " F| —,——
906¥) (4f) (ﬂf ﬂfJ

Equation Error! No text of specified style in document.:41

The intensity in the output plane at (x,y) is proportional to the power in the plane wave component of the
input beam with angular directions (0, 0,)=(x/f, y/f). This explains why the divergence of the beam can be
measured by the beam width at this output plane divided by the focal length of the lens.

4-f System with a Spatial Filter

If we put an input plane at one focal length in front of a lens, a spatial filter one focal length beyond that
lens, a second lens one focal length beyond the spatial filter and finally an output plane one focal length
beyond the second lens, then we have a 4-f system with a spatial filter. If we designate the transmittance of
the spatial filter as p(x,y), then the transfer function and impulse response function of the whole system are
given by:

S(vx Wy ) = p(/if v, Afv, )

__ L Xy
hoey)= (2 P(ﬁ ’/?,f]

where

P(v,.v,) = [ [ POt y)e” " lxdly

Equation Error! No text of specified style in document.:42

So that the output plane complex amplitude is given by:

gouy) = [ | DAV, AV, F(v,.v, e >y dy,

T [iZH(VXX-H/ y)]
Fvy) = [ fxye! ™ axdy
Equation Error! No text of specified style in document.:43

Where f(x,y) is the input plane complex amplitude.

Or we can use the impulse response function:

T ’ 1A 1 X y ! 1
= ([ Pl =, ldxd
g(x,y) J;[O (X,)')(M)2 (/lf’/lfjx y

Equation Error! No text of specified style in document.:44



